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ABSTRACT

Cancer is characterized by uncontrolled cell growth, representing a hallmark feature
marked by sustained proliferation. This heightened proliferative capacity is primarily driven
by the influence of growth factors. Scientific evidence suggests that growth factors play a
crucial role in augmenting the transcription of specific proto-oncogenes, such as myc and
fos. In the context of cancer development, these growth factors can be either produced
by the cancer cells themselves or induce normal cells to release them through intricate
signaling mechanisms. The functional diversity of growth factors encompasses various
actions, but their predominant mode of operation is through the tyrosine kinase receptor
pathway. Tyrosine kinase receptors, comprising integral membrane complexes with
intrinsic kinase activity in their cytoplasmic domain, play a pivotal role in transducing
signals initiated by the binding of specific growth factors (ligands). This binding event
triggers the activation of the kinase function within the receptor, resulting in the
phosphorylation of downstream targets on tyrosine and serine residues. Subsequently, this
phosphorylation event recruits additional molecules into signaling cascades, amplifying
the cellular response. Transition metals, such as Copper, Zinc, and Cobalt, integral to
biological systems, play pivotal roles in normal physiological functions. However,
dysregulation of these essential metals has been implicated in the pathogenesis of various
disorders, including cancer. The narrative unfolds by elucidating the critical role of growth
factors in cancer cell proliferation. Key growth factors, such as Transforming Growth
Factor-B, Tumour Necrosis Factor-a and Insulin-like Growth Factors, are explored within
the context of cancer progression. The intricate signaling pathways, particularly the
Tyrosine Kinase Receptor pathway, are examined to understand how metal complexes
may disrupt these pathways, impeding uncontrolled cell growth. Furthermore, this review
provides an in-depth examination of medicinal inorganic chemistry, emphasizing the ability
of transition metal complexes to form charged ions and induce hydrolysis reactions. The
nuanced discussion underscores the necessity for precise dosages of metal-containing
drugs to avoid undesirable toxicity, acknowledging the delicate balance required for
optimal therapeutic responses. This comprehensive review delves into metal complexes
of Cobalt, Copper, Zinc, and metal nanoparticles as promising inhibitors of cancer growth
factors. By explicating the intricate interplay between metal complexes and growth factor
pathways, this article contributes to the ongoing scientific exploration of novel and
effective anticancer strategies.
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1. Introduction:

The enduring wisdom of Paracelsus (1493-
1541), "Everything is poisonous, and nothing
is harmless. The dose alone defines whether
something isn't poison," resonates in the
context of cancer treatment. The current
arsenal of active anticancer agents spans
diverse targets across multiple cellular and
biological properties, steering away from
conventional  cytotoxicity towards  the
strategic design of selective’? While progress
has been made, challenges persist,
prompting exploration at the crossroads of
structural biology and chemistry for innovative
anticancer solutions. In nature, metal ions like
zinc and copper are integral to numerous
biological systems, playing pivotal roles in the
normal functioning of organisms®. Transition
metals such as copper, iron, and manganese
participate in essential biological processes,
ranging from electron transfer to catalysis and
structural roles, often associating with active
sites of proteins and enzymes®. However,
dysregulation of these essential metals during
normal biochemical
linked to

pathological disorders, including cancer®.

processes has been
the development of various
These cellular functions necessitate trace
metals in minute yet tightly regulated amounts.
In contrast, metals like arsenic, cadmium,
chromium, and nickel, while less beneficial,
can induce a wide range of toxic side effects,
including  carcinogenesis®.  Throughout
history, metal-containing compounds have
found utility in treating diverse disorders’. In
the realm of medicinal chemistry, traditionally
dominated by organic compounds, metal
complexes have gained favor as both diagnostic
tools and anticancer agents®. The accidental

discovery of cisplatin i.e. cis-[Pt"(NH3).Cl:]

stimulated research in anticancer agents.
However, its clinical use is restricted due to
dose-dependent toxicity, resistance, and a
narrow spectrum of activity”'®.  These
limitations have propelled the search for
platinum-based compounds with lower
toxicity, higher selectivity, and a broader
spectrum  of

activity, leading to the

development of compounds like carboplatin

and oxaliplatin, among others' "2

Beyond
platinum analogs, attention has shifted to
other metal complexes containing ions such
as zinc (ll), copper (ll), gold, and copper
chelating agents as potential anticancer
agents’™ ¢, Clinical trials investigating
ruthenium-containing compounds underscore
the rich potential of non-platinum metal-
based compounds in cancer treatment'"'®.
Additionally,

physiochemical properties serve as potent

metals leveraging unique
tools in cancer diagnosis'. Growth factors are
important hall marker of cancer. Growth
factors are proteins that stimulate the growth
of specific tissues, playing a crucial role in
cellular differentiation and division. They
typically their

paracrine and autocrine signaling, although

exert influence  through
there is evidence suggesting an endocrine
mode of action, contrary to the original belief.
Autocrine mechanisms, in particular, are
implicated in the significant role they play in

2021 The modes of

the growth of cancer cells
action of growth factors are diverse, with a
predominant pathway being the tyrosine
kinase receptor pathway. Tyrosine kinase
receptors are membrane-bound complexes
with intrinsic  kinase activity in their
cytoplasmic domain. Upon binding to specific
growth factors (ligands), these receptors

activate their kinase activity, leading to the
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phosphorylation of downstream targets on
their tyrosine and serine residues. This, in turn,
initiates signaling cascades and recruits other

molecules into the cellular response??'.

