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ABSTRACT

Background: Age-associated epigenetic alteration is the underlying cause of DNA
damage in aging cells. Two types of youth-associated DNA-protection epigenetic marks,
global methylation, and youth-associated genomic stabilization DNA gap (youth-DNA-
gap) reduce when cell ages. The epigenomic mark reduction promotes DNA damage and
accelerates aging hallmarks. While DNA hypomethylation destabilizes DNA by several
mechanisms, the DNA sequence around the youth-DNA-gap is hypermethylated.
Therefore, the genomic instability mechanisms underlying DNA hypomethylation and
youth-DNA-gap reduction are linked.

Results: DNA gap prevents DNA damage by relieving the torsion forces caused by a
twisted wave during DNA strand separation by transcription or replication. When the cells
begin to age, hypomethylation and youth-DNA-gap reduction can occur as consequences
of the efflux of intranuclear HMGB1. The methylated DNA gaps are formed by several
proteins. Box A of HMGB1 possesses a molecular scissor role in producing youth-DNA-
gaps. So the lack of a gap-producing role of HMGB1 results in a youth-DNA-gap reduction.
The histone deacetylation role of SIRT1, an aging prevention protein, prevents DNA ends
of youth-DNA-gaps from being recognized as pathologic DNA breaks. Youth-DNA-gaps
are methylated and determined genome distribution by AGO4, an effector protein in RNA-
directed DNA methylation. The HMGB1
hypomethylation due to two subsequent mechanisms. First is the loss of AGOA4-
methylating DNA. The other is the accumulation of DNA damage due to lacking HMGB1-

lack of intranuclear promotes global

produced DNA gap promoting DNA demethylation while undergoing DNA repair. DNA
torsion due to youth-DNA-gap reduction increases DNA damage and, consequently, the
DNA damage (DDR).

Accumulating senescent cells leads to the deterioration of the structure and function of

response Persistent DDR promotes cellular senescence.
the human body. Rejuvenating DNA (RED) by adding DNA protection epigenetic marks
using genomic stability molecule (GEM) such as box A of HMGB1 increases DNA durability,
limits DNA damage, rejuvenates senescence cells, and improves organ structure and
function deterioration due to aging.

Conclusion: Reducing youth-associated epigenetic marks is degenerative diseases'
primary molecular pathogenesis mechanism. REDGEM is a new therapeutic strategy
inhibiting the upstream molecular aging process that will revolutionize the treatment of
DNA damage or age-associated diseases and conditions.

Keywords: DNA protection, DNA methylation, youth-associated genomic stabilization
DNA gap, youth-DNA-gap, global hypomethylation, DNA damage, genomic instability,
senescence, aging, rejuvenation, RIND-EDSB, Box A of HMGB1, Rejuvenating DNA by
genomic stability molecule, REDGEM.
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Introduction

Age increases the risk of numerous health
issues from deterioration and failure of organ
functions (1-5). The pathogenesis of these
deteriorations may result from the cellular
aging process (6, 7). Determining the nidus of
the aging process and applying molecular
therapy to edit the nidus can completely
rejuvenate cells and reverse organ structure
and function (8, 9). DNA represents a "book
of life" that dictates the phenotype of living
organisms. While the aging process changes
the structure and function of various
molecules in the human body, the DNA
alterations, genomic instability and epigenetic
changes, found in aging cells is the primary
hallmarks of aging (10-12). Damage to DNA
can cause a persistent DNA damage response
(DDR) that drives cellular senescence (12-15).
Therefore, the key mechanism underlying the
aging process is likely DNA changes that
reduce DNA durability (9, 16, 17). Here, we
reviewed two epigenetic marks that drift
down with aging. These reductions cause
DNA fragility and endogenous DNA damage
accumulation. Therefore, the drift of epigenetic
marks may be the aging process nidus.

