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ABSTRACT 
Hypothesis generation is an early and critical step in any hypothesis-driven 
clinical research project. Because it is not yet a well-understood cognitive 
process, the need to improve the process goes unrecognized. Without an 
impactful hypothesis, the significance of any research project can be 
questionable, regardless of the rigor or diligence applied in other steps of 
the study, e.g., study design, data collection, and result analysis. In this 
perspective article, the authors provide a literature review on the following 
topics first: scientific thinking, reasoning, medical reasoning, literature-
based discovery, and a field study to explore scientific thinking and 
discovery. Over the years, scientific thinking has shown excellent progress 
in cognitive science and its applied areas: education, medicine, and 
biomedical research. However, a review of the literature reveals the lack 
of original studies on hypothesis generation in clinical research. The authors 
then summarize their first human participant study exploring data-driven 
hypothesis generation by clinical researchers in a simulated setting. The 
results indicate that a secondary data analytical tool, VIADS—a visual 
interactive analytic tool for filtering, summarizing, and visualizing large 
health data sets coded with hierarchical terminologies, can shorten the time 
participants need, on average, to generate a hypothesis and also requires 
fewer cognitive events to generate each hypothesis. As a counterpoint, this 

exploration also indicates that the quality ratings of the hypotheses thus 
generated carry significantly lower ratings for feasibility when applying 
VIADS. Despite its small scale, the study confirmed the feasibility of 
conducting a human participant study directly to explore the hypothesis 
generation process in clinical research. This study provides supporting 
evidence to conduct a larger-scale study with a specifically designed tool 
to facilitate the hypothesis-generation process among inexperienced 
clinical researchers. A larger study could provide generalizable evidence, 
which in turn can potentially improve clinical research productivity and 
overall clinical research enterprise.  
Keywords: Clinical research; scientific hypothesis generation; visualization; 
data-driven hypothesis generation; medical informatics; translational 
research 
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1 Introduction 
A hypothesis is an educated guess about the 
relationships among several variables 1,2. 
Hypothesis generation occurs at the very early 
stage of the lifecycle of a research project 1,3-5.  
Typically, after hypothesis generation, study 
design, data collection, data analysis, results and 
conclusion dissemination occur sequentially 1,4. 
Without an impactful hypothesis, no matter how 
rigorous the study design, how careful the 
experimental execution, or how detailed the 
analysis of results, the impact of a research project 
will be limited. Despite the importance of hypothesis 
generation in scientific studies, the cognitive process 
of hypothesis generation has not yet been well 
understood. Our group has conducted a data-
driven hypothesis generation study with clinical 
researchers to explore the process in the clinical 
research context 6-10. We developed a visual 
interactive analytical tool for filtering, summarizing, 
and visualizing large health data sets coded with 
hierarchical terminologies—VIADS 11-16, and we 
compared the hypothesis generation processes 
among clinical researchers when they used VIADS 
and any other analytical tools, such as Excel, SPSS, 
R. The original study protocol 10 and detailed 
individual aspects of the study results have been 
published separately, including usability, utility, 
hypothesis measure instruments, cognitive events  6-

9. In this perspective paper, we aim to (1) provide 
a literature review on the intersectional context of 
scientific thinking, reasoning, discovery, medical 
reasoning, and literature-based discovery in clinical 
research that serves as the background of our study 
and (2) elaborate on our study, its methods and 
results, its significance, and its roles within the clinical 
research context.  
 
Scientific hypothesis generation, which aims at 
developing research projects to pursue later, can be 
categorized into at least two broad groups. The 
first category typically originates from observing 
expected or unexpected phenomena during wet-
lab experiments or other types of data collection, 
such as in traditional chemical or biological studies. 
The second category typically originates from 
secondary data analysis, usually called data-driven 
hypothesis generation; this category is often used in 
epidemiology, psychology, and informatics studies. 
In hypothesis-driven research, and compared with 
predictive research, a hypothesis has a central role 
in the project and its lifecycle 17. Our study focuses 
on the second category, specifically in a clinical 
research context.  
 
