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ABSTRACT

This study introduced and solved a system of differential equations
aimed at modeling the coronavirus disease 2019 (COVID-19)
transmission dynamics in the province of Pampanga. Specifically,
a Susceptible, Infected, Recovered, Deceased (SIRD) model was
developed and built upon the foundational SIR model devised by
Kermack and McKendrick in 1927." Various methods were employed
to solve the model. Initially, the analytical solution for the rate of
change of infected individuals over time % was determined.
Subsequently, model parameters were identified through an
optimization process using the Microsoft Excel Solver. The
Runge-Kutta fourth order (RK4) method, implemented in Scilab
6.1.1, was utilized to approximate the numerical solution for the
rates of change of susceptible g, recovered Z—}:, and deceased 2—?
over time. The findings underscored the significance of several
parameters—namely, the transmission rate (t), removal rate
(combining recovery (p) and deceased rate (¢)), the proportion
of the infected population properly wearing face masks (u), the
proportion disinfecting regularly (§), and the proportion practicing
isolation or social distancing (€)—in shaping the transmission
dynamics of COVID-19 in Pampanga. The values of these model
parameters reflect the effectiveness of governmental responses
and actions in managing, controlling, and mitigating the spread
of COVID-19, as well as the extent of public cooperation and
compliance with COVID-19 directives and advisories.

Keywords: COVID-19, Differential Equations, Runge-Kutta fourth
order (RK4) method, SIRD model
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Introduction

In the 21st century, humanity has faced an
unprecedented global challenge in the form
of the COVID-19 pandemic. The novel
coronavirus, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), spread across
continents, creating a complex patterns of
transmission dynamics that have challenged
the world. To comprehend and control the
spread of the virus, scientists have used the
tool of mathematical modeling, specifically
employing systems of differential equations.

Traditional epidemiological models that are
grounded in the principles of compartmental
modeling have proven effective in understanding
and predicting the course of infectious
diseases.'? These models divide the population
into different compartments, representing
distinct stages of infection, and utilize differential
equations to describe the flow of individuals

between these compartments over time.'?

In the context of COVID-19, a typical
compartmental model may include categories
such as susceptible individuals, exposed (but
individuals, infectious

not yet infectious)

individuals, and recovered or deceased
individuals.?>? By expressing the rates at which
individuals move between these compartments
as differential equations, researchers can
simulate and analyze the spread of the virus
within a population.® The parameters of these
equations are informed by biological
characteristics of the virus, human behavior,

and societal factors.

As we explore the principle of this modeling
approach, it becomes clear that differential
equations provide a framework to understand
the evolving nature of the pandemic. By

integrating real-world data, researchers can
refine their models to reflect the complexities
of COVID-19 transmission, allowing for more
accurate predictions and the identification of

effective public health interventions.

This research study examined the complex
of COVID-19
Pampanga, Philippines using mathematical

dynamics transmission in
modeling. We explored the fundamentals of
compartmental differential equation-based
models to deepen our understanding of the
virus's spread and inform strategies to mitigate
its impact. As we navigate through the
complexities of this global health crisis, the
integration of mathematical modeling becomes
increasingly vital in the pursuit of managing
and overcoming the challenges posed by
COVID-19.

Accurate models are crucial for understanding
the complexities of the COVID-19 outbreak
and evaluating various mitigation strategies.
Numerous studies have explored various
modeling approaches to scrutinize the virus's
transmission dynamics within populations.*'?
Additionally, some studies have conducted
bibliographic reviews to trace the evolution of
COVID-19 transmission dynamics research.™
Other studies have also undertaken systematic
reviews of existing knowledge to create

papers with potentially significant impacts.™

This current study extends previous research
by employing an advanced Susceptible-
Infected-Recovered-Deceased (SIRD) model
of COVID-19

transmission in the province of Pampanga,

to depict the dynamics
Philippines. The SIRD model is derived from
the SIR model initially formulated by Kermack
and McKendrick in 1927.' Researchers have

utilized the SIR model to establish a theoretical
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framework for investigating virus transmission
within a specific population, as it can offer insights
and predictions regarding transmission dynamics

beyond what recorded data alone can provide."