We recently showed that restoring epigenetic
marks improves DNA durability, reduces DNA
damage and DDRs, and rejuvenates organ
structure and function (9, 17). This article
reviews the roles of epigenetic marks in DNA
protection and rejuvenation and will describe
how they are formed, how they protect DNA,
how they are drifted down in elderly
individuals, and how the drift drives the aging
process. In addition, we discuss if editing the
epigenetic marks may play a therapeutic role

for noncommunicable diseases (NCDs).

Youth-associated DNA-protection

epigenetic marks

Two epigenetic marks, genome-wide DNA
methylation and naturally occurring DNA
gaps, are present in larger numbers in
younger individuals relative to older
individuals and play a role in DNA protection
(Fig. 1) (9, 16-18). DNA methylation can be
classified depending on the DNA sequences
and functions. DNA methylation of unique
sequences mainly occurs at regulatory
sequences and plays a role in gene regulation
(19). Interspersed repetitive sequence (IRS)
methylation plays a role in both gene
regulation and genomic stabilization (20-27).
The DNA IRSs,

particularly  Alu human

hypomethylation  of
elements  and

endogenous  retrovirus K and  long
interspersed nucleotide element-1 (LINE-1) to
a lesser degree, is a common epigenomic
alteration in elderly individuals (28-31). Alu
hypomethylation has also been demonstrated
in  patients  with
diabetes,
essential hypertension (32-34). Interestingly,

age-associated NCDs,
including osteoporosis  and
in newborns, Alu methylation is directly
growth rate (35).
hypomethylation is an

associated with the
Therefore, Alu
epigenotype of aging.
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Epigenetic marks

* DNA gap
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# DNA damage
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Figure 1. Youth-associated DNA protection epigenetic marks. In elderly individuals, the number of DNA gaps and

the level of DNA methylation decrease, and reductions in both epigenetic marks promote endogenous DNA damage.

Epigenetic editing by adding the epigenetic marks can result in rejuvenation.

Eukaryotic DNA contains naturally occurring
DNA gaps, previously named physiological
replication-independent endogenous DNA
double strand breaks (RIND-EDSBs) (2, 36,
37). The number of DNA gaps is low in
chronological aging yeast, old rats, senescent
cells, elderly individuals (9, 16). DNA gaps are
found to be inversely associated with HbA1c
levels in type 2 diabetes mellitus (38).
Reducing DNA gaps causes spontaneous
DNA shearing (16, 39), while increasing DNA
gaps increases DNA durability, decreases
endogenous DNA damage and promotes
rejuvenation (9). Therefore, we renamed the
gaps youth-associated genomic stabilization
DNA gaps (youth-DNA-gaps) (Fig. 1) (9).
HMGB1 acts as molecular scissors to produce
DNA gaps (Fig. 2) (9). Youth-DNA-gaps are
produced by cellular enzymes and prevent
DNA damage. Therefore, similar to IRS
DNA-

protection epigenetic marks. Interestingly,

methylation, youth-DNA-gaps are

both marks are linked. CpG dinucleotides
around youth-DNA-gaps are hypermethylated,
and the hypomethylated genome possesses
scant youth-DNA-gaps (Figs. 1, 2 and 3) (36).
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Figure 2. A youth-DNA-gap complex, Box A of HMGB1 acts as molecular scissors to produce youth-DNA-gaps.
AGO4 plays a role in RADM for methylating DNA around the youth-DNA-gap. SIRT1 deacetylates histones to compact
chromatin to hide youth-DNA-gaps from the DDR.

Young DNA

Box A: molecular scissors

Tensnon relief

DNA Methylation—

Youth- DNA—gap

Tensnon

Figure 3. Box A produces youth-DNA-gaps that play a role in DNA protection. DNA denaturation from DNA
replication or transcription promotes torsional stress. The DNA gap helps relieve the torsion force by allowing free

spin of DNA. Old DNA has fewer youth-DNA-gaps than young DNA.
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Causes of global hypomethylation
The that
hypomethylation in aging has not yet been

actual event causes global
determined. In early embryogenesis and cell
differentiation, ten-eleven translocation (TET)
the

demethylation process (40, 41). TET also

proteins is responsible for global

demethylate DNA during the DNA repair
process (17, 42-44). TET enzymes generate 5-
hydroxymethylcytosine (5hmC) during active
DNA demethylation and 5hmC is common at
DNA damage foci (45-47). Therefore, when
DNA is widely damaged, DNA repair will result
in genome-wide hypomethylation (Fig. 4).

