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ABSTRACT 
The biological behaviour of breast cancer is remarkably heterogeneous 
and it is essential to have tools which can provide the necessary risk 
stratification to plan clinical management. Breast cancer prediction and 
prognosis needs to be holistic, and account for multiple levels of 
organisation. The histological classification and grading of the tumour 
itself presents valuable predictive and prognostic information. Hormone 
receptor status remains a mainstay, but roles may emerge for 
assessment of the intrinsic molecular subtype, for a molecular 
subclassification of triple negative carcinomas, and for whole genome 
sequencing. The recent discovery that antibody drug conjugates are 
effective in patients with weak HER-2 protein expression has led to the 
definition of the HER-2 low group.  
There has been a proliferation in predictive and prognostic models, 
numbering over 900, but the majority are at high risk of bias and tend 
to perform less well when applied to populations beyond the 
development cohort. The Nottingham Prognostic Index is a notable 
exception. Of the molecular risk stratification tools currently available, 
Oncotype Dx is the most widely recommended and used, but the 
question as to which test is superior remains unanswerable with current 
data. There is growing interest in omics-based approaches from which 
a number of biomarkers are being developed.  
It is well established that the microenvironment of the tumour is key to 
the tumour’s behaviour. Some components contain and destroy the 
cancer, whereas others are co-opted by the tumour and aid in its 
progression; the current evidence is reviewed, including the current 
status of tumour infiltrating lymphocyte assessment and immune 
checkpoint inhibition in breast cancer. The use of the liquid biopsy to 
achieve early detection of tumours and to manage tumour evolution is 
receiving intense attention; approaches include circulating tumour cells 
and circulating tumour DNA. Specific assessment of tumour giant cells 
may also provide the ability to anticipate tumour evolution. The 
influence of the gut microbiome on breast cancer is an intriguing 
development which requires further intensive study. There is a paucity 
of biomarkers in the setting of hereditary breast cancer. The use of 
polygenic risk scores in this setting is an interesting development 
requiring further study.  
The greatest challenge of all is to pull from such complexity key decision 
nodes that are clear enough to guide treatment decisions without losing 
the depth and richness of the information that underlies them. Seeking 
and finding this balance has been and will continue to be the holy grail 
of all endeavours in this field. 
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 Introduction 
The biological behaviour of breast cancer is 
remarkably heterogeneous; there is a large degree 
of inter-individual variability in the short and long 
term prognosis of breast carcinomas as well as in 
their responses to therapy. In order to maximise the 
benefits of a personalised approach to therapy, it 
is essential to have tools which can provide the 
necessary risk stratification to plan clinical 
management. A number of tools are well 
established, including the routine assessment of the 
ER, PR and HER-2 receptor status, the Nottingham 
Prognostic Index, molecular predictors of 
chemotherapy response such as the Oncotype 
recurrence score reported by Genomic Health and 
bioinformatic predictors of response such as the 
Predict tool. However, there is a need for predictive 
and prognostic tools to develop further. Biomarkers 
typically fall into one of three categories: 
diagnostic biomarkers which aid in the subtyping of 
a tumour, prognostic biomarkers which are used to 
assess patient outcomes, and predictive biomarkers 
which are used to assess the expected response to 
therapies and guide treatment. In practice, the lines 
between predictive and prognostic biomarkers are 
often blurred.  
 

A Brief History of Breast Cancer 
Prediction and Prognosis 
Breast cancer has been known since the ancient 
world. The earliest written description of the disease 
comes from the Edwin Smith Papyrus, which is a copy 
produced in 1500 to 1600 BCE of an original 
ancient Egyptian medical document believed to 
date to 3000 BCE. It remained a recalcitrant 
disease to treat until key turning points in the 18th 
and 19th centuries 1. The pioneering work of Virchow 
in the 19th century subjected tumours to microscopic 
analysis, which began the process of classifying 
tumours on their histological appearance, and 
introduced the concept of tumour grade. In parallel 
with the assessment of tumour grade came the 
assessment of stage. The first TNM staging for 
breast cancer appeared in 1958. 
 
The first biomarker of breast cancer was the 
estrogen receptor (ER), the importance of which was 
established in the 1960’s, with tamoxifen, the first 
selective estrogen receptor modulator, becoming 
available in 1971. This was followed by the 
progesterone receptor (PR). Most recently, there 
has been growing interest in the androgen receptor 
as a biomarker and treatment target, both in the 
context of ER and PR positive breast cancers, and in 
the context of the luminal androgen receptor 
subtype of triple negative breast cancer. 
 

Ki67 was discovered in 1983 as a nuclear protein 
expressed in proliferating cells; it is widely used, 
and there is strong evidence that a high Ki67 
proliferative index is associated with worse 
outcomes. The full scale deployment of this 
biomarker has been hampered by reproducibility 
problems which will likely be overcome by digital 
pathology. Ki67 also forms a component of a range 
of prognostic systems which were subsequently 
developed, including the PEPI score for assessment 
of response to neoadjuvant endocrine therapy, and 
the Oncotype recurrence score. An emerging trend 
is toward the use of paired Ki67 measurements, 
comparing pre- and post neoadjuvant therapy 
proliferation indices to assess the response to 
treatment and inform treatment decisions on a case 
by case basis, particularly in the setting of 
neoadjuvant endocrine therapy.  
 