In daily life, hypotheses are used constantly, and 
mostly unconsciously. For example, while driving on 
a busy highway, the decision to change lanes is 

based on hypotheses related to prior experiences, 
the surrounding vehicles’ behavior, and relative 
speeds and distances among all these vehicles. Most 
drivers can maneuver successfully without explicitly 
articulating which step is hypothesis generation and 
which is hypothesis testing. This process occurs very 
rapidly and is usually not accomplished consciously. 
Many hypothesis generations refer to everyday 
hypotheses. However, the focus in our study is on 
scientific hypothesis generation. The hypothesis we 
focus on will be used in sequential scientific research 
studies to prove or disprove the hypothesis to move 
the boundaries of science. 
 
Scientific hypothesis generation is part of scientific 
thinking, which also includes scientific reasoning, 
medical reasoning, and problem-solving 18-20. 
However, they are not identical to one another. 
Scientific thinking is a broader concept, and most 
often requires reasoning and problem-solving. 
While, hypothesis generation also requires 
reasoning capability, there are several differences 
between hypothesis generation, scientific reasoning 
and problem-solving. First, hypothesis generation is 
an exploration process to look for a problem to 
focus on, whereas scientific reasoning and problem-
solving are mostly used when one already has a 
problem, puzzle, or medical case in hand and is 
trying to solve the issue. Second, the process of 
hypothesis generation is largely exploratory, 
without fixed answers, whereas scientific reasoning 
and problem-solving usually have one or several 
correct answers to reach. Third, hypothesis 
generation uses more divergent thinking, whereas 
scientific reasoning and problem-solving use more 
convergent thinking 19, which indicates that the 
underlying mechanisms used by these cognitive 
processes may be different. Many successful studies 
have explored scientific reasoning in educational 
settings to solve puzzles or learn new functions of an 
existing tool 21-23, as well as in medical settings for 
diagnosis, or differential diagnosis issues 24-26. 
However, scientific hypothesis generation with 
human participants is rare in the literature. 
 
Although hypothesis generation is an early step in 
scientific studies and research projects 1 and its 
critical role has been broadly recognized 27-29, few 
studies have focused on understanding the 
principles or exploring the mechanisms of the 
process. There have been studies in literature mining 
30, the ABC model 31-33, and automatic systems to 
generate hypotheses 34-37. These studies explored 
the scientific hypothesis generation and established 
the critical foundation for further research, 
especially the ABC model, which has guided a 
significant portion of studies in this area for 
decades. However, extremely few studies have 
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included human participants’ evaluations in these 
studies. Considering the complex nature of the 
hypothesis generation process, studying how 
humans generate hypotheses has unique 
advantages for better understanding the process 
and underlying mechanisms and improving it.  
 
The rest of the article is organized into the following 
sections: a literature review to set the background 
for our study, a summary of the methods and results 
of our study, discussions about interpreting the 
results and reflecting on the study, and conclusion. 
Our study shows VIADS was perceived as a helpful 
tool in facilitating hypothesis generation by clinical 
researchers; among inexperienced clinical 
researchers, participants in the VIADS group used 
significantly shorter time and used significantly 
fewer cognitive events to generate each hypothesis 
on average; however, hypotheses generated by 
participants in the VIADS group received 
significantly lower ratings in feasibility. Through the 
study there are much more questions identified than 
answered regarding to hypothesis generation in 
clinical research and more research is needed in this 
field. 
 

2 Literature Review of Other Studies 
Our study focuses on scientific hypothesis 
generation, which has not been an established field 
by itself, i.e., very few studies focus on scientific 
hypothesis generation per se. However, there are 
studies in relevant fields. Therefore, to 
acknowledge the existing relevant work, we 
explored and reviewed the literature in the 
following topics: scientific thinking and reasoning, 
medical reasoning, literature-based discovery, and 

field study on scientific thinking and discovery. 
Under each topic, we introduce a literature review 
of the topic and what we can learn from these 
studies. A comprehensive summary of the four topics 
concludes the literature review section. We then 
introduce our study objectives before summarizing 
the methods and results of our study.   
 
