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ABSTRACT

Breast cancer is the most common malignancy in women worldwide,
and one of the leading causes of cancer death. This disease shows a
significant heterogeneity due to its genomic and histological diversity.
Breast cancer is classified by pathologic features (i.e. histological subtype,
tumor grade) and gene expression profiles (i.e. molecular subtypes).
There are complex mechanisms implicated in its progression and the
development of chemotherapy resistance. In recent times, tumor stroma
is increasingly being recognized as an important factor which influences
tumor pathogenesis and progression. Tumor-stromal cells interactions
are involved in many phases of tumor growth, by modulating different
cellular processes. Tumor-infiltrating lymphocytes are proven to be
clinically significant as they correlate with good prognosis, especially
in triple-negative and HER2-positive breast cancer patients. However,
tumor-infiltrating lymphocytes are just one of the many components
of the tumor microenvironment, which includes fibroblasts, macrophages,
adipocytes, vascular cells etc., but also non-cellular components. One
of the main cellular components of the tumor microenvironment are
the fibroblasts which are activated and differentiated into breast cancer
associated fibroblasts. They secrete many growth factors, cytokines, and
chemokines which influence tumor growth and dissemination. Tumor
microenvironment could be a source of new biomarkers with a potential
predictive and prognostic significance. This review highlights the tumor
microenvironment as an important contributor to the process of cancer
development with an overview of the main components and the potential
impact on the prognosis of breast cancer. It's important to expand our
understanding and knowledge of tumor-stromal signalling processes
which may lead to the development of more successful and individualized
therapeutic strategies.
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1. Introduction

Breast cancer is the most commonly diagnosed
cancer worldwide and one of the major causes
of global cancer-related mortality." The global
burden of breast cancer is on the rise but there
are variations among different countries.? Breast
cancer is not only comprised of tumor cells,
but also of the tumour microenvironment (TME).
Breast cancer shows significant diversity with
its different special histological subtypes and
morphological patterns, but the breast cancer
stroma is also very heterogeneous (Figure 1.).
A lot of research has been done trying to find
strategies to improve survival outcome.
Advances in the field of medicine have enabled
a better understanding of tumor progression
of breast cancer and allowed the distinction of
different genetic profiles of breast cancer and
the use of precision-medicine strategies in its
treatment.®>**> Breast cancer can be divided
into different subtypes (luminal A, luminal B,

HER-2 positive and triple negative breast

cancer) depending on their expression of
estrogen receptor, progesterone receptor,
HER-2 and Ki-67, which differ in their prognoses.
Luminal A and B tumors usually show a good
response to endocrine therapy (such as
tamoxifen, fulvestrant, aromatase inhibitors).
Tumors that are HER2+ have a tendency to
grow faster, but specific anti-HER2 therapy
has improved the patients’ survival rate. Triple-
negative breast cancer subtype shows a very
aggressive behavior, has the worst prognosis
among BC subtypes and has less specific
therapeutic options than the others. The
development of new treatment strategies
depends on our understanding of the
pathophysiology of this tumor. Tumor
microenvironment consists of extracellular
matrix and many different cell types, including
fibroblasts, macrophages, lymphocytes and
endothelial cells (Figure 2.). Studies have shown
that cancer cells only thrive in an altered
microenvironment which has an importantrole

in tumour progression and therapy resistance.®’#

1.A.

1.B.

Figure 1. Breast cancer stroma. A) Invasive breast carcinoma of no special type with medullary

pattern showing prominent tumour-infiltrating lymphocyte infiltrate. B) Invasive breast carcinoma

of no special type with fibrotic stroma.
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Tumour microenvironment is comprised of a
variety of non-cancerous cells present in the
tumour. These include fibroblasts, macrophages,
endothelial cells, infiltrating inflammatory cells
and adipocytes together with extracellular
matrix components and signalling molecules,
such as cytokines and growth factors.”'° Breast
stroma composition influences breast density,
which plays a part in cancer development.
There is evidence that some characteristics of
the extracellular matrix (ECM) (e.g. density,

stiffness, organisation) influence tumor cell
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growth and survival, and promote metastasis.™
Different

microenvironment have an effect on cancer

constituents of the  tumor
development and resistance to therapy. In the
following discussion we will summarise the
components of tumour microenvironment and
their role in tumor progression. However, it is
important to emphasize that the extracellular
matrix is also dynamic, and transforms in
conformity with the state of tumor development,
which is sequentally influenced by extracellular

matrix.'?
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Figure 2. Tumor microenvironment. Interactions between cancer cells and TME are involved in

all stages of tumor development. The most direct way cancer cells interact with the TME is through

paracrine signaling (by secreting of growth factors, cytokines and chemokines by tumor cells and

the stromal cells).
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1.1. Cancer associated fibroblasts