The next important biomarker was HER-2, first 
described in 1987, with the first drug directed 
against this receptor, Herceptin, becoming 
available in 1998. Interestingly, the initial trials of 
Herceptin showed no benefit of the drug, because 
the data were analysed looking at all breast 
cancers as a group. It was only when the subgroup 
of patients who showed HER-2 amplification were 
analysed that the benefits of HER-2 blockade in this 
subgroup were observed – a classic salutary tale of 
subgroup effects.  
 
In the 1990’s, the importance of BRCA was 
demonstrated. In the early 2000s, the first 
molecular risk stratification tools emerged, and with 
them the evidence supporting treatment de-
escalation. Most recently CDK4/6 has emerged as 
a therapeutic target in ER and PR positive and HER-
2 negative disease (see 2 for review). In the setting 
of disease progression, detection of PI3KCA 
mutation has emerged as an important biomarker.  
 
The first choice of treatment of breast cancer is 
surgery. However, the psychological impact of 
radical surgery has driven the search for modalities 
to achieve breast conservation, leading to the use 
of neoadjuvant chemotherapy in breast cancer. The 
evidence shows that the combination of taxanes and 
anthracyclines is most effective in the neoadjuvant 
setting.  
 
Response to NACT can be assessed clinically, 
radiologically and pathologically. The pathological 
response to neoadjuvant chemotherapy is assessed 
by the pathologist on the excision specimen. There 
are many grading systems described, including, but 
not limited to, the Miller-Payne system, RCB system, 
Sataloff system and the AJCC ypTNM staging 3. 
Internationally, the Miller-Payne system is the most 
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 widely used, but there is no overall consensus on the 
best system, and each has its advantages and 
drawbacks.  
 
Neoadjuvant chemotherapy can increase the 
surgical opportunity for patients with advanced 
disease and improve the breast conservation rate 
for patients with early disease. It can also improve 
prognosis. However, there are some patients who 
do not respond, and it is essential to identify these 
patients as early as possible. 
 

The Predictive and Prognostic 
Implications of the Histological 
Classification 
The histological classification and grading of the 
tumour itself presents valuable predictive and 
prognostic information, and can be stratified into six 
prognostic groups (see 4 for review): 
1. Very indolent: pure low grade adenosquamous 

carcinoma, pure fibromatosis-like metaplastic 
carcinoma, pure low grade mucoepidermoid, 
adenoid cystic and secretory carcinomas. Also 
includes encapsulated and solid papillary 
carcinomas, which are regarded as in-situ 
lesions despite lacking myoepithelial cells.  

2. Excellent prognosis group: low metastatic 
potential with mainly lymph node metastasis: 
pure tubular and cribriform carcinoma (<3cm).  

3. Good prognosis group: Grade 1 invasive 
breast carcinoma (NST), tubulolobular, mucinous 
and invasive papillary carcinoma. 

4. Moderate prognosis group: Grade 2 invasive 
breast carcinoma (NST), classical invasive 
lobular carcinoma. 

5. Poor prognosis group: Grade 3 invasive breast 
carcinoma (NST), pleomorphic lobular 
carcinoma, micropapillary carcinoma, Grade 3 
matrix producing and squamous metaplastic 
carcinomas. 

6. Very poor prognostic group: Grade 3 invasive 
breast carcinoma (NST) of large size, Grade 3 
spindle cell metaplastic carcinoma, small cell 
carcinoma.  

 

Current Developments in 
Immunohistochemical Prediction: 
HER-2 low 
Previously, the assessment of HER-2 status by 
immunohistochemistry divided the expression of the 
receptor into three categories: negative (scored as 
0 or 1+), borderline (2+) and positive (3+) based 
on the staining pattern. Borderline cases were 
tested for HER-2 amplification and cases showing 
the amplification assessed as positive. The recent 
discovery that antibody drug conjugates are 

effective in patients with weak HER-2 protein 
expression has led to the definition of the HER-2 low 
group, defined as a 1+ pattern of staining on 
immunohistochemistry or tumours with a 2+ staining 
which do not show HER-2 amplification. This 
paradigm regards HER-2 low tumours as being 
HER-2 equipped as opposed to patients with the 
amplification whose tumours are HER-2 driven. 
There are HER-2 low carcinomas present across 
hormone receptor positive and triple negative 
carcinomas, with a larger proportion being found in 
hormone receptor positive carcinomas (65%) as 
compared with triple negative carcinomas (35%). 
Current practice will therefore be to classify tumours 
into HER-2 negative, HER-2 low and HER-2 positive. 
Revised guidelines have been issued but there are 
discrepancies in the details which will need to be 
resolved. It is unclear whether HER-2 low identifies 
HER-2 equipped tumours amenable to antibody 
conjugate therapy, or whether there are distinct 
molecular subgroups within HER-2 low tumours (see 
5 for review).  
 