2. Cancer growth factors:

Cancer is characterized by uncontrolled cell
growth, with sustained proliferation being a
key feature?. This heightened proliferative
capacity is largely facilitated by growth
factors. Evidence indicates that growth factors
can enhance the transcription of specific
proto-oncogenes, such as myc and fos®.
Cancer cells may either produce these growth
factors themselves or prompt normal cells to
release them through signaling mechanisms?,
The actions of growth factors are diverse, but
they predominantly operate through the
tyrosine kinase receptor pathway. Tyrosine
kinase receptors are integral membrane
complexes possessing intrinsic kinase activity
in their cytoplasmic domain. Upon binding to
specific these

growth factors (ligands),

receptors activate their kinase function,
leading to  the  phosphorylation  of
downstream targets on tyrosine and serine
residues. This, in turn, recruits additional
molecules into signaling cascades?'. Growth

factors can be classified in following classes?.

2.1. PLATELET
FACTOR FAMILY
Platelet derived growth factor (PDGF) is
initially

DERIVED GROWTH

released from alpha-granules of
platelets and act as a chemoattractant for
fibroblasts and as mitogen for these cells®.
PDGF stimulates production of collagenase
by fibroblasts causing remodelling of matrix
required for tissue repair®. It is also released
Platelet

from activated macrophages”.

derived growth factor (PDGF) family of growth
factor consists of 5 different disulphide linked
dimmers PDGF-AA, PDGF-BB, PDGF-AB,
PDGF-CC and PDGF-DD that act via 2
receptors PDGFRa and PDGFRpB?#. Platelet
derived growth factor receptors (PDGFR) are
receptors with intrinsic tyrosine kinase activity
that regulates several functions in normal
cells””. PDGFR play a role in development of
lungs, heart, CNS and kidney®. In addition to
physiological functions, PDGF play pathological
roles in disease such as atherosclerosis®’,

glomerulonephritis* and cancer®.

2.2. VASCULAR ENDOTHELIAL GROWTH

FACTOR FAMILY
Humam vascular endothelial growth factor
(VEGF) family consists of VEGF-A, VEGF-B,
VEGF-C, VEGF-D and Placental Growth
factor**. There are 3 receptor which are
regulated by protein kinase for VEGF family of
ligands: VEGFR-1, VEGFR-2, VEGFR-3. And
two non-enzymatic receptors: Neuropilin-1
and Neuropilin-2%. VEGF is secreted by any
cell that encounters hypoxia*. VEGF acts as a
mitogen thereby being important survival
factor for endothelial cells and monocyte
motility. VEGF changes permeability of
endothelial cells by causing injury to help

angiogenesis®®. Major factors regulating
VEGF includes growth factors, local
environmental  hypoxia, hormones and

cytokines®. The key regulator of hypoxia
induced angiogenesis is transcription factor
Hypoxia-Induced-Factor (HIF-1)*. It was very
early proposed that inhibiting angiogenesis
can be effective antitumor strategy because
tumour growth required for blood vessel
formation?’. VEGF mRNA is expressed in
neoplastic cells whereas endothelial cells
express VEGFR-1 and VEGFR-2 mRNA and
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proteins®’. The increase in blood vessel
formation helps tumour to gain necessary
oxygen and nutrient. Tumour angiogenesis is
a hall mark of cancer which supports tumour

growth and metastasis®.

2.3. EPIDERMAL GROWTH FACTOR FAMILY
Epidermal growth factor family (EGF) is a
complex network that modulates growth of
cells. EGF is released by cells and then either
by autocrine signaling i.e. stimulates its own
growth or paracrine signaling i.e. stimulate
growth of neighbouring cells*. Ligands
known to bind to EGFR are Epidermal growth
factor (EGF), Transforming Growth Factor-a
(TGF-a), amphiregulin, heparin-binding EGF
like  growth factor, Betacellulin and
Epiregulin®. EGFR are Receptor tyrosine
kinases and they belong to ErbB family which
consists of ErbB-1 (EGFR), ErbB-2 (HER-2 or

Neu), ErbB-3, ErbB-4%.

EGF has been known to be mitogenic for
mesenchymal and epithelial cells. EGF
stimulus to normal cells causes them to
transform into neoplastic cells by increasing
the level of phosphotyrosine in proteins* and
increase in sugar and amino acid metabolism.
Expression of c-fos and c-myc is upregulated
by EGF*. EGF has also been found to play a
vital role in viral carcinogenesis as it enhances
viral transformation of cells®®. Chemical
carcinogenesis of methylcholantherene in skin
is enhanced by EGF*'. EGF phosphorylates
tyrosine residues of src, erb, abl, yes, fgr, ros,

fes (fps) and fms>2.

2.4. FIBROBLAST GROWTH FACTOR FAMILY
In humans, the Fibroblast Growth Factor (FGF)
family polypeptide-
encoding genes. Notable members include

encompasses 23

FGF-1 (acidic FGF), FGF-2 (basic FGF), FGF-6,
and FGF-8. The FGF receptors, FGFR1-4, play
crucial roles in both autocrine and paracrine
signaling pathways®. Demonstrating
mitogenic properties for both epithelial and
mesenchymal cells, FGFs were identified as
the first angiogenic factors®, attributing to
their high angiogenic activity>®. FGFs enhance
cellular motility and invasiveness®®. Critical for
the sustained self-renewal and pluripotency of
human embryonic stem cells (HESCs), FGF
signaling is indispensable®. In the context of
haematopoiesis, FGF stimulates the growth of
progenitor cells®®. Notably, FGF-2 stimulation
linked to the neoplastic
Elevated FGF-2

levels in the microenvironment of metastatic

has been

transformation of cells*.

prostate cancer contribute to the evasion of
the antiproliferative effects of chemotherapy®.
Furthermore, the myeloma-associated
oncogene FGFR-3 exhibits upregulation in
cancer cells from patients with Chronic

Myeloid Leukaemia (CML)>*4".