2.1 SCIENTIFIC THINKING AND REASONING 
2.1.1 Literature Overview and Main Findings 
Scientific thinking refers to the cognitive processes 
used during scientific-related activities 18,19. An 
elaboration of scientific-related activities can 
include at least the following events: hypothesis 
generation, formulating research questions, 
designing the study, collecting data, analyzing 
data, and writing and publishing results, which is a 
typical lifecycle of a scientific study 1,3,4. The 
thinking involved in each of these events can be 
categorized as scientific thinking. Although scientific 
thinking and reasoning are often used together, 
reasoning is one of the cognitive capabilities, along 
with analogy, decision-making, problem-solving, 
and working memory 38,39, all of which are critical 
and necessary to scientific thinking. By contrast, 
Kuhn et al., considered scientific thinking to be 
logical thinking, problem-solving, and induction 40. 
Other contributing factors of scientific thinking 
include prior knowledge, memory, data generated 
from experiments, accidental events, and 
systematically generated evidence 20. Figure 1 
shows a conceptual framework of scientific thinking, 
its supporting and necessary cognitive capacities 
and attributes, and their primary relationships. As 
shown in Figure 1, the focus of our study is a small 
subset of hypothesis generation, which is a subset of 
scientific thinking. 

 

 
Figure 1 Conceptual model showing the relationships among scientific thinking, hypothesis generation, and 
their contributing capabilities and attributes (purple, domain-related cognitive capabilities or obtained 
attributes; green, generic cognitive capabilities or obtained attributes; gold, our focus) 
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Scientific thinking has the potential to exert a 
substantial impact on scientific education and 
scientific discoveries. Many researchers have 
emphasized the coordination of theories and 
evidence in scientific education 40, and others have 
focused on conceptual change, especially during 
paradigm shifts within scientific education and 
scientific discoveries 41. Klahr proposed two spaces 
of problems that characterize scientific reasoning—
one related to hypothesis and the other having to 
do with evidence 20,42,43. Klahr proposed that the 
framework could explain hypothesis generation, 
experiment design, hypothesis evaluation, and the 
interactions among these processes 42. However, the 
hypotheses used in above mentioned contexts are 
not the hypotheses used in research settings to 
develop potential research projects; rather, the 
hypotheses Klahr referred to are the ones used to 
solve puzzles during experimentation. We 
purposefully distinguish the two types of hypotheses 
because of the potentially different mechanisms 
underneath during hypothesis generation. In fact, 
the generation of hypotheses for research projects, 
especially data-driven hypotheses, most likely use 
divergent thinking with multiple possible correct 
answers, whereas the  generation of hypotheses to 
solve a puzzle likely uses convergent thinking with a 
limited number of correct answers 19.  
 
Within scientific thinking, some researchers have 
also studied hypothesis generation. Thomas et al. 44 
proposed a human judgment framework to 
generate hypotheses and explained hypothesis 
testing and human judgment. Their study, however, 
was focused on human judgment, decision-making, 
and the hypotheses generated in order to do so. 
Later, Sprenger et al. 45 demonstrated that divided 
attention could lead to a reduced number of 
alternative hypotheses generated or errors, bias, or 
limitations during information retrieval, and further 
lead to errors or bias in judgment by using the same 
framework. The results were also confirmed by 
Dasgupta et al. 46 with additional experiments and 
simulations. Donnelly et al. 47 demonstrated that 7–
10 tasks can be reliably used to test hypotheses in 
clinical problem-solving with medical students as 
participants. Although the contexts of these studies 
are not particularly relevant to clinical research, the 
results are still helpful and informative in our study 
design. Alison et al. 48 demonstrated that time 
pressure reduced the number of hypotheses 
generated in a police investigation context. 
Merrifield and Erickson 49 showed that statistics 
enhanced overall judgment and the experience 
level of participants during hypothesis generation 
within a simulated nuclear attack scenario with the 
Reserve Officer Training Corps—ROTC students as 
participants.  

Furthermore, in order to measure creativity, which is 
a critical attribute of a scientific hypothesis,  Dumas 
and Dunbar 21 used semantic analysis to measure 
new ideas with a psychometric test: The Use of 
Objects Task by undergraduates. They 
demonstrated that semantic analysis can be used as 
an objective measure of the originality of ideas, 
although the originality and ideas in their study are 
not in a scientific research context but in a more 
generic English language context. Kerne et al. 50 
also attempted to measure new ideas for 
originality. Similarly, their study—which was not 
placed within a scientific research context—used 
open-ended questions with grading criteria in an 
information discovery context.  
 