Cancer associated fibroblasts (CAFs) are cells
of mesenchymal origin that are activated by
the inflammation and fibrosis during tumor
development.”™ These are one of the most
copious cell types in tumour microenvironment,
and perform many different functions, e.g.
extracellular matrix deposition and modulation
of immune response.' They are distinguished
by their morphology, association with tumor
cells, and absence of epithelial, endothelial or
hematopoietic cell markers.”™ Cancer associated
fibroblasts

differences from resting fibroblasts; they are

show some morphological
larger, spindle-shaped with indented nuclei
and branching cytoplasm, but the difference
is mainly functional. They show increased
proliferative, migratory, and secretory functions,
higher metabolical activity and increased
extracellular matrix production. Their collagen
production is increased and aberrant.'"
Cancer associated fibroblasts are derived
from different cell precursors, but their origin
is not entirely clarified. They can evolve from
resident fibroblasts or from mesenchymal
stromal/stem cells, which express similar surface
markers. The transition from fibroblasts to
CAFs is mostly irreversible.?%?2 The research
on this specific population of cells is impeded
by the lack of a pan-specific marker, and the
absence of a consensus for biomarkes to
identify CAFs, which makes them very difficult
to define and distinguish from other
mesenchymal cells. They generally express
mesenchymal biomarkers (e.g. vimentin, a-
SMA, FAP, PDGFR-a). There are different
phenotypes of CAFs which vary between
tumor types.?*?* Some studies of triple-negative
have

demonstrated 3-4 CAF subtypes (CAF S1-S4)

breast cancer and ovarian cancer

based on the difference of expression of
fibroblast markers (FAP, integrin B1/CD29, a-
SMA, S100-A4/FSP1, PDGFRB, and caveolin-
1).2>2¢ |t seems that these CAF subtypes are
different functional fibroblastic states, and not
static types.” As mentioned earlier, CAFs secrete
more cytokines than the resting fibroblasts.
Some of these are TGFB, PDGF, FGF, HGF,
VEGF, CXCL12, IL-6 etc., which are tumor-

promoting.?’

1.1.1. Transforming growth factor-B (TGF-B)

is a cytokine that regulates proliferation,

migration, and differentiation of cells. It
has an important role in inflammation and
tissue repair. Changes in TGF-B signaling
pathway is involved in cancer development.
In the early stages of cancer development
TGF-B has a tumor-suppressing effect by
inducing cytostasis and apoptosis. But in
the later stages of tumor growth, tumor
cells become resistant to TGF-B tumor
suppressive effect, and TGF-B starts to
act as a tumor promotor by stimulating
the epithelial-mesenchymal transition (EMT)
which causes metastasis and therapy
resistance. TGF-B also stimulates tumor
growth by initiating tumor angiogenesis,
activating CAFs and helping the tumor
cells to escape the hosts immune
response.? Transforming growth factor-8
causes immunosuppression in the TME
and promotes tumor growth, metastasis
and therapy resistance. Transforming
growth factor- signaling regulates tumor
metabolic reprogramming in the tumor
metabolic microenvironment (TMME).
Cancer is characterised by the abnormal
regulation of cellular metabolism. Cancer
cells and stromal cells in the TME adapt
their metabolism of glucose, amino acids
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and lipids. The changes in the tumor
metabolism cause the accumulation of
nutrients, substrates, metabolic
intermediates and final metabolites intra-
or extracellularly, forming a reprogrammed
metabolic environment in the tumor, TMME.
Investigating the role of TGF-B signaling
in the TMME is important in finding new
cancer therapy strategies.?’ The dual role
of TGF-B, acting as a tumor suppressor
and a tumor promoter is somewhat unclear.
Transforming growth factor- has a systemic
immunosuppressive role.  Neutralizing
TGF-B stimulates CD8+ T-cell and NK-cell
anti tumor activity and causes neutrophil
recruitment and activation. Transforming
growth factor-g also regulates inflammatory
and immune cell infiltration and CAF
recruitment in the TME. Understanding
the role of TGF-B in mediation between
cancer cells and host immunity should
help in the development of effective
TGF-B antagonists.®