TET activity
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Figure 4. Summary of the causes of global hypomethylation. The induction of global hypomethylation is caused

by several mechanisms, including the demethylation activity of ten-eleven translocation (TET) proteins, loss of methyl

donors, the DNA repair process, the inhibition of DNA methyltransferases or AGO4, and loss of intranuclear HMGB1.

Genome-wide hypomethylation may also be
caused by a generalized reduction in the DNA
methylation capacity of the cells (Fig. 4).
Knocking down DNA methyltransferases
(DNMTs) and diminishing methyl donors, such
as folic acid, vitamin B12, choline, and DNMT
inhibitors, lead to DNA hypomethylation (26,
48-51). A newly described mechanism that
IRS RNA-directed DNA

methylates is

methylation (RADM) (52-54). Human RdDM is
mediated by Argonaut 4 (AGO4), which is
primarily bound to IRSs (52). Diminishing
AGO4 IRS
hypomethylation (52). Finally, limited intranuclear
HMGB1 causes decreased IRS methylation
(Fig. 4) (55). The mechanism by which HMGB1

loss leads to genome-wide hypomethylation

function also leads to

will be discussed in a later section.
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Genome-wide hypomethylation also occurs
when cells are exposed to hazardous
benzene,
(56-59).

Environmental hazards are also associated

environments, such as smoke,

burns, and oxidative stress

with  DNA damage, which leads to
demethylation and repair, and HMGB1
release (60, 61).

DNA hypomethylation causing

genomic instability
DNA  hypomethylation causing genomic
instability has been described for several
decades. One of the natural events indicated
the link between DNA hypomethylation and
genomic instability was reported in ICF
syndrome (62, 63). ICF

immunodeficiency,

syndrome or
centromeric region
instability, and facial anomalies are caused by
DNMT3B mutation (62). ICF patients
commonly have DNA hypomethylation and
chromosomal  rearrangements at the
pericentromeric region or satellites. This
colocalization between hypomethylation and
mutation suggests that hypomethylated DNA
is prone to being broken. Similar findings
were found in cells treated with a DNA
demethylating agent (64). DNA mutations,
chromosomal instability, and tumors also
developed in cells, and mice were promoted

when DNA was hypomethylated (25, 26, 65).

DNA methylation is known
mutations by several mechanisms. First, the
(MMR)
DNMT1 to form a complex and properly
function (66-68). Both MMR and DNMT1
interact with replication machinery, while
DNMT1 plays a role in

maintenance of DNA methylation (69, 70).

to prevent

mismatch repair system requires

post-replicative

MMR in errors of

hypomethylated genome may be limited (Fig.

repairing replication
5). Second, DNA methylation at the promoter
of retrotransposable elements, such as LINE-
1, prevents the retrotransposable element
transcription process and
DNA
element genome insertion step (21, 24). LINE-

consequently
prevents rearrangement from the
1 may also indirectly promote instability by
promoting intracellular inflammation. The
intermediate form of LINE-1 retrotransposition
also promotes the intracellular inflammation
process during late senescence (71). Third,
DNA methylation is associated with histone
compaction, being essential for the
maintenance of genome stability (72). Fourth,
the association with heterochromatin also
results in different DNA double-strand break
(DSB) repair precision, which DSB repair
within a heterochromatic region is ATM-
mediated and is more precise than general
DNA-PKcs mediated nonhomologous end-
(73-75).  Fifth, DNA

hypomethylation may alter DNA repair gene

joining  repairs
regulation, resulting in genomic instability.
For example, hypomethylation of intragenic
LINE-1 of the PPP2R2B gene downregulates
the gene, and the gene's function is to
regulate the nuclear translocation of ATM, a
DNA protein (21, 76). LINE-1
hypomethylation is a generalized process in

repair

meaning that most LINE-1s are
hypomethylated (77).