Predictive and Prognostic Models of 
Breast Cancer Using Clinical 
Predictors  
There has been a proliferation in predictive and 
prognostic models. A recent systematic review of 
breast cancer prognostic models identified 58 
prognostic models derived from pathological data 
which are reported in routine clinical practice, 
developed between 1982 and 2016 , 28 of which 
predict mortality, 23 of which predict recurrence 
and 7 of which predict both 6. The most commonly 
used predictors in these models are nodal status, 
tumour size, tumour grade, age at diagnosis and the 
ER status. As might be expected, there is a tendency 
for most of these models to perform well in the 
development cohorts, but the performance becomes 
less accurate when the models are applied to other 
populations, particularly young patients, the elderly 
and high risk patients. The notable exception is the 
Nottingham Prognostic Index which provides 
consistent predicting ability across a range of 
independent populations; it remains a mainstay of 
prediction for this reason 6.  
 
The Nottingham Prognostic index is based on the 
assessment of tumour histology (tumour size, 
pathological lymph node stage, grade). A further 
index, termed the NPI+, has further built on the 
original index by building in the 
immunohistochemical assessment of ER, PR, HER-2, 
CK 5/6, CK 7/8, EGFR, HER-3, HER-4, p53 and 
Mucin 1 into the prediction model 7.  
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 Looking more broadly at all prediction models, 
another recent systematic review identified 922 
models using 228 predictors published between 
2010 and 2020; application of the Prediction 
model Risk of Bias Assessment Tool (PROBLAST) 
identified that the majority of the prediction models 
examined are at high risk of bias, mainly due to 
problems identified in the analysis domain of the 
tool 8. Only 35 of the models were developed using 
the appropriate statistical methods. Given that 
prediction models are highly likely to require 
certification as medical devices, this is a major 
problem.  
 
There is a growing interest in the subset of risk 
prediction models which have been developed 
using artificial intelligence (AI) and machine 
learning. These models do appear to perform 
slightly better than those derived by more 
traditional approaches. Of the currently described 
models, the most commonly employed machine 
learning method was the neural network method. 
However, as with prediction models as a whole, 
machine learning tools are also at high risk of bias, 
as revealed by the PROBLAST tool. (see 9 for 
review). 
 
Although a high risk of bias does not mean that a 
model has no clinical value, and a low risk of bias is 
no guarantee that a model will have clinical value, 
it is an aspect of model development which requires 
more rigorous attention going forward. This will 
require close adherence to clinical reporting 
guidelines, and particular attention to appropriate 
statistical analysis. 
 

Molecular Risk Stratification Tools 
The use of molecular risk stratification tools has 
focussed on the setting of women with early 
hormone receptor positive HER-2 negative breast 
cancers. It is known that some of these women will 
derive substantial benefit from adjuvant or 
neoadjuvant chemotherapy, whereas 
chemotherapy can be safely avoided in others. 
Identifying the latter group of patients in a safe and 
consistent way is therefore important. There are 
several validated commercially available 
molecular risk stratification tools available, which 
include Oncotype Dx, Mammaprint, Prosigna, 
Endopredict and the Breast Cancer Index. Each of 
these tools measures the expression level of a small 
subset of genes, some also incorporating clinical risk 
factors, to give a prognostic score.  
 
Oncotype Dx uses the gene expression data of 21 
genes to give a recurrence score (RS) from 0 to 100, 
which predicts the risk of recurrence over the next 9 
years with endocrine therapy alone, adjusted for 

nodal status10. Of the 21 genes assessed, 16 are 
cancer related, and 5 are reference genes used for 
normalisation. The RSClin web tool allows the RS to 
be integrated with tumour size and grade11. 
Oncotype Dx has been prospectively validated for 
use in both pre- and postmenopausal patients with 
ER positive HER-2 negative disease which is either 
node negative or node positive with up to 3 positive 
nodes. 
 
Mammaprint is a similar tool, validated for use in 
the setting of ER positive HER-2 negative disease, 
which uses the gene expression data of 70 genes to 
assign tumours to a low or high risk category 12. Due 
to the low numbers of node-positive patients in the 
prospective trials of this tool, the evidence for this 
tool is confined to the setting of node negative 
disease12. However, the tool can be used in both ER 
positive and ER negative disease. The MINDACT 
trial demonstrated that this tool can identify a 
subgroup of patients who are at ultra-low risk of 
recurrence 13. 
 
The Prosigna tool is based on the PAM50 tool and 
combines the tumour size with an assessment of the 
molecular subtype (luminal A, luminal B, HER-2 
positive, basal-like) to generate a score which 
divides patients into low, intermediate and high risk 
groups14. The PAM50 measures the expression of 
50 cancer related genes, 8 genes for normalisation, 
6 for positive controls and 8 for negative controls. 
 
Endopredict uses the gene expression data of 12 
genes, 3 related to proliferation, 5 associated with 
hormone receptors, 3 reference genes for 
normalisation and one control gene, and combines 
these with clinical risk factors to divide tumours into 
low and high risk categories15. This tool is validated 
in the setting of postmenopausal patients with node 
negative or node positive disease, but is not 
validated for use in premenopausal patients. 
 