Moreover, various other growth factor
families play pivotal roles in promoting cell
proliferation and contributing to cancer. The
Transforming Growth Factor-B (TGF-B) family,
a group of secreted cytokines, plays a crucial
role in influencing cellular proliferation and
differentiation. Its impact extends to
immunity, cancer, bronchial asthma, lung
and diabetes®
(IGFs) are

associated with the regulation of metabolism,

fibrosis, heart diseases,

Insulin-like  growth  factors
growth, and survival®®. The signaling pathway
employed by IGF involves phosphoinositide-
3-kinase (PI3K) and Akt or Ras and MAPK,
mediating responses to various stimuli®’.
Hepatocyte Growth Factor (HGF), also known

as Serum Factor (SF), exerts its actions by
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binding to a specific receptor site, c-Met®.
HGF binds to the extracellular a-chain of the

c-Met receptor, inducing tyrosine
phosphorylation of the terminal kinase
domain and initiating downstream
pathways®®. Ephrin expression plays a

regulatory role in development and tissue
homeostasis. It is involved in the formation of
tissue boundaries, assembly of neuronal
meshwork’s, remodelling of blood vessels,

and organ size determination®’.

3. Properties of Metal Complexes:

The field of medicinal inorganic chemistry is
comprehensive, encompassing the
introduction or extraction of a metal ion into
or from a biological system for therapeutic or
diagnostic purposes®. A notable
characteristic of metals is their ability to form
positively charged ions in aqueous solutions,
facilitating binding to negatively charged
biological molecules. This property allows for
fine-tuning the charge based on the
coordination environment, resulting in the
creation of species that can be cationic,
anionic, or neutral®’. Transition metal
complexes, including Mn*?, Cr*3, Fe*?, Fe*?,
Co™?, Co*, Ni*?, Cu*?, Zn"? play a significant
role as anticancer agents. Additionally, metal
ions with high electron affinity can induce
hydrolysis reactions by polarizing coordinated
groups®. In recent years, medicinal inorganic
chemistry has garnered substantial attention
for its role in designing anticancer agents’®’".
While metals have historically been employed
in treating various pathological disorders, the
true potential of metal-based compounds in
cancer treatment became evident with the
landmark discovery of cisplatin in the 1960s.

Given that the presence of metals in cellular

conditions is rigorously regulated, the
administration of metal-containing drugs must
be carefully defined to achieve optimal
therapeutic responses’?”?. Improper dosages
may lead to both excess and deficiency of
metals, resulting in undesirable toxicity. This
comprehensive review mainly focuses on
metal complexes of Cobalt, Copper, Zinc and

metal nanoparticles.

4. Cobalt and Cancer Growth

Factors:

Cobalt is an essential trace element present in
the human body. It is involved in important
biological functions such as fatty acid and
amino acid metabolism, haematopoiesis, and,
in the form of vitamin Biz it is indirectly
involved in synthesis of DNA. Interestingly,
one cobalt complex containing Schiff base
ligand (Doxovir) has recently passed phase |l
clinical trial for anti-viral treatment’®. Several in
vitro studies suggest that cobalt complexes
possess promising  anti-cancer  activity’®.
Especially, cobalt complexes containing Schiff
base ligands have been shown to possess
more efficient anti-cancer activity against
cancer cells such as MCF-7, A431 and Hela

7677 In the case of cobalt (Il

than cis-platin
octahedral complexes, Schiff bases occupying
the square planar positions than the
remaining two axial positions can be utilized
to tune their properties for bio-molecule
interaction and biological applications.
Changing the number and length of aliphatic
chains in the coordinated ligands of some
cobalt (Ill) complexes would strongly influence
the mode of biomolecule interactions and

7879 Previously we have

anticancer activity
reported a novel cobalt complex i.e. Cobalt-

N(2-hydroxyacetophenone) glycinate (CoNG)
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(Figure-1) has a significant role in reversal of

drug resistance®.

/ OH,
0
A/ \CI;;_
r
=
R (CHz)n

Figure 1: Chemical structure of novel cobalt complex,

===0

Cobalt-N(2-hydroxyacetophenone) glycinate (CoNG)®.

5. Zinc and Cancer Growth

Factors:

In experiments where mice were administered
type Il collagen to induce arthritis, the
introduction of Zn showed a significant
inhibitory effect on the formation of Th17
cells. Zn treatment was found to impede the
activation of IL-6 and subsequent Th17 cell
development in vitro through its interference
with STAT3. Crucially, Zn binding caused a
structural change in the
of STATS3,

interaction with JAK2 kinase and a phosphor-

alpha-helical
conformation disrupting its
peptide carrying a STAT3-binding motif from
the IL-6 signal transducer gp130 (Figure-2).
that Zn
functions by suppressing the activation of
STAT3, a

development of

The ultimate finding suggests

mechanism in the
Th17 cells®183,

Simultaneously, substantial evidence exists to

pivotal

support the anti-cancer impact of Th17
lymphocytes. However, their effectiveness
appears to be intricately linked to the
disease's progression, showcasing differing
roles in the early and late stages. Additionally,
factors such as the cancer's origin, the
involvement of inflammatory pathways, and

the promotion of angiogenesis in its

development significantly influence this
dynamic. Equally important is the tumour’s
immunogenicity, as research has shown that
the inhibition of tumour growth by Th17
lymphocytes is observable solely in
immunogenic tumour types®#4. However, for
IMR-32 cells insufficient zinc availability had a
notable impact on the modulation of STAT1
and STAT3 in E19 rat brain and human
neuroblastoma IMR-32 cells. This deficiency
led to oxidative modifications of proteins,
influencing the phosphorylation patterns of
STAT1 and STAT3, hindering their nuclear
DNA binding, and

activating activity. The findings propose a link

translocation, trans-
between zinc deficiency-induced oxidative

stress and the compromised tyrosine
phosphorylation and nuclear movement of

STAT1 and STAT3®.