1.1.2. Platelet-derived growth factor (PDGF)
family is composed of four monomeric
polypeptide chains (PDGFA, PDGFB,
PDGFC and PDGFD) which form

homodimers and heterodimers to produce

biological effects. In breast tissue, PDGFR
is expressed in stromal cells, but not
within the normal epithelium, however in
breast cancer cells PDGFRa and PDGFRB
may be upregulated which leads to
autocrine signaling.’ The PDGF/PDGFR
axis isimportant in promoting tumorigenesis
and potential target for therapy of several
types of cancer.* Platelet derived growth
factor receptors are considered to be
among key regulators of the tumor

microenvironment in many malignancies,

such as breast cancer. In some tumors
PDGFRs are activated and directly
implicated in tumor cell proliferation.
High stromal expression of PDGFRB is
associated with poor prognosis in breast

cancer.3?

1.1.3. Fibroblast growth factor receptor

(FGFR) family incorporates four receptor
tyrosine kinases (FGFR1, FGFR2, FGFR3,
and FGFR4) which bind the FGF ligands.
The FGF/FGFR axis has been implicated
in cancer development, metastasis, and
resistance to therapy. Aberrant FGF/FGFR
activation also occurs in breast cancer
which makes it a potential target in anti-
cancer strategies.* Three main types of
FGFR alterations in cancer are gene
amplification, gene fusion and gain-of-
function mutation. Fibroblast growth factors
are secreted not only by CAFs but by
other stromal cells as well as cancer cells,
and they play a key role in the tumor
microenvironment, e.g. FGF2 activates
dermal fibroblasts by downregulating the
TP53 gene. Fibroblast growth factors,
along with VEGF and angiopoietin, are
also important in angiogenesis. Since
FGFs are involved in the maintenance of
homeostasis, FGFR inhibitors may induce
adverse effects, such as endocrine or

metabolic abnormalities.?®

1.1.4. Vascular endothelial growth factor

(VEGF) is mostly produced by the
endothelial cells, but it is also secreted by
tumor cells, some stromal cells and the
immune cells of the TME. Besides its
functions in angiogenesis it also has an
immunosuppressive effect in cancer.

There are many members of the VEGF
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family, such as VEGF-A, VEGF-B, VEGF-
C, VEGF-D, VEGF-E, VEGF-F etc. which
carry out their functions by binding to
their receptors. Vascular endothelial
growth factor is an important angiogenic
factor and an immunomodulator of the
TME. For example, VEGFs can suppress
antigen presentation, stimulate activity of
and TAMs,

immunosuppression of TME. Vascular

Tregs which  promotes

endothelial growth factors can also
promote tumor development by directly
interacting with tumor cells by activating
tumor cell receptors through autocrine

and paracrine mechanisms.*

1.1.5. Stromal cell-derived factor-1 (SDF-1,
more commonly known as CXCL12) is a

member of the family of CXC chemokines.
This chemokine is expressed in many
different tissues and has important roles
in embryogenesis, organ development
and angiogenesis. Chemokine CXCL12
binds to CXCR4 (CXC chemokine receptor
4 which is also known as CD184) and to
CXCR7/ACKR3. CXCL12/CXCR4 axis also
has a role in TME where it promotes tumor
angiogenesis, proliferation of tumor cells,
immune cells recruitment and stimulates
immunosuppression. Cancer associated
fibroblasts and tumor cells can both secrete
CXCL12.%¥ Dysregulation of CXCL12/CXCR4
and CXCL12/CXCR7 axis has been shown
in many different tumors. CXCL12/CXCR4
initiates different pathways that regulate
transcription, chemotaxis and survival of
cells. Tumor microenvironment rich in
CXCL12 can lead to immune checkpoint
inhibitors therapy resistance and targeting
the CXCL12/CXCR4 axis can sensitize
tumors to its effect.®