Specifically, this paper builds on the previous
study by Mallari and Mendoza,"” which used
the SIRD model to explore the dynamics of
the COVID-19 transmission in Pampanga from
March 2020 to December 2021. The study
found that the five model parameters used —
transmission rate (r), recovery (4) and deceased
rate (w), proportion of the population using face
mask (8) and the efficacy of face mask (&) -
were significant factors driving the rise of COVID-
19 cases. To further explore the dynamics of virus
transmission as well as factors that affect it, this
paper introduces three new parameters in the
SIRD model. The newly defined parameters are
the proportion of the infected population
disinfecting regularly (8), proportion of the infected
population who were wearing face mask properly
(n), and proportion of the infected population
practicing isolation or social distancing (€).

Methodology

A. Data Source

COVID-19 cases spanning from March 2020
to October 2021 were gathered from the
Pampanga Information Office (PIO). The dataset
was segmented into four distinct time periods
for analysis.

B. Model Development, Formulation and

Solution

In this research, the removed compartment in
Kermack and McKendrick's well-known
compartmental SIR model from 1927 was divided

into recovered and deceased compartments,

resulting in an extended SIRD model. This
modification was undertaken to accurately
described the recovered and deceased cases

of COVID-19 in the province of Pampanga.

Consequently, this study made a mathematical
description of the compartments composing
the SIRD model with the following system of
differential equations:

as
dat

=—1(1- ued)S% (1)

al

= =11 -ped)S~-(p+ @l ()

dR
dat

= pl 3)

ab

o = ¢l 4

where:

7-  Transmission rate (risk of infection per
contact)

p- recovery rate
@- deceased rate

p- proportion of the infected population
who were wearing facemask properly

e- proportion of the infected population

practicing social distancing

8- proportion of the infected population
constantly disinfecting

The system of differential equations (1), (2), (3),
and (4) characterizing the dynamics of COVID-
19 transmission was solved using a combination
of analytical and numerical methods. The
function representing the number of infected
individuals at a given time (t), denoted by
I(t), was derived by solving equation (2)

analytically. This was based on the assumption
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that the susceptible (S) remains approximately
equal to the population (N) throughout the
time span, i.e., S/N =~ 1. Consequently,
equation (2) could be simplified and solved

analytically through the separation of variables.

The particular solution for solving equation (2)
is presented below.

I(t) = Ioe(f(l—#a?) -(p+@))t (5)

Where, I, represents the initial infected cases
attime t = 0. The unknown model parameters
T, 4, €,8, p, ¢ in equation (5) were deduced
by fitting the observed infected cases through
the least square criterion using optimization in

Microsoft Excel Solver.

To address the challenge of solving the
analytical solutions for the rates of change in
the SIRD model—specifically g (susceptible),

dR dp
— (recovered), and = (deceased)—a

dt
numerical method was utilized. Specifically, the
fourth-order Runge-Kutta (RK4) method was
employed to approximate the solutions for

equations (1), (3), and (4) of the SIRD model.

Results

Upon obtaining equation (5) as the particular
solution of equation (2) through analytical
methods, the model parameters 7, u, €,6, p
and ¢ were derived using Microsoft Excel
Solver. The corresponding values of these
parameters are detailed in Table 1 below.

Table 1. Model parameters of the solution function 1(t) in four periods, obtained through optimization

Model Initial

parameters

period

2" Period

3 Period 4t Period

Risk of infection 0.396496123
per contact (1)
Recovery rate 0.0753197

)

Deceased rate
(®)
Proportion of
the infected
population who

0.0186

0.4884

were wearing
facemask
properly (1)
Proportion of
the infected

0.4884

population
practicing social
distancing (¢)
Proportion of 0.4884
the infected

population

constantly

disinfecting (6)

0.226924

0.0647

0.00356

0.53466

0.53466

0.53466

0.171810134 0.153547136

0.06693498 0.0716

0.003507102 0.003619

0.61487768 0.52641966

0.61487768 0.52641966

0.61487768 0.52641966

With these acquired model parameters, the study assess the value of the solution function I(t)

at any given time t.
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To obtain the approximate solution function
I(t) using the Runge-Kutta Method, consider

the initial value problem given by:

dl
dt

with [y = 3 when t = 0..