2.1.2 What We Can Learn from the Literature 
Scientific reasoning is an important cognitive 
capability for conducting scientific thinking and 
hypothesis generation; however, scientific reasoning 
is not identical to scientific thinking or hypothesis 
generation. Using a puzzle or enumerating correct 
answers is an excellent way to study reasoning and 
compare results consistently in a scientific study; 
however, it is slightly far from measuring the real 
scientific hypothesis generation process or scientific 
hypothesis quality within research settings. Using 
scientific reasoning alone to represent scientific 
thinking somewhat simplifies the scientific thinking 
process. The examining of the literature indicates 
the scientific hypothesis generation process within 
the scientific research context is not the focus of most 
studies. We do, however, acknowledge that the 
literature and previous experiments provide 
tangible examples of comparison and task setting 
for human participants' studies of scientific 
hypothesis generation in a clinical research context.  
 
2.2 MEDICAL REASONING 
2.2.1 Literature Overview and Main Findings 
Within scientific reasoning, medical reasoning has 
been actively explored by many researchers in the 
past several decades, perhaps for two reasons. 
One, because medical reasoning can be critical to 
improve medical education and practice; and two, 
because medical reasoning provides a scenario that 
is closer to real-world reasoning, often with limited, 
incomplete, and sometimes inaccurate information. 
In the medical realm, sometimes the results cannot 
be verified easily or quickly; very often, the results 
are more complicated than a binary result. Patel et 
al., a pioneer group in this field, verified the 
relationship between forward or data-driven 
reasoning and accurate diagnosis among 
cardiologists, psychiatrists, and surgeons 51. Several 
original studies from Patel’s group explored 
hypothesis generation and testing in medical 
diagnostic tasks and showed differences between 
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medical novices and experts in developing their 
diagnoses 25,26,52-54. The experts used more data-
driven reasoning, whereas the novices used more 
hypothesis-driven reasoning; the experts used their 
more developed and a more knowledge-rich 
structure, whereas the novices used their 
knowledge-lean structure during the reasoning 
processes. Furthermore, experts usually skipped 
steps in their reasoning process 26,51,54, showing that 
they do not explicate every step in the reasoning 
process. Through protocol analysis 55,56, think-aloud 
techniques have been used in many studies to make 
the implicit reasoning processes more explicit 57-61. 
Similar methods have been applied as a relatively 
mature technology for evaluating the usability of 
health information technology-related systems 
58,62,63. For more details readers are referred to two 
book chapters 19,64 in the thinking and reasoning 
textbooks.  
 
2.2.2 What We Can Learn from the Literature 
The studies in medical reasoning provide helpful 
insights, particularly regarding our study design: 
these studies inspired us separating inexperienced 
and experienced clinical researchers, seeking to 
elucidate whether there are different processes in 
generating scientific hypotheses in those two 
groups. These studies also suggested think-aloud 
protocol can be used to decipher the process. While 
we acknowledge that clinical practice and clinical 
research have slight differences regarding urgency, 
especially during the hypothesis development and 
verification stages, the former is usually within an 
extremely limited time frame, but the latter is not 
under similar time constraints. These differences 
could result in significantly different outcomes 
during the applications in the two related but 
different contexts. 
 
2.3 LITERATURE-BASED DISCOVERY 
2.3.1 Literature Overview and Main Findings 
Don Swanson’s ABC model was published in 1986 
31,32, which initiated the research field of using 
publicly available information and literature to 
reveal existing but unknown relationships between 
concepts. Those newly revealed relationships could 
then serve as the initial hypotheses or components 
of scientific hypotheses for future studies. This type 
of study was described as literature-based 
discovery or literature mining 30. Several 
researchers developed systems to reveal existing 
but unknown relationships for hypotheses 
generation. Arrowsmith is an example that used the 
ABC model to conduct literature mining 33,65. 
SemRep 66 is another example of literature based 
discovery utilized ABC model. It is a natural 
language processing system that extracts semantic 

relationships from biomedical literature collected in 
PubMed 67.  
 