The PEPI score, widely used in clinical trials, is a 
score used in the setting of neoadjuvant endocrine 
therapy and is derived from the Ki67 index, tumour 
size, lymph node status and ER expression. A PEPI 
score of 0 is associated with a low risk of recurrence 
without chemotherapy 16. 
 
The Breast Cancer Index is an algorithmic signature 
based on two independent panels of biomarkers. 
The first, the Molecular Grade Index, assesses 5 
proliferation genes. The second is an expression 
ratio of two genes which assesses estrogen 
signalling pathways17. The tool provides an overall 
risk of recurrence over 10 years and also a specific 
risk of late recurrence, defined as recurrence after 
5 years. Some studies have suggested that this tool 
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 can be used to predict the benefit of extended 
endocrine therapy after 5 years, although this 
predictive effect was not consistently validated in 
all studies18.  
 
Of the above tools, Oncotype Dx is the most widely 
recommended and used. Before the TAILORx trial, 
the National Surgical Adjuvant Breast and Bowel 
Project (NSABP) stratified patients into low 
(RS<18), intermediate (RS 18- <31) and high (RS 
≥31) groups. Only the high risk group derived 
benefit from chemotherapy19. The benefit of 
chemotherapy in the intermediate risk patients was 
assessed by the TAILORx study, and showed that 
endocrine therapy alone was noninferior to 
combined adjuvant chemotherapy and endocrine 
therapy in patients with an RS of 11-2520.  
 
With so many commercially available tools, the 
question arises as to which is the superior test, or 
whether different tests perform better in certain 
settings. The OPTIMA preliminary study used five 
clinically validated tools, including Oncotype, 
MammaPrint and Prosigna, to compare how they 
performed against each other in risk stratification. 
They found a high level of disagreement between 
the tests. 60.6% of tumours were given a discordant 
risk category by at least one of the tools 21. There 
may be many reasons for this. The thresholds used 
to define the risk categories are different, and the 
number of risk categories varies between 2 and 3 
depending on the tool. The genes used in the tests 
are also different (Oncotype and MammaPrint 
cover 91 genes between them but share only three 
genes in common). The question as to which test is 
superior, or whether all of these tools will be 
superceded by other tools with a broader scope, 
remains unanswerable with current data. In the 
current landscape, the simultaneous use of multiple 
tools causes decreased rather than increased 
precision, and is therefore discouraged by current 
guidelines20. Of the current commercially available 
tools, Oncotype currently has the largest body of 
evidence from prospective trials.  
 

Omics-Based Assessment 
With the limitations of the current risk stratification 
tools, there is growing interest in omics-based 
approaches 22. The hallmarks of cancer and their 
associated pathways present a vast array of 
complexity which can now be probed at multiple 
levels of organisation. Most studies of this kind 
integrate the main levels of the central dogma of 
molecular biology: genomics, transcriptomics and 
proteomics. Added to this are the epiomics of the 
central dogma: epigenetics (epigenetic DNA 
changes), epitranscriptomics  (RNA modifications) 
and epiproteomics (post translational 

modifications). Another layer, given the metabolic 
changes that occur in cancer, is metabolomics. The 
proteomic assessment has been targeted in recent 
years to the tumour microenvironment, yielding, 
among many useful modalities, immunomics. Many 
biomarkers are in various stages of assessment 
based on these approaches. However, the 
integration of such exponentially expanding and 
vast information is a daunting task.  
 
There is evidence across a range of cancers that 
artificial intelligence approaches perform well in 
the the integration of omics data. With regard to 
breast cancer, there are algorithms which show 
promise in the detection of breast cancer by the 
integration of cfDNA and proteomic data 
(cancerSEEK) and in the classification of breast 
cancer by the integration of mRNA expression 
proteomics and metabolomics (PROFILE) (see 23 for 
review).  
 

Breast Cancer Heritability 
Around 5-10% of breast cancers are familial, 
showing a strong family history of both breast and 
ovarian cancer. The most commonly encountered 
mutations in this group, accounting for 50% of 
familial breast cancers between them, are BRCA-1, 
BRCA-2, checkpoint kinase-2 (CHEK2) and PALB224. 
Data on potential biomarkers in this group are 
sparse, and this is an area that requires more 
attention as these tumours have distinct behaviour. 
They occur earlier, show greater multifocality, and 
are more likely to be bilateral.  
 
Inactivation of DNA repair pathways in these 
patients confers a worse prognosis. A key target 
which has significantly improved outcomes for this 
group is Poly ADP Ribose Polymerase (PARP). When 
PARP is inhibited, the base excision pair machinery 
for single-strand DNA break repair is not recruited, 
leading to a double strand break. If homologous 
recombination is intact, this defect is easily 
repaired. However, if homologous recombination is 
lost, and there is a BRCA-1 and BRCA-2 mutation, a 
pathway of genomic instability is triggered leading 
to cell death24.  
 