1.1.6
interleukin-6/glycoprotein130

Interleukin-6 (IL-6) is a member of

cytokine
family which is a group of signaling
molecules with many different functions.
This cytokine family is involved in many
including

processes, hematopoiesis,

inflammation, tissue remodeling, cell
differentiation and cancer development.
Each member binds to its specific receptor
which starts signal transduction and results
in the activation of several downstream
pathways, JAK-STAT3, Ras-Raf MEK/ERK,
and PI3K/AKT being the main ones. In
breast cancer the most important one is
JAK-STATS. Interleukin-6 is secreted by
breast cancer cells and different cells of
the TME, e.g. mesenchymal stem/stromal
cells, CAFs and adipocytes. Interleukin-6
plays an important role in tumor cell
motility, EMT and cancer stem cell self-
renewal. Interleukin-6 has been associated
with resistance to endocrine therapy and
trastuzumab. Antagonists of IL-6 show a
potential for therapeutic use by
diminishing that effect.®” Higher levels of
IL-6 have been detected in the serum of
breast cancer patient and tumor site in
some cancers including breast cancer, which
has been associated with poor prognosis.
Some studies have demonstrated a better
response to treatment after downregulation
of IL-6.%0

Cancer associated fibroblasts add to tumor-
promoting inflammation and fibrosis.”> They
can also induce epithelial-mesenchymal transition
and promote tumor growth and cancer cell
migration via [IL-6.47%2 Cancer associated
fibroblasts have been shown to have a role in
Some in vitro

chemotherapy resistance.

experiments have demonstrated that DNA
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damage induced by chemotherapy actually
caused increased cancer cell invasion and
survival through paracrine signaling via
cytokines and exosomes.*® Transforming growth
factor-B, which is a mediator of fibrosis and
one of the most important factors secreted by
CAFs, also mediates crosstalk between CAFs
and cancer cells. Some studies have shown
that the inhibition of TGFB signaling can
inhibit

metastasis.** Genotoxic stress induced by

significantly tumor growth and
chemotherapy can also cause the release of
inflammatory, angiogenic, mitogenic and pro-
EMT factors.”®

become senescent but also convert to a CAF

Irradiated fibroblasts can

phenotype.** Cancer associated fibroblasts
influence the tumor microenvironment secreting
proinflammatory cytokines (e.g. IL-6) and
stimulate  immunosuppressive  signaling
pathways by expressing the ligands such as
CXCL12, CXCL1 and G-CSF.#!

associated fibroblasts also prevent CD8+

Cancer

cytotoxic T cell activity and recruitment partly
by TGF-B and CXCL12.5%% The CXCL12/CXCR4
axis is significant in tumor progression and
immunosuppression. CXCL12
secreted by CAFs recruits CXCR4-positive

endothelial progenitor cells and Tregs, which

Chemokine

stimulates angiogenesis and cancer growth >
Blocking of CXCR4 signaling in CAFs using
the CXCR4 inhibitor plerixafor reduced fibrosis,
increased cytotoxic T cell population, decreased
the number of immunosuppressive cells, and
increased the effectiveness of checkpoint

inhibitors.*’

1.2. Tumor-associated macrophages

Of all the cells in the tumor microenvironment,
tumor-associated macrophages (TAMs) are

the most prevalent; they constitute more than

50% of the tumor mass in most solid
tumors.*®*” Macrophages, as members of
mononuclear phagocyte system, are the most
abundant mononuclear inflammatory cells in
breast cancer. They are considered to be
involved in every step of tumor progression.
Macrophages can differentiate into different
functional phenotypes, which is determined
by the signals from the tumor microenvironment.
There are two categories of TAMs; tumour
inhibitory (M1) and tumor promoting (M2).
inhibitory M1
activated

Tumor macrophages are

classically macrophages  that
express pro-inflammatory genes, and M2 are
alternatively activated macrophages that
express anti-inflammatory genes. Tumour
promoting M2 macrophages secrete CHI3L1,
which has been associated with metastasis of
breast cancer cells in vitro and in vivo.®° Research
suggests that increased M1 macrophages in
the tumor microenvironment are connected
with reduced tumor aggressiveness, and
increased M2 macrophages are associated
with tumor growth.®” Tumor promoting M2
macrophages  stimulate and facilitate
angiogenesis, metastasis, immunosuppression
and drug resistance.®? A study has shown that
clodronate can reduce blood vessel density in
tumor tissue by depleting TAMs.©®> Tumor
associated macrophages are attracted to
hypoxic regions of tumors, where they release
hypoxia-induced chemokines (e.g. VEGFA,
endothelins and CXCL12).44¢> Nevertheless,
macrophages can  also  demonstrate
immunosuppressive activity.®® Tumor associated
macrophages can release anti-inflammatory
cytokines which suppress effector T-cell and
NK-cell cytotoxicity.®’ Interaction between active
T cells which express CTLA-4 receptor and