cancer,
synchronously
Therefore, global hypomethylation can cause
defects in DNA repair by dysregulating the
PPP2R2B pathway. Finally, we proposed a
new mechanism that weakens the chemical
bonds of DNA due to the limited number of
methylated youth-DNA-gaps (Fig. 5) (9, 36, 55).
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Figure 5. Schematic diagram of the molecular mechanisms by which global hypomethylation drives genomic

instability. The mechanisms include MMR system interference, retrotransposition, loss of heterochromatin, loss of

DNA repair gene regulation, and DNA gap reduction.

We reported that DNA methylation prevents
all kinds of DNA damage, including base
change, 8-OHdG, base loss, AP sites, and
DNA breaks (17, 55). First, we identified an
inverse correlation between Alu element
DNA
damage level. Then, we used Alu siRNA to

methylation and the endogenous
increase Alu methylation by AGO4 mediated
RADM (17, 52). The Alu siRNA-transfected
cells showed reduced endogenous DNA
damage, increased DNA damaging agent
resistance, and improved cell proliferation.
Under the same mechanism, SINE siRNA was
applied to effectively treat burn and diabetic
wounds in rats (78, 79). Interestingly, the DNA
protection effect of de novo Alu methylation
extended far beyond the methylated loci.
While Alu siRNA increased Alu methylation
over approximately 1/10 of the genome,
approximately 100,000 loci, endogenous
DNA damage was reduced to 7/10 of the

genome. Therefore, each methylation locus
extends DNA stabilization by approximately
21 kb indicating that DNA methylation
prevents mutations by limiting DNA damage
over long distances (17). The expansion size
of the genome stabilization effect is far larger
than that of the
methylation-associated chromatin complex.
DNA gaps, the
mechanism of DNA damage prevention by

previously described

Therefore, except for
DNA methylation is unlikely to be explained
by the other roles of DNA methylation
described earlier (Fig. 5). However, similar to
DNA methylation, the methylated youth-
DNA-gap also protects the DNA long-range
and both protein complexes of Alu-siRNA and
youth-DNA-gap are composed of AGO4 (Fig.
2) (9, 16, 17, 36, 52, 55). Therefore, global
hypomethylation accelerating DNA damage
may be due to methylated youth-DNA-gap
reduction.
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Role of the DNA gap in DNA

protection

The role of DNA gaps is similar to that of the
gaps left between successive rails on a railway
track, which prevent railway bends from
environmental heat. During transcription or
replication, the double strands of the helix
structure of DNA must be separated. The
denaturation inevitably causes a twisted wave.
If both ends of DNA are fixed, then the
twisted wave will create a torsion force,
thereby weakening all chemical bonds of DNA
(80-82). The DNA gap helps relieve the
torsion force by ending the twisted wave by
freely spinning the end of the DNA gap (Fig.
3) (9, 16). While youth-DNA-gap helps relieves
DNA tension, aged DNA lacks DNA gaps;
therefore, twisted waves increase DNA tension.
This torsion force weakens DNA chemical
bonds, which increases the likelihood of DNA
damage. Moreover, DNA torsional force
inhibits transcription (83, 84). Consequently,
young DNA is more durable and works more

smoothly than old DNA (Fig. 3) (9).