Define At > 0 and proceed with the following

steps:
1. kl = f(ti'yi)
2. ky=f(t; + 5,1+ At2)
At ks,
3. kaof (i +5 1 +At7)
4. k, = f(t; + At I; + Atks)

(a) I(t): 1st Period
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Then, update I and t using:

Iivq

At

ti+1 = ti + At,

This process is iterated for i =0,1,2,3,:::,n.

The Runge-Kutta method calculates approximate

values I Iy, .1, .

By implementing the

Runge-Kutta algorithm in Scilab 6.1.1, we

generate graphs that depict the approximate

solution functions for I(t) . These graphs are

illustrated in Figure 1 below. Additionally,

Figure 1

displays the graph representing the

observed infected cases I(t).
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Figure 1. Solution functions of infected cases I(t) over four distinct periods of COVID-19 cases in Pampanga,
Philippines, spanning from March 2020 to October 2021.
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Employing the RK4 method and utilizing the
derived parameters in I(t), the approximate

executing an RK4 program code written in
Scilab 6.1.1.

solution functions for susceptible individuals

S(t), recovered individuals R(t), and deceased
D(t) were estimated. This was achieved by

(a) Solution Functian Susceptible S(t): 1t Period

The figures below show the graphs of the
modeled and observed susceptible individuals,

recovered individuals, and deceased cases.

(b) Solution Function Susceptible S(t):2nd Period
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Figure 2. Solution functions of Susceptible cases S(t) over four distinct periods of COVID-19 cases in

Pampanga, Philippines, spanning from March 2020 to October 2021.
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(a) Solution Function Recovered R(t): 1st Period
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Figure 3. Solution functions of Recovered cases R(t) over four distinct periods of COVID-19 cases in
Pampanga, Philippines, spanning from March 2020 to October 2021.
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(a) Solution Function Death D(t): 1st Period (b) Solution Function Death Dit): 2nd Period
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Figure 4. Solution functions of Deceased cases D(t) over four distinct periods of COVID-19 cases in
Pampanga, Philippines, spanning from March 2020 to October 2021.
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The gathered data from PIO, as well as solved and derived data are summarized in Table 2

below.

Table 2:

Initial Values and Model parameters for the COVID-19 SIRD Model in Magalang, Pampanga
Parameter Value Source
Population (N) 2,893,625 Given
Initial time (to) March 7, 2020 (day 67) Given
Initial susceptible (So) So= N Given
Initial infected (lo) 3 Given
Initial recovered (Ro) 0 Given
Initial deceased (Dg) 0 Given
Incubation period (infected 5.5 days Source
but not yet infectious)
Risk of infection per contact 0.1-0.4 Solved
()
Recovery rate (p) 0.06-0.08 Solved
Deceased rate (@) 0.0035-0.0187 Solved
Time Progression of recovery (12-15) days Solved
Total recovered 0.95 Solved
Total infected
Time progression of deceased (54-281)days Solved
period
Total deceased 0.05 Solved
Total infected
Removal rate(p + ¢) 0.068-0.094 Solved
Proportion of the infected 49%-62% Solved

population who were wearing

facemask properly (1)
Proportion of the infected 49%-62% Solved

population who practice social

distancing ()

Proportion of the infected 49%-62% Solved
population who constantly

disinfect (8)

Basic reproduction number 1.74-3.73 Solved
(RO)
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Discussions

The numerical and analytical solutions fitted
with each other across all four periods, as
illustrated in Figure 1. Additionally, both the
numerical and analytical solutions demonstrate
that the data points for I(t) correlate with the
observed data of infected cases for the

specified four periods.

The transmission rate or risk of infection per
contact (7), the recovery rate (p), and the
deceased rate (¢) were obtained through
optimization. Table 2 presents the values of
(1), (p), and (¢) for the four periods, ranging
from 0.15 to 0.4, 0.067 to 0.075, and 0.0035
to 0.0187, respectively.