Zinc ions play a vital role in upholding the
stability of the p53 protein and its binding
affinity for DNA. Elevated levels of MT-1 and
MT-2 trigger the displacement of zinc ions,
resulting in  the destabilization and
deactivation of p53, subsequently hindering
apoptosis. Clinical trials conducted on
patients with colorectal cancer have validated
this mechanism®. Zinc coordination has been
shown to be crucial for the correct folding of
the p53 core domain in laboratory settings.
Disruption of this interaction significantly
diminishes or entirely prevents p53 from
binding to DNA and activating target genes®.
NMR spectra analysis highlights alterations in
the DNA-binding surface upon removal of the
zinc ion. Furthermore, fluorescence
anisotropy studies demonstrate that the
absence of the zinc ion results in the loss of
87,89

site-specific DNA-binding activity
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Cell Membrane
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_ No Target \

gene
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Figure 2: Zn preventing STAT3 nuclear transport. IL-6R and gp130 forms the IL-6/IL-6R/gp 130 complex which releases
phosphorylated JAK. When Zn bind to the STAT3 protein and make conformational changes to the a-helical structure of the protein.
FGFR, IGFR and EGFR could not phosphorylate STAT3 protein through JASK and STAT3 dimer formation is inhibited. As a result, it
does not bind with the specific site in DNA and inhibits target gene expression by inhibiting the nuclear transport of STAT3 protein.

Multiple research  endeavours have

highlighted MT's role in inducing several anti-
(Bcl-2)
oncogenes and the regulatory gene for the

apoptotic  B-cell lymphoma 2
transcription factor c-myc. Simultaneously, it
curtails the activity of proapoptotic proteins
like caspase-1 and caspase-3. The correlation
between heightened concentrations of MT-1
and MT-2 isoforms and decreased caspase-3
activity is linked to the requirement of zinc
ions for caspase-3 functionality, analogous to
the necessity observed in the case of the
protein p53”. Numerous proteins involved in
the removal of damaged bases or nucleotides
rely on a zinc finger domain and are thus
contingent on zinc for their function. Examples
include the p53 suppressor protein and AP
(Apurinic/apyrimidinic) endonuclease” 2. The
identification of zinc binding within p53
originated from biochemical evidence and
was solidified with the publication of a partial
crystal structure of the protein”. Zinc plays a

critical structural role in stabilizing the DNA-
binding domain of p53, crucial for its DNA-
binding activity (Figure-3)’*. The evidence
largely rests on the ability of metal chelators
to strip zinc from p53, transforming the
protein into a 'mutant-like' form that loses its
specific DNA-binding ability. However, the
reversible nature of this phenomenon hasn't
been conclusively established. When zinc is
chelated from p53 in vitro, it triggers swift
cysteine oxidation and the formation of
protein aggregates linked by disulfide bonds.
Although thiol
complexes, it doesn't suffice to restore the

reduction dissolves these
protein to its ‘wild-type' conformation
capable of DNA binding. In this study, a
recombinant form of p53 lacking zinc was
generated, displaying diminished DNA-
binding affinity. This was achieved by using a
chelator (EDTA, 200 mM) to prevent zinc
incorporation and a thiol-reducing agent
(DTT, 5 mM) to prevent disulfide formation
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within ~ the  protein  structure.  Upon capacity. Experiments involving radioactive
reintroduction  of  zinc, this  protein zinc confirmed the correlation between this

transitioned from the 'mutant' PAb240+ form
to the 'wild-type' PAb1620+ form, thereby

regaining its high-affinity DNA-binding

effect and the incorporation of zinc within the
protein structure™.

Growth Factor

LOH

HO H OPOsH  HO3PO
OPO4H"

PI(4.5) P2

Cell Cycle

GPO3H
PI(3.4.5) P3

Cell Membrane

Figure 3: Cell cycle arrest due to presence of Zn. Growth factor signals activate tyrosine kinase receptors, leading
to the phosphorylation of PI(4,5)P2 to PI(3,4,5)P3. This activates Akt, triggering MDM2-mediated inhibition of p53 and
preventing apoptosis. Zn deficiency disrupts p53 folding, resulting in a mutant gene. In the presence of Zn, proper

p53 folding activates p21, causing cell-cycle arrest. Zn deficiency allows cancerous cell proliferation.

Recently, Yousef and colleagues
synthesized novel M (ll) complexes using the
chelating ligand L55 and assessed their

capacity to hinder hepatocellular carcinoma

cell growth. Comparing their cytotoxic effects
revealed that the Zn complex-1 displayed
lower IC50 values for both HeP-G2 (0.2457
pM) and MCF-7 (0.2013 uM) compared to L55
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alone (with IC50 values of 0.4826 uM and
0.6224 pM, respectively). Furthermore, the Zn
(I) complex exhibited antioxidative properties
and demonstrated scavenging activity against
hydroxyl and superoxide radicals (Figure-4)”.