In addition to these highly penetrant autosomal 
dominant genes, there are a wider range of low 
penetrance gene variants which, when their 
influence is combined, explain up to 30% of breast 
cancer heritability. The majority are single 
nucleotide polymorphisms (SNPs) detected using 
Genome-Wide Association studies. The combined 
effect of these genes can be measured using 
Polygenic Risk Scores. A number of polygenic risk 
scores have been developed and described and 
there is evidence that these can be used to stratify 
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 the risk of breast cancer development in their own 
right, and can improve risk stratification when 
combined with the established breast cancer risk 
factors. The latter context, which integrates the 
polygenic risk scores with clinical and lifestyle risk 
factors and mammographic density, is more likely 
to be clinically useful. They may therefore find a use 
in screening (see 25 for review). However, this would 
require a better understanding of the impact an 
assessment of high risk would have on the patient. Is 
there a risk reducing strategy that can be 
implemented? If so, what is it? Is it worth the 
psychological cost and the radiation exposure of a 
more intensive monitoring regime? A number of 
large scale studies are currently examining these 
questions.  
 

The Tumour Microenvironment 
It is well established that the microenvironment of 
the tumour is key to the tumour’s behaviour. Current 
evidence supports the fact that a high infiltration of 
CD4 and CD8 positive tumour infiltrating 
lymphocytes, cytotoxic T-cells, FOXP3 positive 
regulatory T-cells before chemotherapy, type 1 
tumour associated macrophages, B-cells, natural 
killer cells and dendritic cells are all associated with 
a better prognosis and a better response to NACT. 
FOXP3 positive regulatory T-cells after 
chemotherapy, type 2 tissue activated 
macrophages, bone-marrow derived suppressor 
cells, cancer stem cells, epithelial to mesenchymal 
transition, tumour infiltrating neutrophils, mast cells, 
adipocytes, cancer associated fibroblasts and 
neoplastic vessels are all associated with a worse 
prognosis and a worse response to NACT. This 
complexity reflects the role of the components of the 
microenvironment as a two-faced Janus in cancer. 
Some components contain and destroy the cancer, 
whereas others are co-opted by the tumour and aid 
in its progression (see 26 for review). 
 
In the immune pathways, immune checkpoints PD-L1, 
CTLA-4 and the T-cell immunoglobulin and ITIM 
domain are associated with a better response to 
NACT. In contrast, T-cell immunoglobulin domain 
and mucin domain 3 and indole 2,3 oxygenase 
(which enhances the production and activity of some 
of the cancer-promoting immune cells) are 
associated with a worse response to NACT 26.  
 
It is proposed that tumour infiltrating lymphocytes 
could be used to select patients for immunotherapy 
and also identify good prognostic subgroups who 
may benefit from de-escalation of chemotherapy. 
However, further studies and consistent refinement 
of the methods to assess TILs are needed. This 
includes better characterisation of the tumour 
microenvironment by identifying not only the 

lymphocyte subpopulations but also their spatial 
distribution, improved reproducibility of the 
assessment, and the use of machine learning 
approaches and AI to develop operator-
independent methods of TIL assessment (see 27 for 
review). 
 

PDL-1 
There are well described immunomodulatory 
mechanisms which allow immunogenic tumours to 
achieve immune evasion and escape. Of the 
thousands of likely factors, the most well 
characterised is the PD-1 and PDL-1 interaction. PD-
1 is strongly expressed by activated T cells, but 
binding of PDL-1 to PD-1 inhibits the normal 
activation of T-cells and ameliorates their tumour-
killing actions. Inhibition of PDL-1 has emerged as a 
strategy to eliminate this pathway of immune 
evasion. This strategy is being increasingly used in 
a range of tumours. In the setting of breast cancer, 
its current use is in the setting of triple negative 
breast cancers. Atezolizumab in combination with 
nab-paclitaxel, and pembrolizumab combined with 
chemotherapy, are both currently being used in the 
setting of metastatic triple negative breast 
carcinoma 28.  
 