Based on the obtained model parameters,
this study was able to provide the model
parameters used in solving the rate of change
of susceptible with respect to time %, the rate

of change of recovered with respect to time
dR
at
respect to time Z—lt) and eventually solved them

, and rate of change of deceased with

numerically. Additionally, the model effectively
depicted the
recovered, and deceased individuals, and has

behaviors of susceptible,
a good fit with the actual observed data for
these three compartments throughout the
four periods, as depicted in Figures 2, 3, and 4.

All the model parameters mentioned above,
each with its distinct value, influenced the
upward trend in the infected, recovered, and
deceased compartments, as well as the
downward trend in the susceptible compartment
across the four periods, as illustrated in Figures

1,2, 3, and 4, respectively.

Moreover, the results of this study indicate
that 48.8% to 61.5% of the infected population

adheres to minimum health protocols, including
proper facemask usage, constant disinfection,
and adherence to isolation or social distancing
practices. Consequently, 38.5%-51.2% of the
infected population does not strictly adhere
to these essential health guidelines. These
values of the model parameters demonstrated
the effectiveness of the government's
management and control program throughout
the study period of the COVID-19 pandemic,
as well as the public's response to the disease

outbreak.

The study by Caldwell et al.” emphasized the
significant role of adherence to minimum
health standards (MHS) in mitigating the initial
COVID-19 outbreak in the
Consequently, the findings of this current

Philippines.

study align with their observations.

Furthermore, the findings of this study can
serve as a guideline for managing, mitigating,
and controlling similar novel epidemiological

disease outbreaks in future scenarios.

Meanwhile, the recovery period was identified
to span 12-15 days, while the deceased period
ranged from 54-281 days. Combining the
recovery period and the deceased period with
the fast-increasing trend of the infected
compartment on a weekly basis, health facilities

are strained and overwhelmed.

The percentage of individuals who fully
recovered relative to the total number of infected
cases was at 95%, while the proportion of total
fatalities in relation to the total number of
infected cases was determined to be 5%.

The removal rate (p + ¢) was determined to
be in the range of 0.068-0.094. Consequently,

the days required for removal ( ) were

(p+o)
calculated to be 12-15 days. Additionally, the

Medical Research Archives | https://esmed.org/MRA/index.php/mra/article/view/5066 10
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basic reproduction number, denoted as Ry,
was determined across all four periods and
varied from 1.74 to 3.73.

Model Limitation

The developed SIRD model based on the
historical data was designed for a brief period
of COVID-19 transmission dynamics.

Considering the available observed data, the
performance of the developed SIRD model
could exhibit variability due to factors not
explicitly considered in the analysis. These
factors include government management and
control program data related to mass testing,
contact tracing, quarantine procedures,
vaccination programs and other aspects which

are not accounted for in this current study.

Conclusion

The analytical solution for the infected cases
fitted the observed cases and able to make an
of COVID-19
transmission in the province of Pampanga.

analysis in the dynamics
Utilizing the obtained model parameters
through optimization we were able to provide
the model parameters used in finding the
functions susceptible S(t), recovered R(t)
and deceased D(t) for any time (t). Thus, the
numerical solutions for the three compartments
had a good fit with the observed data.

The developed model vyielded essential
parameters through optimization, including
the transmission rate (t), the removal rate
(comprising recovery denoted by p and
deceased rate denoted by ¢), the proportion
of the infected population wearing face masks
properly (u), the proportion disinfecting

regularly (§), and the proportion practicing

isolation or social distancing (€). These
parameters were significant contributors to
the transmission dynamics of COVID-19 in
Pampanga. Consequently, the study suggests
that effective control, mitigation, and
management of COVID-19 transmission hinge
on the coordinated efforts of authorities and
the public. Adherence to minimum health
standards, such as wearing face masks properly,
regular disinfection, and practicing social
distancing, can substantially mitigate, if not
entirely eliminate, the rapid spread of COVID-

19 over a short period of time.

Recommendations

In future studies, it may be valuable to develop

a mathematical model that encompasses
additional parameters to account for factors
such as mass testing, contact tracing, quarantine
procedures, health facility utilization, vaccination,
and other factors not presently addressed in
the current study. These considerations can
enhance the comprehensiveness of the model
and better capture the various influences on

the dynamics of COVID-19 transmission.
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