S—zZn—~O0
) AR

HN /
OHZ o)

oV

Figure 3: Zn (ll) complex with chelating ligand L55

Zinc-phthalocyanine complexes
(Figure-4) are widely known for their low
chemical  and

toxicity and  robust

0 Researchers have

photochemical stability
explored enhancing Photodynamic Therapy
(PDT) targeting efficiency by linking a specific
anti-tumour agent to a photosensitizer. Jin-
Ping Xue and collaborators introduced

erlotinib-Zn (0

98,100

phthalocyanine
complexes™'®. and Zn () phthalocyanine-
coumarin conjugates'. Erlotinib, a small anti-
cancer drug, targets the ATP binding domain
of EGFR (Epidermal Growth Factor Receptor),
while  7-

hydroxycoumarin impedes cell proliferation

prevalent in cancer cells,
by reducing cyclin D1 release, frequently
elevated in various cancer types'®. Building
studies

on  prior involving  zinc (I

phthalocyanine conjugates where erlotinib

was linked at the a-position using an
oligoethylene glycol spacer, the researchers
investigated the impact of both linker lengths
(oligoethylene glycol chain) and substitution
positions (a or b) within the phthalocyanine
framework. They assessed the in vitro
photodynamic activity and the specific affinity
of a series of erlotinib-Zn (ll) phthalocyanine
conjugates, compounds 1-6, against Hep-G2
cells. Under dark conditions, all complexes
demonstrated minimal cytotoxicity up to 50
mM, yet exhibited potent photo-cytotoxicity
with IC50 values ranging from 12.44-91.77
nM (compared to the reference compound
Zn-phthalocyanine IC50 43.30 = 4.72 nM,
using a low light dose (k = 670 nm, 80 mW cm
2, 1.5 J cm?)”'%2  Notably, a-substituted
compounds 2 and 1 displayed higher photo-
toxicity (IC50 9.61 = 2.49-44.50 = 3.28 nM)
than b-substituted compounds 3-6 (IC50
33.97 £ 3.97-91.77 = 10.58 nM). Moreover,
elongating the oligoethylene glycol chain
slightly decreased the photo-cytotoxicity of
compounds 1-162. The inclusion of the
erlotinib component augmented cellular
uptake and specificity for Hep-G2 cancer cell
lines (known for EGFR overexpression), with
compounds 2 and 5 (using a linker of n = 3)

demonstrating the highest targeting ability'®.
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Figure 4: Zinc-phthalocyanine complexes

6. Copper and Cancer Growth

Factors:

Copper is an essential component of
various endogenous antioxidant enzymes. Its
potential association with free radicals in the
process of carcinogenesis have been subject
of research'®. DSF, a small molecule weighing
296.54 in molecular mass, has garnered
increasing evidence of its efficacy in inhibiting
various cancer types. Studies indicate its
involvement in suppressing prostate cancer,
lung cancer, breast cancer, liver cancer,
ovarian cancer, and oesophageal carcinoma
cell proliferation'®'%?. DSF has the ability to
undergo rapid reduction in serum, forming
two molecules of diethyldithiocarbamate. This
compound serves as a potent chelator of
metal ions'.  The
of DSF has
established across diverse cancer cell models,

transition  divalent

anticancer potential been
primarily reliant on the creation of the
Cu(DDC), complex with divalent metal ions
like Cu. In vitro experiments reveal that when
DSF and Cu are combined, they promptly
yield a highly oxidized intermediate form of
DDC,

tetrathiolane di-cation (Bitt-42+). This initial

known as bis(dialkyliminium)-

stage leads to the spontaneous breakdown of

a small fraction of DSF into its anionic chelate

form, DDC. Subsequent redox reactions
between DDC and Cu?* result in the stable
formation of the Cu(DDC), complex. This
redox process and Fenton chemistry linked to
the Cu(DDC), complex generation trigger the
production of Reactive Oxygen Species
(ROS), ultimately prompting apoptosis in
DSF/Cu

cytotoxicity against cancer cells and exhibits

cancer  cells. demonstrates
the capability to eliminate cancer stem cell
(CSC) populations across various cancer
types, with minimal to no toxicity observed in

114 The mechanism behind

normal cells
DSF's anticancer effects appears to hinge on
its dependence on copper, crucial for redox
reactions. Cancer cells typically harbour
elevated levels of copper due to the trans-
CTR1

transportation. DSF has the capability to form

membrane Cu transporter
a complex with copper, facilitating its entry
into cancer cells. This specificity allows DSF to
selectively target these cells while sparing
normal healthy cells expressing low levels of
copper'?. The interaction between DSF,
DDC, and copper triggers the production of
extracellular ROS, which subsequently prompt

Studies
of DSF's

metabolite, DDC, and its copper complex

apoptosis in  cancer cells'™.

demonstrate the accumulation
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Cu(DDCQC); within cancer cells, inducing ROS
generation and consequent apoptosis. The
both

intracellular ROS is heavily reliant on the intact

production  of extracellular  and
thiol group, which plays a role in copper

chelation?°,  In  breast cancer cells
subjected to treatment with the DSF/Cu
complex, researchers observed continuous
of the MAPK pathway. This

activation was

activation
subsequently channelled
towards initiating ROS-induced apoptosis.
Additionally, the use of MAPK pathway
inhibitors resulted in a reduction of the
cytotoxic effect caused by the DSF/Cu
complex. These findings strongly suggest the
involvement and significance of the MAPK
pathway in mediating ROS-induced apoptosis
triggered by the DSF/Cu complex'". Studies
revealed that DSF/Cu exhibited the ability to
inhibit proteasome activity specifically in
breast models without

cancer affecting

normal breast cells. This inhibition of
proteasome activity by the DSF/Cu complex
resulted in the buildup of poly-ubiquitinated
proteins and the formation of cytotoxic
These

comprised crucial proteins like kB, p27, Kip1,

protein aggregates. aggregates
and c-Myc, leading to the interruption of cell-
cycle progression and eventual induction of

apoptosis'?’