The landscape of PDL-1 assessment as a biomarker 
is strangely muddled. Various antibodies acting on 
various epitopes are available, with expression 
detectable in both immune cells and tumour cells, 
depending on the antibody used. The scoring 
systems to define PDL-1 positivity are likewise 
variable, some focussing solely on the immune 
infiltrate with others requiring scoring of both 
immune cells and tumour cells. Because of the way 
the trials were conducted, each drug has been 
linked with its own companion diagnostic test 
(SP142 for atezolizumab and 22C3 for 
pembrolizumab; current additional drugs in 
development are linked with yet further different 
antibodies). This landscape has hampered robust 
biomarker development. There is a need for a 
clearly defined and standardised PDL-1 biomarker 
test to definitively assess the PDL-1 status in breast 
cancer. Such an approach would make more 
biological sense than the current situation, in which 
PDL-1 can be positive with one test but negative 
with another, restricting the choice of agent because 
of the linkage of the companion diagnostic to the 
drug. Furthermore, the latest evidence suggests that 
neoadjuvant pembrolizumab in combination with 
chemotherapy followed by adjuvant 
pembrolizumab improves event free survival for 
primary triple negative breast cancer regardless of 
the PDL-1 status. If further studies show similar 
findings, the need for the assessment of PDL-1 status 
may be called into question (see 28 for review). 
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 The Intrinsic Molecular Subtypes of 
Breast Cancer 
The subtypes of breast cancer are typically 
assessed using immunohistochemistry. However, 
these subtypes can also be identified by molecular 
analysis, and the PAM50 assay, which combines 50 
standardised and reproducible gene assays, can 
identify the intrinsic subtype of breast cancer, 
dividing it into luminal A, luminal B, HER-2 positive 
and basal phenotype. Although there is a moderate 
correlation between the subtype assessment by 
immunohistochemistry and the intrinsic subtype, 
these are not as superimposable as is often assumed 
in clinical practice. It is this lack of precise 
correlation with immunohistochemistry that may 
make the PAM50 a useful test in some clinical 
settings, particularly when the behaviour of the 
tumour and response to therapy do not correlate 
with what the receptor status would predict (see 29 
for review). For example, there is a subgroup of 
tumours which, despite showing high expression of 
ER and PR, show poor sensitivity to hormonal 
therapy, which the PAM50 can identify. It has been 
suggested that the PAM50 can identify HER-2 
negative patients who are responsive to HER-2 
therapy, although it remains to be seen whether, 
with the advent of the identification of HER-2 low 
patients, there is additional benefit of the PAM50 
over immunohistochemistry 29. 
 

Triple Negative Breast Cancer 
As the most aggressive form of breast cancer, as 
well as the form for which the fewest new treatments 
have become available, there has been intense 
interest in biomarker discovery in this group of 
tumours. In 2011, expression profiling identified 6 
subtypes of triple negative breast cancer. Revisions 
to these have since been proposed, most collapsing 
the classification into four rather than six subtypes, 
and there is no international consensus on the 
accepted classification to use. The six subtypes 
identified by the original analysis, and their 
potential treatment significance, are as follows (see 
30 for review): 
1. Basal-like 1: highly proliferative tumours with a 

high Ki67. Includes tumours with DNA response 
pathway aberrations. Likely to respond to 
PARP inhibitors and genotoxic agents. 

2. Basal-like 2: aberrant growth factor signalling 
and aberrant myoepithelial marker expression. 
Growth factor and mTOR inhibitors are 
potential therapies. 

3. Mesenchymal: this group incorporates the 
metaplastic carcinomas, showing aberrations of 
cell motility, cellular differentiation and 
extracellular receptor interaction. mTOR 

inhibitors are also a potential therapy in this 
group. 

4. Mesenchymal stem-like: contains high levels of 
tumour-associated stromal cells; low expression 
of cell proliferation genes and high expression 
of stemness, angiogenesis and growth factor 
genes; PI3K inhibitors and antiangiogenic 
therapy may be treatment options in this group. 

5. Immunomodulatory: characterised by high 
levels of tumour infiltrating lymphocytes. There 
is increased expression of immunological 
signalling genes, likely overexpressed in the 
immune infiltrate rather than the tumour. This 
group may be particularly responsive to 
immunotherapies such as PDL-1 inhibition, but 
further studies are required to probe this 
potential association.  

6. Luminal Androgen Receptor: associated with 
active hormonal signalling, despite loss of ER 
and PR expression, with high expression of AR. 
Antiandrogen therapy is a potential therapy. 

Because the expression patterns of the 
immunomodulatory and mesenchymal stem-like 
subgroups are likely derived from the tumour 
microenvironment rather than the tumour cells, some 
subsequent systems omitted these as specific 
subgroups, with the microenvironment-related 
changes captured in other ways (for example, 
dividing basal-like into immunosuppressive and 
immune activated subgroups) 30. Further research is 
needed to achieve consensus on a molecular 
classification of triple negative breast cancer and 
most crucially to establish how such a classification 
can inform treatment. 
 
There is intense interest in the information that whole 
genome sequencing of triple negative breast 
cancers can reveal beyond the molecular 
subclassification discussed above. Many of these 
studies have revealed similar genetic abnormalities 
to those highlighted by the molecular classification, 
namely TP53 mutations, immune response genes 
(particularly immunocheckpoints), PI3KCA mutations 
and DNA repair pathways (see 31 for review). 
However, novel abnormalities have also been 
revealed, including mutations in AURKA (for which a 
targeted therapy exists), MYC and JARID2. Whole 
genome sequencing is also beginning to address 
equity in the genetic assessment of these tumours. 
Triple negative breast cancers are twice as common 
in women of African or Hispanic descent than in 
white women. In women of African descent, EZH2 
overexpression, BRCA1 alterations (including 
methylation) and BRCA20delaAAGA have 
emerged as specific signatures 31. 
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 Circulating Tumour Cells (CTCs) 
The traditional mainstay of breast cancer prediction 
has been the assessment of tissue biopsies. 
However, this poses challenges in the dynamic 
assessment of tumour evolution through the course of 
therapy because of the inability to account for 
tumour heterogeneity, the inaccessibility of 
metastatic lesions, and the difficulty of asking 
patients to repeatedly undergo invasive 
procedures to obtain tissue samples. For this reason, 
the use of liquid analytes detected in peripheral 
blood is receiving much attention. The earliest 
research focussed on the use of serum tumour 
markers, of which CEA, CA-15-3 and CA125 are 
the most widely used. Elevated levels of these 
biomarkers are associated with worse outcomes, but 
their utility in preoperative risk stratification 
remains controversial due to conflicting data in this 
setting. Furthermore, these biomarkers are unable 
to account for the effects of tumour heterogeneity 
and tumour evolution. 
 