Sam Henry, et al. 30 published a literature review 
with a comprehensive analysis of the existing 
literature and research on literature-based 
discovery. The literature review covers the following 
aspects of literature-based discovery: (a) language 
processing operation, e.g., term removal or 
representations, (b) different literature discovery 
models, e.g., co-occurrence, semantic, distributional, 
and user interaction, (c) components of the systems, 
(d) evaluations, (e) application areas, and (f) 
challenges. In the literature review, Henry et al. 
distinguished between open discovery and close 
discovery 30. The open discovery is similar to the 
scientific hypothesis generation that we focused on 
in our study; the close discovery is similar to the 
scenarios used in scientific reasoning experiments 42.  
 
Within the domain of literature-based discovery, 
some researchers have focused on the basic units of 
a sentence, that is, entities and relationships, how to 
identify them, and how to improve the performance 
of the identifications. The application of these 
techniques to the clinical literature have resulted in 
a number of studies focused on entity identification 
68,69, and others have focused on relationship 
identifications 66,70-73 and temporal pairs of terms 
identification 74; other literature has focused on 
similarity measurements 75-77, which can be used to 
categorize the identified entities or relationships. 
Some studies have also attempted scientific 
discoveries by identifying outlier literature 78,79 or 
missing concepts 80 to facilitate literature-based 
discovery. Finally, some researchers have built 
systems to conduct similar tasks and study users' 
information-seeking behavior 81 while using the 
system. SemRep 66, RajoLink 82, Spark 83, EpiphaNet 
84, and the framework based on information 
foraging theory 85 are a few examples of such 
efforts.  
 
In addition to literature-based discovery, some 
researchers have attempted to generate 
hypotheses automatically, mostly by leveraging 
scientific literature mining 36, biomedical literature 
34,37,86-88, and semantic web technology and 
ontology 35. In addition to automatic hypothesis 
generation systems, researchers have attempted to 
validate hypotheses 89, evaluate hypotheses 90 on 
specific topics, such as galactose metabolism in 
Saccharomyces cerevisiae, and conduct more basic 
studies related to hypotheses, such as 
representation 91 of hypotheses and using graph 
theory and logical modeling of biomedical 
networks to generate hypotheses 92. Despite the 
example systems, researchers acknowledged that 
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completely automatic hypothesis generation 
remains unrealistic and hypothesis generation 
remains human-centered 35-37,88,90,91,93. 
 
Large language models—LLMs have recently 
dominated scientific, technical, and other headlines. 
Researchers have also attempted to test whether 
LLM can generate hypotheses automatically 94,95. 
The results showed that although describing the 
structure of scientific knowledge appeared 
effective 95, the error rates were still high. 
Noticeably, hallucination has been identified as a 
major concern in the applications of LLM in the 
generic or biomedical fields 96-98, not to mention the 
ethical concerns of using LLM in healthcare 99. In 
addition, the reasoning capacity of LLM in a clinical 
research context remains unknown, although 
experiments have shown that LLM can improve the 
performance of inductive reasoning, but with low 
levels of accuracy, approximately 27.5% 94. 
Hallucinations can be perceived as an appealing 
attribute during human–machine interactions in 
social settings. However, such shortcomings can be 
fatal flaws for more formal use scenarios of LLM, 
such as applications in scientific research, in which 
precise facts and meticulous logic are necessary 
and commonly used to conduct inference and 
reasoning. 
 
2.3.2 What We Can Learn from the Literature 
As described above, there is active exploration of 
different methodologies and systems to reveal 
existing but unknown relationships, which can be 
used to generate scientific hypotheses. However, in 
such processes, not necessarily something new was 
created or generated from existent substances; 
rather, something unknown was revealed. Although 
the ABC model is impactful and has influenced many 
such studies, the paradigm it represents is a 
commonly used type of hypothesis, not all possible 
hypotheses in a scientific research context. 
Meanwhile, the existing literature mining systems 
with user interfaces lack systematically human-
participated evaluation studies. 
 