. Proteasomes play a crucial role
in the activation of the NF-kB pathway. They
are instrumental in the degradation of the
inhibitor molecule, kB (inhibitor of kB), a
process that leads to the liberation of the NF-
kB p50/p65 heterodimer from the inhibitory
complex. This liberation allows the p50/p65
heterodimer to translocate into the nucleus,
it functions as a
When DSF/Cu

proteasome system, it results in sustained

where transcriptional

regulator'?. impedes the

inhibition of NF-kB by IkB, preventing the
nuclear translocation of NF-kB. This scenario
contributes to favouring apoptosis or
sensitizing cancer cells to anti-cancer drugs.
Notably,
relevance in this context, as demonstrated by
Wang et al. (2003). Their study revealed that

when DSF was administered alongside 5-

DSF has showcased significant

fluorouracil, it substantially inhibited NF-«B
activity. This inhibition enhanced the
apoptotic effect of 5-fluorouracil on colorectal
cell lines, specifically DLD-1 and RKO'?_ For
more than ten years, the link observed
between elevated ALDH activity and the
cancer stem cell (CSC) phenotype has served
as a catalyst for researchers. This association
has spurred efforts to develop precise ALDH
inhibitors with heightened clinical promise.
The aim is to efficiently suppress CSCs and
impede tumour progression through targeted
interventions'®. DSF exhibits the capacity to
induce apoptosis in breast cancer stem cells
(CSCs) inhibiting ALDH1

activity'"". In combination with cisplatin, DSF

by specifically

amplifies its cytotoxic effect by targeting the
stemness of CSCs derived from breast cancer
cell lines (Figure-5). This is achieved through
the inhibition of

transcription factors such as Sox, Nanog, and

stemness-related

Oct, alongside the suppression of ALDH
activity in ALDH + stem-like cells1%7"%, Guo et
al. (2019) showcased DSF's ability to sensitize
cisplatin-resistant ovarian ALDH+ stem-like
cells to cisplatin treatment. This sensitization
was achieved by suppressing ALDH activity
and triggering apoptosis'?. Furthermore, DSF
demonstrates efficacy in reversing cisplatin
resistance in testicular germ cell tumours by
inhibiting ALDH activity'®. Xu et al.'s research
revealed that the DSF/Cu complex induced
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apoptosis not only in MM cells but also in MM
progenitor cells. Additionally, it notably
triggered cell cycle arrest, specifically in the
G2/M phase, within MM.1S and RPMI8226
cells. The study also demonstrated through
JC-1 assays and protein blotting that DSF/Cu
disrupted mitochondrial membrane integrity
and activated cystatin-8 cleavage in MM cells.
These findings strongly suggested the
activation of both exogenous and intrinsic
apoptotic pathways by DSF/Cu. Importantly,
DSF/Cu exhibited

significant efficacy by markedly reducing

in MM mice models,

tumour volume and extending overall survival
compared to the control group. These results
underscored the promising clinical potential
of DSF/Cu in the treatment of multiple
myeloma,

demonstrating  potent  anti-

myeloma activity both in vitro and in vivo'®’.
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Figure 4: Copper N-(2 Hydroxy acetophenone) glycinate'®.

Copper N-(2 Hydroxy acetophenone)
glycinate or CuNG (Figure-4) demonstrates
the potential to up-regulate IFN-y, leading to
subsequent apoptosis of tumour cells, even

bypassing the multidrug-resistant (MDR)
phenotype.  This suggests a clinical
application for this copper chelate in

immunotherapy against various drug-resistant
cancers. CuNG appears to leverage the
immune system for inducing apoptosis in
drug-resistant cancer cells both in vivo and in

vitro. Cancer often induces immunotolerance

and immunosuppression, impacting its
progression. In both in vivo and in vitro
CuNG

splenocytes from EAC/Dox-bearing mice to

settings, treatment  prompts
release IFN-y and TNF-a, known inducers of
cancer cell apoptosis. Remarkably, CuNG
gradually reverses immunosuppression, as
indicated by  the

lymphoproliferative

restoration of
While the
specific involvement of cytotoxic T cells and

response.

natural killer cells in this apoptosis induction is
under investigation, it's known that IFN-y can
T-cell
tumours to radiation therapy'%™".

reverse tolerance and sensitizes
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and preventing kB degradation. Undegraded IkB binds NF-kB, hindering nuclear transport and gene expression. NGF
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Gu et al. synthesized four terpyridine
copper (Il) complexes (Figure-6) that exhibited
notable cytotoxicity against various cancer
cell lines, particularly BEL-7402 cells, while
demonstrating minimal  toxicity towards

41 Their research

normal human liver cells
delved into the mechanisms underlying these
complexes' actions, revealing their capacity to
induce GO/G1 phase arrest and modify the

expression of cell cycle-related proteins.

Additionally, these complexes up-regulated

Figure 6: Terpyridine copper (ll) complex'".