The discovery of circulating tumour cells (CTCs) has 
led to the potential of a liquid biopsy. Circulating 
tumour cells are living cells which break off from 
their tumour of origin or from a metastatic deposit 
and are shed into the bloodstream, where they can 
be detected. In addition to the amenability of CTCs 
to repeated sampling and treatment monitoring, the 
nature of CTCs as metastatic precursors make 
analysis of CTCs potentially superior to the focal 
snapshot of a tumour provided by a tissue biopsy 
(see 2 for review). Over 200 trials of CTCs in breast 
cancer are currently in various stages of progress. 
 
The current landscape of CTCs is complex. There is 
strong evidence that the presence of higher numbers 
of CTCs is associated with a worse prognosis, 
particularly in the metastatic setting, but also in 
early disease. A recent meta analysis suggested 
that breast cancers can be divided into aggressive 
(≥5 CTCs) and indolent (<5 CTCs) subgroups 32. The 
predictive capabilities of CTCs remain less clear. In 
early stage disease, the GeparQuattro and 
REMAGUS 02 trials did not show an association 
between CTCs and response in the main tumour. 
However, the presence of CTCs after therapy was 
shown, in the same studies, to predict early relapse 
33,34. 
 
In the metastatic setting, the results of current trials 
are equally mixed. Using the presence of persisting 
CTCs after one cycle of chemotherapy to guide 
switching therapy had no impact on overall survival 
35. Giving HER-2 directed therapy to patients with 
HER-2 negative primary tumours with newly 
emerging HER-2 positive CTCs showed only 
marginal benefits36,37. CTCs were more successful in 

detecting a subset of ER positive HER-2 negative 
tumours who would benefit from chemotherapy 38.  
 
The major drawback of current technologies is the 
limited detection of CTCs due to their very low 
levels in peripheral blood (approximately one CTC 
per one billion red blood cells) and their short 
circulation time of 10 to 30 minutes. Developing a 
reliable and efficient method of CTC enrichment is 
essential. Various approaches which are being tried 
include implantable devices, cytapheresis (a 
method of cell fraction enrichment from large cell 
volumes) or sampling blood from the blood vessels 
directly draining the tumour (see 2 for review). Each 
of these approaches reintroduces a degree of 
invasiveness to the sampling, with the approach of 
sampling vessels draining the tumour requiring 
surgical access to the tumour. Another complicating 
factor is that CTC extravasation has a circadian 
rhythm, so the timing of sampling is critical 39. There 
is evidence that molecular aspects of CTCs can be 
assessed and that it is feasible to do drug testing 
on CTCs 40.  
 
CTCs remain a promising avenue of development 
and it is likely that the intense research attention this 
approach is receiving will overcome the technical 
hurdles of this technology.  
 

Circulating Tumour DNA (ctDNA) 
All cells release DNA into the bloodstream, including 
tumour cells, and the tumour cell-derived fraction of 
circulating DNA is referred to as circulating tumour 
DNA (ctDNA). Circulating tumour DNA holds the 
same attraction as CTCs for the same reasons. 
Various applications for ctDNA have been 
established, including early detection, diagnosis, 
prediction of response to neoadjuvant 
chemotherapy, disease monitoring and to detect 
resistance. There is emerging data from a range of 
trials that ctDNA can be used to risk stratify patients 
in the neoadjuvant setting, with detection and 
persistence of ctDNA being associated with 
resistance and metastatic recurrence (see 2 for 
review). However, most of the ctDNA in the blood 
does not show mutations. Possible solutions include a 
shift toward epigenetic assessment of ctDNA, and 
the assessment of the fragmentation patterns of 
cfDNA, which can yield useful information without 
the need for mutational information (see 41 for 
review). Finally, the omics based approaches 
discussed above can be applied in this setting to 
assess the circulome.  
 

MicroRNAs 
MicroRNAs (miRNAs) are small non-coding 
endogenous RNAs which inhibit translation by 
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 binding to the UTR 3’ of the target mRNA. They can 
be isolated in fixed tissues, blood, saliva and urine, 
making them attractive biomarkers. A broad range 
of miRNAs have been investigated in breast cancer, 
and show promise in the settings of both early 
detection of the primary tumour, and early 
detection of metastatic disease, with some 
potentially predicting the metastatic site 24. Most of 
the research in this field is in the earlier phases of 
biomarker discovery, and it is likely that the clinical 
application would involve the use of panels of 
predictive miRNAs, as no single miRNA has 
emerged as a clear biomarker to focus on. 
 