Although it has been demonstrated that LLM can 
generate fluent English, LLM may not be best suited 
for generating new ideas or scientific hypotheses 
for research projects, because it is not precisely 
contextualized. This is a substantial concern in using 
LLM in more rigorous settings, such as study design. 
LLM seems to provide promises, possibilities, and 
hopes for scientific hypothesis generation or other 
aspects of scientific research; however, it is not yet 
at a stage that can be reliably used or even tested 
systematically with robust metrics and thorough 
requirements. A completely automatic system to 
generate research hypotheses is unrealistic yet; 

humans have to be in the loop and at the center to 
create new ideas, perhaps by leveraging existing 
technologies, such as LLM, to perform better than 
humans alone or technology alone. 
 
2.4 FIELD STUDY OF SCIENTIFIC THINKING AND 
DISCOVERY 
2.4.1 Literature overview and main findings 
In vivo cognitive studies have been used to describe 
the cognitive investigations conducted in the real 
world versus those experiments conducted in a 
laboratory setting, which have been named in vitro 
cognitive studies 18,19. In vitro settings provide 
several advantages for scientific research, such as 
better control of the conditions and comparable 
groups. In vitro settings are especially suitable for 
identifying individual factors for specific 
mechanisms. However, they are not free from 
limitations 100 and not all in vitro settings can reflect 
or mimic the real-world experience completely 101. 
By contrast, in vivo cognitive studies have many 
advantages. For example, Dunbar’s group 
conducted an in vivo cognitive study to examine 
scientific thinking and discovery processes in real 
time and in the natural environments. They chose 
four laboratories from six candidate laboratories in 
a US university, all four conducting highly innovative 
basic biomedical research, with recognized 
reputations and excellent track records in their 
fields. Dunbar interviewed 19 scientists in these four 
laboratories, participated in and recorded their 
laboratory meetings, accessed their grant 
proposals, papers, and laboratory books for a full 
year, to study their scientific thinking, reasoning, 
and discovery in real time 101-103.  
 
The methodology used by Dunbar was considered 
novel in cognitive science studies. Patel and 
colleagues published a series on in vitro and in vivo 
studies of scientific reasoning in clinical setting and 
their relation to the nature of the errors generated. 
All these studies were included in a 2014 textbook 
104. When investigating scientific thinking, 
reasoning, and discovery, such methodology and 
study setting provide the closest scenario and 
possibility to identify the process by which scientists 
make novel discoveries in real time. The results 
obtained through such a study can be 
incomparable. However, besides the obvious high 
costs of such a study, it is difficult to replicate and 
to scale up, considering the challenging criteria to 
meet for the investigation team who could conduct 
such studies and analyze the data collected as well 
as the candidate laboratories to choose from. 
Nevertheless, the results obtained are important 
and can be better than those experimental or 
simulated setting studies, i.e., in vitro studies. From 
his study, Dunbar concluded that for scientific 
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discoveries to occur, analogies are critical, the 
research team should include different but 
overlapping scientific backgrounds, the projects 
attempted should include both high and low risks, 
that acknowledging and exploring further on 
unexpected results is crucial, and that the interaction 

among team members is essential 101,102. Among all 
the studies we reviewed in this paper, Dunbar’s 
study is the closest to our own, and for that reason, 
we organized the material and summarized side-
by-side comparisons between the two studies in 
Table 1. 

 
Table 1 Comparison of Dunbar’s in vivo cognitive study 101,102 and our in vitro scientific hypothesis generation 
study in clinical research 7-10 

Dimensions In vivo scientific thinking  In vitro hypothesis generation in clinical research 

Study 
setting 

Field study Simulated/experimental setting 

Subjects  4 laboratories, 19 scientists 20 clinical researchers 

Study 
timeframe 

1 year 2–3 hours/person 

Investigator  Same person Same person 

Datasets  What they are working on Same datasets for all 

Subject 
activities 

Regular scientific/daily work Analyze data and develop hypotheses 

Purposes  Decipher scientific thinking and discovery 
naturally 

Identify clinical researchers’ data-driven hypotheses 
generation process 

Data 
collection 

Interviews  Recording screen activities 

Laboratory meetings (recording) Recording audio (think-aloud) 

Access to data, laboratory notes, 
proposals, and papers 

Follow-up surveys  

Data 
analysis 

Analyze and categorize recordings, 
laboratory notes, and observations 

Analyze recordings, assess hypotheses, time, count, and 
hypothesis quality comparison 

Results  Analogy, backgrounds of laboratory 
members, high- and low-risk projects, 
unexpected results, and interactions 
among members 