Bax expression while down-regulating Bcl-2

expression, triggering the release of 7. Metal Nanoparticles and
cytochrome ¢ and activation of the caspase Cancer Growth Factors:

cascade. This cascade ultimately led to Traditional treatments rely on
mitochondrial-mediated apoptosis, showcasing compounds that regulate the cell cycle,
substantial anti-tumour efficacy in a mouse impede cell growth, and exert cytotoxic
xenotransplantation model featuring BEL- effects, often causing unwanted side
7402 tumour cells™". effects’®. Unfortunately, resistance to these
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therapies is common among various

malignant tumours'. Consequently, silver
nanoparticles (AgNPs) offer promise in cancer
treatment due to  their  distinctive
physicochemical properties. Directing drug
delivery specifically to cancer cells using
AgNPs can enhance treatment effectiveness
and reduce side effects’. The mechanisms

by which

combinations with antitumor agents work

silver nanoparticles and their

involve ROS and inducing oxidative stress,
causing DNA damage, halting the cell cycle,
and prompting cancer cell death via both
apoptotic and non-apoptotic pathways'>'".
Numerous investigations have demonstrated
the potential of AgNPs to arrest the cell cycle
at various phases, predominantly observed in
tumour cell accumulation at the G2/M phase
Their
capacity to induce DNA double-strand breaks
and increase the sub GO/G1 DNA content

following exposure to AgNPs™&1%,

within ~ AgNPs-treated  cells, indicating
apoptotic characteristics, has also been
identified'’.  Additionally, studies have

highlighted the of AgNPs on
regulatory protein expression associated with
Notably,
including the well-

impact

cell cycle modulation. pivotal
transcription factors,
recognized tumour suppressor p53, have
been implicated. p53 plays crucial roles in
DNA

cellular

intracellular mechanisms such as

damage response and repair,
metabolism regulation, autophagy, aging,

and programmed cell death (Figure-8).

Hembram et al. (2020) investigated the
impact of hybrid Quinacrine-Based silver and
gold nanoparticles on various cell lines, both
tumour and non-tumour, revealing minimum
inhibitory concentration values ranging from
0.5 to 27 pg/mL. Specifically studying SCC-9

cells (squamous cell carcinoma), they delved
into the alterations in protein levels associated
with DNA repair, replication, and cell cycle
regulation (Figure-7). The study highlighted
significant reductions in the expression of
cyclins E1, B1, and A2. Cyclin A2 and Cdc-2
(Cdk1)/Cdk2 complexes play roles in cell
transition from the S phase to the G2 phase.
Post-nanoparticle administration, levels of
Cip/Kip proteins like p21 and p27, as well as
checkpoint kinases (Chk1), decreased notably
(except for Chk2, which paradoxically showed
increased  expression, likely due to
compensatory activation). Additionally, the
application of nanoparticles reduced the
activity of Cdc25-A phosphatase, responsible
for activating Cdks to maintain cell cycle
progression. These alterations, coupled with
effects on other DNA repair-related proteins,
collectively contributed to inhibiting tumour
cell growth and inducing a cell cycle arrest in
the S phase™ ™.
AgNPs treatment in fibroblasts led to reduced

production of laminin-1 and collagen-1 and

It's been observed that

hindered cell migration, demonstrating strong
inhibitory effects on stromal fibroblasts'?.
While these findings show promise, further
exploration into the mechanisms is needed,
especially on diverse stromal cell types like
macrophages or endothelial cells, to better
understand the impact of AgNPs within the
tumour’s cellular environment. Notably, in
vivo studies have revealed that AgNPs exhibit
effect in

a stronger anti-tumour

immunocompetent mice compared to
immunodeficient ones, indicating that AgNPs
treatments trigger the anti-tumour immune
within the tumour

limited

response
microenvironment'#, There's

information on AgNPs effects on tumour-
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associated macrophages, although studies
have shown that AgNPs of various sizes boost
mRNA levels of IL-1b and IL-8 and prompt the
production of reactive oxygen species (ROS)
in  macrophages'’. This is noteworthy
therapeutically, as these features align with
M1-polarized macrophages, known for their
capability to initiate anti-tumour responses'®.
Some research has highlighted the necessity
of lysosomal entrapment for increased release
of Ag ions. The observation that AgNPs ionize
more readily in acidic pH environments
supports the idea that Ag ions are the primary
factors driving the effects triggered by
AgNPs™'. Silver ions have been recognized

for their role in generating reactive oxygen

(ROS),
oxidative

species which in  turn induce
considerable
pathways that lead to cell death™?'s3 157,
Notably, neutralizing AgNPs-induced ROS

with antioxidants can mitigate or even prevent

stress, activating

the cytotoxicity triggered by AgNPs,
underscoring the significance of ROS in
AgNPs

oxidative stress alone might not fully replicate

154155 However,

toxicity inducing
AgNPs toxicity. Reports suggest that while
cisplatin and AgNPs treatments result in
similar levels of ROS generation and
equivalent anti-proliferative effects, cisplatin-
induced cell death includes both apoptosis

whereas AgNPs treatments
156

and necrosis,

induce apoptosis exclusively
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Figure 7: Cell cycle regulation modified by AgNPs. AgNPs activate ROS, DNA damage, and pro-

apoptotic factors (green arrow), inducing cell death. They also inhibit key cell cycle complexes (red arrow),

causing checkpoint arrests and amplifying apoptosis through p53 activation.