Gastrointestinal Microbiota 
There is emerging evidence that the composition of 
the gut microbiota can influence the response to 
chemotherapy and that chemotherapy, in turn, can 
influence the composition of the gut microbiota. The 
human digestive system contains approximately 
100 trillion bacteria. A recent systematic review of 
nine studies reveals some intriguing trends 42. A high 
alpha diversity, which reflects a high diversity in the 
microbiome and is regarded as an indicator of 
good gut health, is associated with better responses 
to neoadjuvant chemotherapy, whereas low alpha 
diversity is associated with resistance. The beta 
diversity refers to differences in the composition of 
the microbiome between samples. Interestingly, one 
of the most consistent biomarkers to emerge from 
the limited evidence currently available is 
Bacteroides, which is associated with a worse 
response to neoadjuvant chemotherapy. A number 
of organisms have been found to be associated with 
better responses to neoadjuvant chemotherapy, 
and these have tended not to be consistent between 
studies. The broader range of these organisms likely 
reflects the finding that higher alpha diversity 
overall is favourable. Beta diversity was also used 
to stratify patients based on tumour size, grade, 
axillary lymph node metastasis and TNM stage 43.  
 
An observational study of the use of antibiotics 
during cancer chemotherapy showed that patients 
who do not receive antibiotics have higher rates of 
pathological complete response, and reduced 
disease free and overall survival 44.  
 
It is intriguing to note that each histological subtype 
of breast carcinoma is associated with a unique 
breast microbial profile 45, pointing to the role of 
breast microbiota in the tumour microenvironment 
and providing a potential mechanistic link between 
the composition of the gut microbiome and the 
behaviour of the tumour in the remote site.  
 
Larger scale studies will be needed to harness the 
power of this promising avenue of exploration, in 

particular to identify the specific combinations of 
microbiota which are beneficial and harmful.  
 

Polypoid Giant Cancer Cells 
Polypoid giant cancer cells are the tumour-specific 
example of the phenomenon of polyploidy or 
whole-genome duplication, an adaptive mechanism 
which, despite some costs to cellular function, 
provides a mechanism for broad adaptations to 
occur to stressors. In the context of cancer, polypoid 
giant cancer cells can restructure the genetic and 
epigenetic landscape of the tumour cells as well as 
the tumour microenvironment. Measuring 
biomarkers in these cells provides a way to 
anticipate the evolution of the tumour. Many of the 
genes shown to be overexpressed in these cells in 
breast cancer are, unsurprisingly, genes in the 
proliferative and apoptotic pathways well known 
to be involved in breast cancer pathogenesis and 
progression. There are some genes which have been 
shown to induce the formation of polypoid giant 
cancer cells, which include CDC25C, and its 
upstream regulation by p38MAPK-ERK-JNK. The 
genes Aurora A and Aurora B are suppressors of 
polypoid giant cell formation, and inhibition of 
these genes has been shown to induce polypoid 
giant cell formation (see 46,47 for review). The key 
to developing these as biomarkers will be to find 
specific markers to identify polypoid giant cells 
which can be easily applied in the clinical setting. 
 

Conclusion 
Breast cancer prediction and prognosis is a rapidly 
advancing field, but still anchored by the 
established clinical risk factors, histological 
classification and assessment, and the use of 
immunohistochemistry and in-situ hybridisation. The 
Nottingham Prognostic Index remains the most 
reproducible and robust prognostic tool. Molecular 
risk stratification strategies are likely to evolve with 
the use of the liquid biopsy to respond dynamically 
to tumour evolution, and the development of liquid 
biopsy approaches will benefit from the omics 
approaches powered by AI. Omics approaches in 
tissue samples can also be used to reconcile the 
differences and limitations of the more focussed 
molecular stratification tools currently in use. The 
development of future risk stratification tools will 
need to take great care in using the proper 
statistical approaches and to avoid bias. It is likely 
that AI will play a key role in developing future 
algorithms, and there is evidence that AI-based 
tools perform slightly better.  
 
There is potential for prediction and treatment of 
triple negative carcinomas to evolve with the use of 
a molecular subclassification, but further studies are 
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 needed. The insights gained by whole genome 
sequencing in triple negative carcinomas set the 
stage for whole genome sequencing to come online 
for clinical use in these tumours, as has already 
happened for other tumour types in other tissues.  
 
The literature abounds with potential biomarkers 
and targets, many of which may come to be of 
benefit to breast cancer patients. The tumour 
microenvironment will be a key focus of further 
work. PDL-1 inhibition has been the first application 
of this approach to enter the clinic but there will 
likely be many more. The intriguing role of the gut 
microbiota is a promising avenue of exploration 
which requires much more attention.  

 
Breast cancer prediction and prognosis needs to be 
holistic, and account for multiple levels of 
organisation. The technology to gather this 
information and to integrate it is available, 
although technical and analytical challenges 
remain. The greatest challenge of all is to pull from 
such complexity key decision nodes that are clear 
enough to guide treatment decisions without losing 
the depth and richness of the information that 
underlies them. Seeking and finding this balance 
has been and will continue to be the holy grail of 
all endeavours in this field.  
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