TAMs expressing CD80 and CD86 resulted in
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reduction in cytotoxicity and inhibition of T
cell activation. Production of chemokins allows
TAMs to recruit immunosuppressive cells such
as Tregs to inhibit a cytotoxic T-cell response.®®
Tumor associated macrophages also influence
the numbers of cancer stem cells (CSCs). M-
CSF, ICAM-1 and ephrin, secreted by TAMs,
can increase the survival and renewal of CSCs,
which leads to tumor growth and chemotherapy
resistance.®4? M2 phenotype TAMs can lead
to resistance to therapy.”® For example, TAMs
linked to

tamoxifen in postmenopausal women with

have been resistance against
breast cancer.”" One possible mechanism of
chemoresistance is secretion of IL-10 which
upregulates BCL-2 and STAT3 expression
IL-10-STAT3-BCL2

factor-B

epithelial-mesenchymal transition, a mechanism

activating pathway.”

Transforming  growth facilitates
through which epithelial cancer cells transform
their phenotype into a mesenchymal-stem cell
one which results in a more aggressive
behaviour.”?’* Interleukin-6, secreted by
TAMs, binds to IL-6 receptor on cancer cell
membranes”™ which causes the activation of
the JAK/STAT3 signaling pathway, resulting in
homodimerization of two STAT3 molecules
that work as a transcription factor in tumor cell
nucleus.”®’” There are studies which show
correlation between STAT3 activation and the
transcription of genes promoting angiogenesis,
proliferation, epithelial-mesenchymal transition
and cancer cell mobility in breast cancer.”>7
TAMs also
antiangiogenic therapies in breast cancer
tissue by releasing CCL18 and VEGFA and

promoting angiogenesis.”® TAMs have also

increase resistance against

been linked to tumor cell metastasis.”” It has
been suggested that the interaction between
cancer cells and TAMs are important for the

cancer cell intravasation.® Coculture of tumor
cells and macrophages increases expression
of MMP2 and MMP9, which degrade the
proteins in the extracellular matrix and facilitates

metastasis.?#?

Macrophages are also recruited to the
metastatic site of breast (“metastasis-associated
macrophages”). These macrophages promote
extravasation and growth of cancer.® One of
the strategies to reduce the number of TAMs
is to inhibit their recruitment to the tumor
microenvironment.® Anticathepsin D antibody
has been shown to inhibit TAM recruitment by
lowering TGFB levels in triple-negative breast
cancer.®> In one study liposomal Zoledronic
acid reduced the number of TAMs and reduced
angiogenesis and breast cancer growth in
triple-negative breast cancer.®® Some studies
that anti-VEGF-antibody in

combination with Avastin or Bevacizumab can

have shown

inhibit macrophage infiltration and prevent
TAMs from secreting proangiogenic factors,
which improves the effect of antiangiogenic
therapies.?’#®

1.3. Tumor-infiltrating lymphocytes

(TILs) are

mononuclear immune cells that infiltrate the

Tumor-infiltrating  lymphocytes
tumor.?” They are more frequent in high-grade
breast cancer (i.e. TNBC and HER2-positive
breast cancer).”*?T-lymphocytes include CD4+,
CD8+ and T-regulatory cells (Treg)?” and the
main component of TILs are T-lymphocytes
(CD3+).74%*  An association between high
degree of TIL infiltration and better prognosis
in triple-negative and HERZ2-positive breast
cancer has been found.?*”® High numbers of
TlLs are also in good correlation with pathological

complete response (pCR) to neoadjuvant
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therapy in triple-negative and HER2-positive
breast cancer.”” 9" Immunosuppression in
tumor microenvironment may be associated
with cancer cell proliferation and tumor growth.
Programmed cell death protein 1 (PD-1) and
programmed cell death ligand 1 (PD-L1) can
lead to immunosuppression by blocking
immune response which allows tumor cells to
escape the immune system. In order to overcome
this immunosuppression it is necessary to
target these proteins.'® In recent years TlLs
are recognized as an important prognostic
and predictive biomarker, in particular in the
setting of response to chemotherapy in some
subtypes of breast cancer.’® Programmed cell
death ligand 1 is the ligand 1 of the programmed
cell death protein 1 (PD-1), which is the main
immune checkpoint present of both CD8+
and CD4+ T-cells. Programmed cell death
ligand 1 is often presented by tumor cells and
immune cells. When PD-1 binds PD-L1, T-cells
cannot produce an effective immune response.'
IMpassion130 study showed a clinical benefit
from a combination of atezolizumab (a
monoclonal antibody targeting PD-L1) to nab-
paclitaxel in breast cancer patients with locally
TNBCs.'%®