DNA gaps are DNA modifications that are
serendipitously discovered. Because DNA
hypomethylation drives genomic instability,
including genome deletion, we designed
DNA
methylation of DNA sequences near EDSBs to
test the hypothesis that EDSBs as DNA
should
hypomethylated. We tested DNA from many

experiments to determine the

damage lesions have  been
cell types, and some were nondividing cells.
Surprisingly, hypermethylated DNA was
observed for all EDSBs (36). So these EDSBs
may not be DNA damage but should be DNA
modifications that opposite to DNA damage

lesions, which are epigenetic marks. The other

unexpected finding was that while pathologic
EDSBs were predicted to occur exclusively
during DNA replication (85), our ligation-
mediated PCR from IRS to the EDSB
technique, which is called IRS-EDSB PCR or
DNA-GAP PCR, detected EDSBs in
nondividing cells (36). Therefore, this type of
EDSB has a distinct biology from the generally
described replication-dependent EDSBs (36,
37, 39, 85, 86). We previously named these
DNA gaps RIND-EDSBs. RIND stands for
replication independent.

In humans, DNA gaps are generated by the
molecular scissoring activity of Box A of
HMGB1 (Fig. 2 and 3) (9). Transfection of Box
A-producing plasmid increases DNA gaps,
DNA durability, and reduces
endogenous DNA damage and DDRs.
HMGB1-produced DNA gaps protect DNA
over long distances from all kinds of DNA

increases

damage, base changes, base losses, and DNA
breaks, including single-strand breaks and
DSBs. HMGB1-induced DNA gaps also
prevent radiation-induced DSBs (9). While
HMGB1 can facilitate DNA repair (87), the
DNA damage prevention action of HMGB1-
produced DNA gap is DNA protection (9).

The DNA gap structure is similar to that of
pathological DSBs. Therefore, DNA gaps
should have been recognized by the DSB
response to gamma-H2AX, which signals
immediate DSB repair, and their retention in
cells should have been unlikely. DNA gaps are

hidden in heterochromatin by histone
deacetylases (9, 39), including SIRT1.
Heterochromatin action by  histone

deacetylation hides the DNA gap ends so that
cells do not recognize DNA gaps as DSBs (9).
Interestingly, SIRT1 has been demonstrated
to play essential roles in aging prevention,
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including resistance to oxidative stress (88,
89). Therefore, one of the mechanisms by
which SIRT1 prevents aging is likely youth-
DNA-gap maintenance (Fig. 2).

Additionally, because of the DSB structure of
the DNA gap, to

deleterious multiple DNA breakage events,

avoid chromosome
youth-DNA-gaps must be repaired before the
DNA replication fork passes through. To
prevent DNA repair errors, youth-DNA-gap
repair must be more precise. Therefore, error-
prone Ku-mediated nonhomologous end-
joining repair (NHEJ) may not be acceptable
(39). youth-DNA-gaps are also present in G'
and thus may not be repaired by a
homologous DSB repair system. We found
that retaining youth-DNA-gaps in nonacetylated
heterochromatin helps block Ku-mediated
NHEJ and allows these breaks to be repaired
by a more precise ATM-dependent pathway
(39). Therefore, youth-DNA-gaps do not
promote the consequences of pathologic
DSBs, such as persistent DDRs driving

senescence or mutations causing cancer.

In addition to HMGB1 and SIRT1, the DNA
gap complex consists of at least another
protein, AGO4 (Fig. 2). AGO4 acts as RdADM
to methylate DNA around the DNA gap (55).
Argonaut proteins play an essential role in the
RNA silencing complex, or RISC (20). AGO4,
however, is a critical component of RADM
(52). AGO4 binds to SIRT1 in the cytoplasm
and forms DNA gap complexes with HMGB'1
and SIRT1 in the nucleus (55). AGOs also
contain small RNA to determine the binding
target. Therefore, youth-DNA-gap locations
are determined by the small RNA sequences
of AGO4, which primarily binds to IRSs (52).
As a result, DNA gap formation can avoid

critical locations that would have disrupted
essential genome functions, such as mRNA

synthesis.