The epidermal growth factor receptor
(EGFR) tends to be excessively expressed in
about 60% of pancreatic cancers, prompting
exploration into the combination of
cetuximab and gemcitabine in Phase Il trials

158

for this disease™®. In their work, Patra et al,

showcased the potential of achieving high
intra-tumoral gold concentrations (4500 pg
g™") using this strategy, in contrast to the 600

-1
M9 9
minimizing accumulation

seen with untargeted GNPs, while also
in the liver or

kidney™". Their GNP-cetuximab-gemcitabine
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nanocomplex outperformed individual agents
or their combined use, both in vitro and in
vivo. Even at low doses (2 mg kg™), this
complex restrained tumour growth by over
80% in

model,

an orthotopic pancreatic cancer
surpassing the 30% inhibition
observed using the non-conjugated agents in
combination™’.

Jiang et al, developed citrate-coated
GNPs within a controlled size range of 2 to
100 nm,

trastuzumab antibodies'®. This facilitated

functionalized  with  multiple
targeted binding and cross-linking of the
human epidermal growth factor receptor
(HER)-2 in human SK-BR-3 breast cancer cells.
Larger nanoparticles exhibited a higher
protein-to-nanoparticle ratio compared to
smaller, more curved particles, resulting in
more robust trastuzumab binding. The study
identified an optimal nanoparticle size range
of 40-50 nm for cellular entry. Smaller
particles disengaged from the cell membrane,
while larger ones appeared to diminish the
necessary membrane wrapping for Receptor-
Mediated Endocytosis (RME). Moreover, the
40 nm GNP-HER particles facilitated the
internalization of the HER-2 receptor complex
leading to a 40%
reduction in surface HER-2 expression—an

into the cytoplasm,

effect not seen with trastuzumab binding
alone. This reduction subsequently led to
decreased expression of downstream kinases
like protein kinase B (Akt) and mitogen-
activated protein kinase (MAPK) and a twofold
increase in trastuzumab cytotoxicity. Despite
using extremely low concentrations of GNPs
(fM concentrations), GNP-HER was clearly
observed in cytoplasmic lysosomes. This
study emphasized that GNPs might not only

serve as passive drug carriers but also

influence drug-cell interactions, potentially

enhancing therapeutic effects’®.

Gold nanoparticles (AuNPs) of certain
sizes possess the ability to notably impede
cell proliferation and induce cell death,
encompassing apoptosis, necrosis, and
These

mechanisms involving protein denaturation,

autophagy. effects stem from

damage to cellular organelles, genotoxicity,
oxidative stress, and immune reactivity'®'.
AuNPs

angiogenic effects by engaging with the

Furthermore, demonstrate  anti-
heparin-binding domains
angiogenic factors such as VEGF, b-FGF, and
PDGF'',

found in pro-
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Figure 8: Metal NPs induce ROS mediated oxidative stress. Metal NPs induce ROS-mediated oxidative stress via intrinsic and
extrinsic pathways. In the intrinsic pathway, p53 inhibits BCL-2, triggering Cyt c release, activating Caspase-8, and promoting
apoptosome formation. Caspase-9, Cyt ¢, and Apaf-1 signal to Caspase-3, 6, 7, leading to apoptosis. The extrinsic pathway involves

significant endoplasmic reticulum stress.

Zhang et al, developed lysine-free
recombinant EGF mutants by replacing two
intrinsic lysine residues with either serine (S) or
arginine (R). This modification aimed to
enhance the anti-cancer effects of EGF-GNPs
conjugates by adjusting the orientation of
EGF on the nanoparticle surface. Among the
evaluated EGF mutants (RS, SR), the GNP
conjugate of the SR mutant displayed
improved biological activities and better
growth inhibition in the EGFR-overexpressing
line A431.

analyses suggested that the enhanced activity

skin cancer cell Biochemical
of the SR mutant wasn't solely due to
orientation control but was also linked to

increased binding activities of the mutant to

EGFR. These findings support the strategy of
manipulating the configuration of the EGF
molecule on the nanoparticle surface to
develop more potent EGF-GNP conjugates,
SR-GNPs as a
candidate for cancer therapy'®.

highlighting potential

8. Conclusion:

In conclusion, this review highlights the
intricate interplay between metal complexes
and growth factor pathways, offering insights
into the potential of metal-based compounds
inhibitors

proliferation. The fundamental role of growth

as promising of cancer cell

factors in driving uncontrolled cell growth, a
hallmark of cancer, has been explored, with a
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focus on key players such as Transforming  Conflict of Interest Statement:
Growth Factor-B, Tumour Necrosis Factor-a, None
and Insulin-like Growth Factors. The Tyrosine
Kinase Rece!otor pathway, a central signaling Funding Statement:
cascade activated by these growth factors,

has been examined in detail, providing a None
foundation for understanding how metal
complexes may disrupt these pathways and Acknowledgement Statement
impede  cancer progression.  Transition None

metals, including Cobalt, Copper, and Zinc,

integral to normal physiological functions,

have been discussed in the context of cancer

pathogenesis. The review underscores the

delicate balance required for optimal

therapeutic responses, emphasizing the

necessity for precise dosages of metal-

containing drugs to avoid undesirable

toxicity. The exploration of medicinal

inorganic chemistry reveals the potential of

metal complexes to serve as effective

anticancer agents, contributing to the

ongoing quest for innovative solutions in

cancer treatment.

Furthermore, this article delves into the
emerging field of metal nanoparticles as
inhibitors of cancer growth factors, expanding
the repertoire of potential therapeutic
interventions. The enduring wisdom of
Paracelsus regarding the significance of
dosage in determining toxicity resonates
throughout, guiding the discussion on the
nuanced use of metal-containing compounds
in cancer therapy. As research progresses at
the crossroads of structural biology and
chemistry, the insights provided in this
comprehensive review contribute to the
foundation of knowledge in the quest for

novel and effective anticancer strategies.
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