Chemotherapy induced apoptosis of tumor

advanced and metastatic

cells can evoke an immune response.'®

Regulatory T cells (Tregs) can suppress effector
T cell activity and also the function of other
immune cells. Elevated numbers of Tregs in
breast cancer biopsies is associated with an
invasive phenotype and reduced overall
survival."”'% Transcription factor FoxP3 is
essential for the development and function of
Tregs. It is expressed on the surface of Tregs,
and its loss of function leads to Treg deficiency.
Regulatory T cells that are FoxP3 positive have

been found in great numbers in tumor infiltrates

and peripheral blood of cancer patients. High
levels of tumor-infiltrating Tregs have been
associated with poor clinical outcomes.
Cytotoxic lymphocytes CD8+ and FoxP3
positive Tregs can be used as prognostic
factors in breast cancer. Increased numbers of
FoxP3 positive Tregs and increased Foxp3+
Treg/CD8+ T cell ratio have been correlated
with more aggressive tumor behaviour, and
increases in CD8+ T lymphocytes have been
correlated with more favorable clinicopathologic

characteristics.'°

Elevated Foxp3+ Tregs
numbers in breast cancer tissue has been
associated with poor recurrence free survival.""
High numbers of intratumoral Tregs in breast
cancer before chemotherapy showed shorter
survival.'? In models of

overall some

mammary cancer ablation of Tregs has led to

reductions in primary and metastatic tumor.'"

1.4. Cancer-associated adipocytes

There are three categories of breast
adipocytes: mature adipocytes, preadipocytes,
and adipose-derived stem cells (ADSCs).
Cancer-associated adipocytes (CAAs) are
considered a special type of adipocyte that
surrounds invasive breast cancer (Figure 3.).
Compared to normal adipocytes, CAAs show
fibroblast-like phenotypes, smaller size, small
and dispersed lipid droplets, overexpression
of collagen VI and low expression of adiponectin
and other adipokines.""® Cancer associated
adipocytes have been associated with tumor
progression, metastasis and therapy resistance
by producing different adipokines, e.g. leptin
and adiponectin, as well as many different
inflammatory mediators (chemokines and
interleukins).'™'"¢ Adipocytes secrete more
than 600 metabolites, hormones and cytokines,

which are called adipokines.™ In breast cancer
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TME the CAA-mediated secretion of CCL2,
CCL5, IL-1B, IL-6, TNFa, VEGF and |eptin is
increased, promoting tumor cell proliferation,

invasion and angiogenesis.'"”

Leptin is a
hormone mainly synthesized and secreted by
adipocytes. Leptin mediates proliferation,
differentiation, inflammation and nutrient
absorption. Increased leptin levels have been
correlated with a high cancer grade, advanced
tumor stage and invasive cancer subtypes in
some cancers, including breast cancer. The
secretion of leptin is higher in CAAs than in
normal adipocytes."’ Leptin can activate the
estrogen receptor, JAK/STAT3 and PI3K/AKT
signaling pathways to promote the proliferation
of BC cells."? Adiponectin is a hormone which
has a protective role in tumor progression.
Cancer associated adipocytes show a decreased

secretion of 120

adiponectin. Adiponectin
down-regulates proliferation of cancer cells by
regulating inflammatory signaling factors,
such as TNFa, IL-1B, nuclear factor (NF)-kB,
IL-6, IL-8 and CCL2."?" Chemokine CCL2 is
secreted by many different cells in the TME,
including cancer cells, endothelial cells and
fibroblasts. CCL2 binds to

receptors CCR2 and CCR4, serving as a

Chemokine

chemoattractant for CCR2-expressing immune
cells to areas of inflammation.'? High levels of
CCL2 have been connected with decreased
survival in breast cancer patients.'” Chemokine
CCL5 attracts leukocytes and serves as a
multifunctional  inflammatory ~ mediator.
Chemokine CCL5 can be produced by many
different cells, including mesenchymal stem
cells, but it is highly expressed in breast
cancer.'” Breast cancer cells stimulate the
secretion of CCL5 which binds to CCR5 on the
membrane surface of human breast cancer

cells which stimulates migration, invasion and

metastasis of cancer cells.'” Some studies
have shown high levels of activation of
CCL5/CCRS axis in TNBC and HER2-positive
breast cancer.'® Interleukine-6 is a cytokine
involved in many biological processes, including
hematopoiesis, immune regulation and
tumorigenesis. The secretion of IL-6 by
adipocytes is substantially increased in
obesity and cancer.'” Interleukine-6 has been
shown to be an independent poor prognostic
factor for overall survival in patients with
steroid-refractory metastatic breast cancer.’®