Rejuvenating DNA by genomic
stability molecule or REDGEM

Both principle mechanism of action and
treatment outcome of both Alu-siRNA and
box A of HMGB1 expression plasmid are
unprecedented. Both molecules protect DNA
(9, 17, 55, 78, 79). For example, the DNA of
cells pretreated by box A had higher
resistance to radiation than untreated cells (9).
We classified two molecules as
rejuvenating DNA by genomic stability
molecules (REDGEM). Rejuvenating DNA or
RED means cells treated with REDGEM are
added youth-associated epigenetic marks.

these

Genomic stability molecule or GEM means
REDGEM protects DNA from being damaged.

Alu or SINE-siRNA is not promising for future
clinical use. In addition to AGO4, the siRNA
may incorporate into other AGOs and yield
different outcomes among different cell
types. In addition, SINE loci distribution and
sequences among animal species are distinct.
So SINE methylation outcome of each species
may be different. Therefore, preclinical
evaluation of SINE-siRNA may not be fully

equivalent to Alu-siRNA.

We showed that Box A rejuvenated cells by
producing DNA gaps to increase the
durability of old DNA (9). The strengthened
DNA eventually reduced endogenous DNA
damage and DDR. Consequently, Box A
transfected cells’ senescent signaling cascade
was limited and as a result cells were

rejuvenated  (Fig. 6). We currently
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demonstrated that Box A expression plasmid
transfection could rejuvenate senescent cells
in two models of aging rats: d-galactose-
induced aging and natural-aging rats (9). Box
A improved memory and liver function and
reduced visceral fat, liver fibrosis, and
senescence-associated proteins. The
rejuvenation degree was remarkable because
Box A reversed all aging markers to that
These

experiments indicated that youth-DNA-gap

observed in youth groups (9).
reduction is the nidus of the aging process
and the
maintained by youth-DNA-gap reduction (9).
Box A
promising therapeutic approach for senile

cellular senescence stage is

is a

Improving memory means

dementia (9). Interestingly, the learning ability
of aged rats treated with REDGEM was better

Normal cell

Healthy

IR DDA

Senescent cells:
* Youth-DNA-gap §

Normal cells:
* Youth-DNA-gap ¥

Senescent cell

Disease and ill

than that of the young group. Recently, we
proved that Box A of HMGB1 can enhance
stem cell properties (91). It is crucial to explore
further if REDGEM can promote neurogenesis
by enhancing neuronal stem cells in the
damaged brain. The reduction of fibrosis
expands the treatment potential of Box A to
numerous pathological structures in the
extracellular space, such as lung fibrosis,
amyloid in brain, and fat deposits in
arteriosclerosis (9). Interestingly, HMGB1 was
shown to prevent and ameliorate heart
hypertrophy by inhibiting DDR (92, 93).
Therefore, producing DNA gaps may be
valuable for treating DNA damage- and age-
associated diseases or conditions, including

major organ failure (9).

Rejuvenated cell

Upstream senolytic
therapeutic by Box A

Healthy

Box A increases youth-DNA-gap
and DNA durability

* DNAdamage § * DNAdamage §

Il Youth-DNA-gap # DNA damage

® Methylation

Figure 6. Box A of HMGB1 is an upstream senolytic therapeutic molecule. Youth-DNA-gap reduction occurs in

the elderly, accumulates DNA damage, and drives cells to senescence, leading to body structure and function

deterioration and diseases. As REDGEM, box A produces youth-DNA-gaps and reverse aging consequences.
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DNA damage can lead to all
health
senescence-associated

aging
phenotypes, deterioration, and

diseases (12).
Endogenous DNA damage accumulation in
aging cells is caused by youth-DNA-gap
reduction (9, 16). Therefore, producing DNA
gaps rejuvenates cells and improves the
health of the elderly by preventing DNA
damage (Fig. 6). Senolytic therapeutics is a
medical technology that eliminates senescent
cells (94, 95). Senescence altering cell and
tissue structure and function is common
pathogenesis of age-associated NCDs (96).
The possible application of the senolytic
therapeutic approach is to treat age-
associated NCDs. DNA damage leads to
several senescence promotion mechanisms,
such as DDR, low level of nicotinamide
(NAD+),

insulin

adenine dinucleotide metabolic

imbalances such as resistance,
telomere attrition by lacking telomerase, the
decline in mitochondrial function,
senescence-associated secretory phenotype
or SASP, and repression of autophagy (97-
102). So the role of REDGEM in DNA
protection prevents senescence by a
mechanism that is more upstream than all
known targets of current senolytic therapeutic

approaches and rejuvenation remedies.