Number of hypotheses/person, time/hypothesis, 
hypothesis quality assessment instruments, hypothesis 
quality ratings and comparisons, and cognitive 
events/hypothesis 

 
2.4.2 What We Can Learn from the Literature 
The field studies provide the best approach to study 
scientific hypothesis generation, problem-solving, 
results analysis, and scientific discovery in the real 
world and real-time directly; however, they are 
time-consuming and labor intensive and requires 
highly qualified investigators to conduct the study, 
to participate in, and to shadow. They are also 
difficult to repeat and scale up, and the study cycle 
is long. Despite these challenges the results 
obtained exceed those of any laboratory setting 
experiment. With acknowledgement the 
advantages of in vivo studies, our in vitro study has 
some strengths too, such as mimicking the real 
process, and ability to obtain data within a 
shortened timeframe, which makes the study more 
manageable and easier to operationalize. 
 
2.5 LITERATURE SUMMARY 
Studies on scientific thinking center their efforts on 
scientific reasoning and use scientific teaching and 
learning in school or university settings. Without 
diminishing the value of results obtained from such 
settings, we have shown in this review that those 
studies do not represent hypothesis generation in a 
scientific research context. To date, the literature 
lacks original in vitro studies. The in vivo cognitive 

study by Dunbar is a unique example, and this 
original study focused on scientific thinking and 
discovery in a scientific research context, provided 
an excellent method to study scientific thinking and 
discovery. The study, however, is difficult to 
replicate. In addition, other studies centered on 
medical education and aiming to train medical 
students into medical experts in clinical practice, did 
not incorporate a clinical research context. Despite 
these limitations, medical reasoning studies’ results 
and research methods have helped us formulate our 
research question and design our study significantly. 
Literature-based discovery studies, many of which 
used the ABC model as the conceptual framework, 
attempted to develop systems to facilitate users to 
generate hypotheses for their research studies. 
However, most studies in literature-based discovery 
did not conduct adequate human participant 
evaluations to provide direct evidence about the 
systems.  
 
Although there are missing pieces in the literature 
related to scientific hypothesis generation, we 
emphasize the complementary nature of our work: 
we studied the scientific hypothesis generation 
process in clinical research contexts by leveraging 
findings and methodology from existing literature. 
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Our study focused on exploring the process and 
mechanisms of the hypothesis generation process of 
clinical researchers and aiming to enlighten future 
tool development to facilitate this process and make 
it better. In other words, our work aimed to improve 
clinical research productivity and clinical research 
enterprise in the long term, which could be 
perceived as an extension of medical education but 
emphasized more on research capacity building 
and development. Therefore, our work has a slightly 
different end goal from the start. We do 
acknowledge that excellent progress has been 
achieved in scientific thinking, scientific and medical 
reasoning, and literature-based mining, all of which 
have provided the necessary foundation to initiate 
our work and make our exploration feasible on 
many levels.  
 
2.6 OUR STUDY OBJECTIVES 
We aimed to use this study to explore the role of 
VIADS during scientific hypothesis generation 
among clinical researchers. We aim to explore 
whether there are differences between 
experienced and inexperienced clinical researchers 
during scientific hypothesis generation because 
Patel et al. 25,26,51,54 demonstrated that there were 
differences among them during clinical reasoning 
for differential diagnosis. We summarize the 
methods and results in the next section to 
contextualize the perspectives shared in this article. 
 

3. Review of Our Study 
3.1 SUMMARY OF THE STUDY DESIGN AND 
METHODOLOGY 
We conducted a 2 × 2 human participant study 
between August 2021 and November 2022 9. We 

recruited clinical researchers and separated them 
into experienced and inexperienced groups based 
on predefined criteria 10. Then, within each group, 
participants were randomly assigned to the 
experimental or control groups. The experimental 
groups used VIADS as their analytical tool, and the 
control groups used other analytical tools, such as 
Excel, SAS, Stat, and SPSS, to analyze the same 
datasets in a maximum of 2-hour session. The 
datasets were derived from the National 
Ambulatory Medical Care Survey, i.e., NAMCS, 
conducted by the Centers for Disease Control and 
Prevention 105. We aggregated the International 
Classification of Diseases, Ninth Revision—ICD-9, 
codes from the surveys and included the most 
frequently used codes in 2005 and 2015 and the 
names of the ICD-9 codes in the data sets. 
 