Interleukine-6 stimulates cancer cell

proliferation, survival and angiogenesis by
regulating the JAK/STAT3 signaling pathway.'?
Interleukine-6 also increases invasiveness of
breast cancer cells and activates EMT.™° Serum
levels of IL-6 have shown positive correlation
with body mass of obese women with breast
cancer. Survival of obese breast cancer patients
is worse than non-obese breast cancer patients.™'
Blocking of IL-6 signaling in breast cancer
changes the expression of EMT regulatory
genes and decreases the mobility of tumor
cells.”™ Cancer associated adipocytes can
enhance tumor cell proliferation and
angiogenesis by different mechanisms, such
as activation of ER, JAK/STAT3 and PI3K/AKT
signaling pathways, and increasing cyclin D1
and VEGF/ VEGFR expression.™? Experiments
in which adipocytes were co-cultured with
breast cancer cells showed they stimulate
tumor progression.” Cancer associated
adipocytes also secrete IL-6."% Interleukine-6
secretion influences cancer cell survival, immune
suppression and drug resistance by JAK/STAT3
pathway activation.”*® Potential targets for
breast cancer therapy include inflammatory

factors such as CCL5 and IL-6.""4
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Figure 3. A) and B) Cancer associated adipocytes. CAAs surrounding invasive breast cancer.

1.1. Mesenchymal stem/stromal cells

Mesenchymal stem/stromal cells (MSCs) are
multipotent spindle-shaped cells that were
first described in

marrow."¥” ¥ They are a population of stromal

hematopoietic bone
progenitor cells that are essential in maintaining
homeostasis. They take part in tissue repair
and neovascularization process after injury
and have the ability of self-renewal.’™% They
have the ability to differentiate into many
stromal cell lineages, and they can migrate
through the body and into the tumor.'" Since
MSCs usually migrate to areas of injury, they
are also recruited to tumor microenvironment
by inflammatory mediators, growth factors
and cytokines. Mesenchymal stem cells usually
migrate to tumors from bone marrow, they
can also be recruited from surrounding adipose
tissue. Mesenchymal stem cells in tumor
microenvironment also have the ability to
differentiate into CAFs."?'% |nside the tumor
tissue MSCs interact with tumor cells and
tumor microenvironment components either
directly through gap junctions and membrane
indirectly

receptors  or by  soluble

molecules.’ Mesenchymal stem cells release

endocrine and paracrine signal molecules
which stimulate adjacent cells, but are also
stimulated by tumor cells which results in
development of an abnormal, tumor-associated
phenotype.™ In breast cancer microenvironment
one of the ways in which MSCs interact with
the tumor cells is by generating exosomes,
which results in proliferation and migration of
breast cancer cells and their resistance to
drug-induced apoptosis.’” Mesenchymal stem
cell-derived exosomes contain molecules that
also induce polarisation of macrophages into
M2 phenotype.'*® A very interesting interaction
between breast cancer cells and MSCs has
also been described; breast cancer cells have
been known to cannibalize MSCs within the
tumor microenvironment; which results in the
death of the MSC and in increased survival
potential of the breast cancer cell which
enters dormancy.' Mesenchymal stem cells
also show a chemoprotective effect on breast
cancer cells against certain cytotoxic drugs.
Mesenchymal stem cells produce IL-6 has
which causes stimulation of ERa-positive breast

cancer cell proliferation.”™ " Interleukine-6
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has also demonstrated protective effect against
paclitaxel and doxorubicin in ER-positive breast
cancer'™?13 and against trastuzumab in Her-2
positive breast cancer.”™ Mesenchymal stem
cells also secrete TGF-B which is associated
with epithelial to mesenchymal transition which
also contributes to the chemoprotective
effect.”