Youth-DNA-gap
associated with a

complex metabolism s
rejuvenation remedy,
NAD+. NAD+ is a coenzyme for redox
reactions. NAD+ is low in aging cells, and
restoration of NAD+ promotes aging reversal
(103, 104). SIRT1 uses NAD+ as a substrate to
remove acetyl groups from a target protein
(105, 106). So, one of the roles of NAD+ in
aging prevention may be due to the position

of SIRT1 in the youth-DNA-gap complex.

The upstream property possesses several
Inhibiting  the
process may omit or augment other signaling

advantages. downstream
cascades, so senescence inhibition cannot

complete. For example, while the
upregulation of p16 or mTORC1 promotes
aging, suppression of pl16 can induce
mTORC1 (107-109). Moreover, facilitating a
rejuvenation network may not be effective
because of lacking a rejuvenation initiator. For
NAD+

activate SIRT1, this action may not be able to

example, although supplements
rejuvenate cells by creating sufficient new
youth-DNA-gap

significantly  lack

when cells
HMGB1.
Because the substrate of the senescence
DNA damage,
rejuvenation by inhibiting the DDR may

complexes

intranuclear
signaling  cascade s
increase the risk of carcinogenesis. Finally,
classical senolytic is to kill senescent cells. The
killing mechanism may have off targets non-
senescent cells or removal of senescence cells
could yield harmful effect (110). By targeting
late senescent cells or senescent associated
molecules, such as SASP, the function of the
pre-senescent cell will not be improved. In
contrast, maybe due to the upstream role of
box A, box A did not harm normal cells and
can improve cell proliferation even if the cells
have yet to express senescence-associated
markers (9). So box A is a very promising

medicine in treating age-associated diseases.

DNA gap homeostasis
Youth-DNA-gap
individuals

reduction in  elderly
DNA

damage, resulting in cellular senescence (9).

initiates  spontaneous
Thus, understanding how the gaps are

reduced will provide insights into the

mechanisms underlying the aging process.
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Three different in  vitro experiments  the early senescence process (61). Nuclear

demonstrated a reduction in youth-DNA-
gaps. The first approach limits histone
deacetylation by trichostatin A treatment or
SIRT1 deletion; SIRT1 is SIR2 in yeast (39,
111). These approaches inhibited histone
deacetylase  activity, limited  histone
deacetylation and limited DNA gap residents.
Therefore, cells recognize DNA gaps as DNA
breaks and consequently repair the gaps. The
second experiment introduced a DSB, which
led to global DSB repair (16). Therefore, DSB
induction by any causes will result in youth-
DNA-gap reduction. The last experiment
downregulated HMGB1 (9, 16, 86, 111), which
is the DNA gap producers, and limited
intranuclear HMGB1 protein will eventually
cause a reduction in youth-DNA-gaps (Fig. 7).

Notably, intranuclear HMGB1 is reduced in

HMGB1 of senescent cells relocalizes to the
extracellular ~ space,  thereby  causing

intranuclear HMGB1 depletion (61). HMGB'1

translocates from the nucleus to the
cytoplasm, and its excretion requires
posttranslational  modifications, including

oxidation to the disulfide form and acetylation
to the hyperacetylated state (112). The
requirement of the hyperacetylate state of
HMGB1 release supports the interaction of
HMGB1 and SIRT1, a deacetylase protein, in
the youth-DNA-gap complex. Finally, HMGB1
of p53,
activating G1 checkpoint as part of the
response to DNA damage (61, 113). These
pieces of evidence support the kinetic role of
HMGB1, youth-DNA-gap, and DNA damage

in senescence induction.

release requires the function

HMGB1 release

l

Loss of youth-DNA-gap complex

1

Youth-DNA-gap reduction

l

DNA damage

l

DNA repair

l

Loss of AGO4 bound DNA

!