1.2. Endothelial cells and angiogenesis

To maintain growth and enable metastatic
dissemination breast cancer needs development
of blood vessels. High microvascular density
has been associated with large tumor size,
high histological grade, lymph node metastasis
and adverse prognosis.”*"*® In breast cancer
tumour microvascular density is inversely
correlated with survival and tumour hypoxia is
positively  correlated with metastasis.”’
Endothelial cells are an important component
of the tumour microenvironment, and are

to the tumour 160

essential angiogenesis.
Angiogenesis is a process regulated by many
different growth factors, cytokines and hypoxic
environment. One of the essential molecules
in that process is VEGF."' Like other non-
neoplastic, tumor associated cells in tumor
microenvironment, endothelial cells also
undergo changes. They are stimulated to
produce wider vascular network mainly by
activating VEGF-A pathway. Vascular endothelial
growth factor-A is up-regulated in numerous
cancers. It promotes endothelial cell growth
and replication, and inhibits apoptosis. Breast
cancers with low VEGF-A levels are associated
with higher disease-free survival and overall
survival.'®? Endothelial cells are not just
passively recruited from cancer cells, they also
engage in paracrine signaling, some of which

go through Jag1/notch pathway.’ Vascular

endothelial growth factor is the most important
pro-angiogenic factor, it is over-expressed in
breast cancer, and furhermore has been
associated with overall survival in breast
cancer.'® |n advanced breast cancer patients
VEGF has been associated with poor response
to tamoxifen or chemotherapy.'®® There are
other mechanisms that stimulate breast cancer
angiogenesis, such as CL2/CCR2 signaling
that stimulates tumor growth and invasion by
recruiting and stimulating branching of
endothelial cells, attracting and polarizing
macrophages to M2 phenotype, and
suppressing cytotoxic T-cell activity.’ Normal
endothelial cells express thrombospondin |
which acts as a tumor suppressor. In the process
of tumor angiogenesis newly formed endothelial
cells express a lower concentration of
thrombospondin-1."%® As mentioned earlier,
hypoxia is an important pro-angiogenic signal.
Hypoxia inducible factor 1 subunit a (HIF-1a)
is one of the transcription factors that causes
up-regulation of proteins in hypoxic cells that
promote survival and increase growth.'¢’
Transcription factor HIF-1a levels are more
elevated in poorly differentiated than in well-
differentiated breast cancers, and increased
expression of HIF-1 a is also associated with
increased expression of ER and VEGF."? Since
VEGF has an established role in breast cancer
and accomplishes its effect through the
interaction with VEGF receptor (VEGFR),
different strategies and several points of the
VEGF/VEGFR pathway that could be potential
targets for treatment have been investigated,;
especially ligand blockade. Bevacizumab, a
monoclonal antibody that targets isoforms of
VEGF-A, is the first and the most explored
antiangiogenic drug in breast cancer clinical

trials. Many clinical trials have tested tyrosine
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kinase inhibitors that block the function of
VEGFR"" but despite the promising
preclinical studies resistance to treatment and

cardiovascular toxicities were shown."7%"7>

2.Conclusions

e Breast cancerisaheterogeneous disease
due to its genomic and pathological
diversity and its mortality rates remain high.

e Tumor microenvironment in breast cancer
includes cancer-associated fibroblasts,
immune cells, vascular and perivascular
cells and adipocytes.

e Interactions between cancer cells and
TME are involved in all stages of tumor
development (neoplastic transformation,
proliferation, invasion, metastasis).

e Fibroblasts are one of the main cellular
components of the TME; they become
pathologically activated and
differentiated into CAFs which secrete
growth factors, cytokines and chemokines.

e Tumor associated macrophages are the
most abundant mononuclear
inflammatory cells in breast cancer.
They can be differentiated into two
functional categories; tumour inhibitory
(M1) and tumour-promoting (M2).

e Tumor infiltrating lymphocytes are
mononuclear immune cells that infiltrate
the tumor and in breast cancer they are
more frequent in high-grade breast cancer.
TILs have been shown to be a good
prognostic and predictive biomarker in
high-grade breast cancer.

e Cancer associates adipocytes have
been associated with tumor progression,
metastasis and therapy resistance by
producing different adipokines and

inflammatory mediators.

e Mesenchymal stem/stromal cells are

stromal progenitor cells that are recruited
to TME where they interact with tumor

cells and the tumor microenvironment.

Endothelial cells are essential to tumour
angiogenesis thus maintaining tumour
growth and enabling metastatic

dissemination.

Every component of TME plays an
important role which opens opportunities
for finding potential therapeutic targets
and prognostic and predictive biomarkers

in the future.
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