IRS demethylation

l

Global hypomethylation

!

Youth-DNA-gap reduction

Genomic instability

Figure 7. HMGB1 release promotes global hypomethylation and a progressive cycle of genomic instability.

HMGB1 release causes a reduction in AGO4 bound methylated youth-DNA-gaps, which contributes to DNA damage.

The DNA repair process demethylates DNA and globally repairing the DNA gaps.
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Although the reduction in youth-DNA-gaps is
present in all aging eukaryotes, different
species age at different rates, regardless of
therefore, the

environmental  factors;

decrease in youth-DNA-gaps may be
programmed similarly to other developmental
phases. Epigenetic controls gene expression
change throughout human life, from embryo
to fetus to newborn, from childhood to
adolescence to adulthood, and from adult to
elderly. Recent studies showed a change in
DNA methylation closely associated with age
called the epigenetic test clock (114-116). It is
interesting to see and differentiate the sets of
the epigenetic clocks concerning the cause or

consequence of lowering youth-DNA-gaps.

HMGB1-produced youth-DNA-
gap reduction promoting global

hypomethylation
HMGB1 DNA
hypomethylation by two mechanisms (Fig. 7)

reduction can cause
(55). First, a reduction in DNA gaps will reduce
AGO4-bound DNA and consequently reduce
DNA methylation. Second, a reduction in
DNA gaps increases DNA damage, and the
subsequent DNA repair leads to DNA
(Fig. 7) (55). This
demethylation process may initiate DNA

demethylation

hypomethylation  that drives  genomic
instability pathways, as mentioned in the

previous section (Fig. 5).

In addition to promoting the accumulation of
DNA damage and global hypomethylation,
reducing DNA gaps may alter gene
regulation. Recently, a study reported that the
RNA synthesis rate of aged DNA, in general,
is faster than that of young DNA (117). Since

the role of youth-DNA-gaps is to relieve

torsion force, DNA double helix possessing
more DNA gaps has stronger synchronizing
bonds. This may be the mechanism causing
the RNA polymerase of the youth to move

slower and smoother than that of older people.

In addition to DNA gap formation, HMGB1

plays aging.
Intracytoplasmic promotes

roles in
HMGB1
autophagy (118). Extracellular HMGB1 acts as

several other

a senescence-associated protein and sends a
signal to immune cells about the senescence
(119, 120). HMGB1
induces inflammation by binding to TLR4

process Moreover,
receptors (121). Therefore, HMGB1 release
initiates and maintains cellular senescence by
promoting genomic instability, autophagy
and inflammation.

Conclusion

DNA from young individuals is composed of
methylated DNA gaps, and these youth-DNA-
gaps protect DNA from damage. The youth-
DNA-gap complexes formed by HMGB1
produced DNA gaps, AGO4 methylated
DNA, and SIRT1 deacetylated histones. Aging
stimulation, such as oxidative stress, modifies
HMGB1 and HMGB1
Depleting intranuclear HMGB1 causes youth-
DNA-gap reductions, DNA damage, DNA
repair, and DNA hypomethylation. DNA
repair also results in DNA demethylation and
DNA gap reduction. As a result, DNA from the
elderly has a limited number of methylated
DNA

accumulates

causes release.

gaps and thus spontaneously
DNA damage.

exogenous Box A of HMGB1 can edit aging

Introducing

DNA to a younger state by producing DNA
gaps. The DNA gaps increase DNA durability,

resulting in rejuvenation. Box A is a medicine
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that rejuvenates DNA by acting as a genomic
REDGEM.
REDGEM is a promising epigenetic editing

stabilizing  molecule  called

technology for treating DNA damage or age-

associated diseases and conditions.
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