The VIADS groups had an additional one-hour 
training session to learn how to use VIADS. The 
participants were asked to conduct the data 
analysis and develop hypotheses using the think-
aloud protocol to talk about what they are doing or 
intend to do in the process. All screen activities and 
audio during data analysis and hypothesis 
generation were recorded and transcribed by 
professional services for analysis. Participants were 
asked to complete surveys after the study sessions. 
The same study facilitator conducted all study 
sessions with each participant by following similar 
study scripts. The study protocol has been published 
10. Figure 2 shows the general study flow. 
 
 
 

 

 
Figure 2 Summary of the data-driven hypothesis generation study flow 

 
Transcripts of the study session recordings were 
used to count the number of hypotheses generated 
by each participant. They were analyzed to 
measure the unit time required to generate each 
hypothesis on average. We also coded the 

transcription to identify the cognitive events used 
during hypothesis generation. We compared the 
results between the VIADS and control groups 
among inexperienced clinical researchers. 
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In order to compare the quality of hypotheses 
consistently, we developed and validated clinical 
research hypothesis evaluation metrics in a brief 
version, which includes significance, validity, and 
feasibility, and a comprehensive version which 
includes additional dimensions: novelty, clinical 
relevance, clarity, testability, potential benefits and 
risks, ethicality, and interesting. All hypotheses 
generated by the participants were assessed by an 
expert panel of seven members based on the same 
metrics. A detailed description of the metrics 
development, validation, and testing can be found 
in these references 6,106. 
 
This study was approved by the Clemson University 
Institutional Review Board (IRB2020-056) and Ohio 
University Institutional Review Board (18-X-192). 
The invitation to participate was shared via national 
forums, such as the American Medical Informatics 
Association working groups, and international 
conferences, such as the European Federation for 
Medical Informatics, i.e., MIE 2022 107, and by all 
research team members who reached out  to their 
professional circles.  
 
3.2 SUMMARY OF MAIN RESULTS 
Fifteen inexperienced clinical researchers, including 
eight in the VIADS group and seven in the control 
group, and three experienced clinical researchers, 
including two in the VIADS group and one in the 
control group, completed the study during our study 
period. Experienced clinical researchers were 
underrepresented; therefore, their data were used 
for informational purposes without statistical 
analysis. Two additional clinical researchers, 
including one experienced and one inexperienced, 
participated in the pilot study to help finalize the 
study flow, scripts, and follow-up surveys before 
our formal study started. Detailed results can be 
found in the reference 9. 
 
Clinical researchers generated 5–21 hypotheses, 
irrespective of quality. The VIADS group generated 
a similar number of hypotheses as the control group. 
Based on the same criteria, inexperienced clinical 
researchers had a valid rate of 63%, whereas 
experienced clinical researchers had a valid rate of 
72%, more detailed results can be referred to the 
references 7-9. 
 
The VIADS group required a statistically 
significantly shorter time than the control group to 
generate a hypothesis on average, i.e., 258 versus 
379 seconds per hypothesis. The results were similar 
regardless of the categories of hypothesis, such as 
considering only valid or all hypotheses, including 
only inexperienced clinical researchers, or 
aggregating inexperienced and experienced 

clinical researchers. The VIADS group used 
significantly fewer cognitive events to generate 
each hypothesis on average, i.e., 4.48/hypothesis 
versus 7.38/hypothesis, which explained and 
supported the shorter time used by the VIADS 
participants.  Moreover, the VIADS group had a 
much smaller standard deviation than the control 
group regarding the cognitive events used, i.e., 
2.43 versus 5.02. More detailed results can be 
found in the references 9,108. 
 
The expert panel used the brief version of the 
instrument to assess the quality of the hypotheses 
after reliability tests of both the brief and 
comprehensive versions of the instruments. The 
VIADS group received a slightly lower rating for 
significance and validity and a statistically 
significantly lower rating for feasibility regardless 
of the categories of hypotheses, that is, considering 
valid or all hypotheses, including inexperienced 
clinical researchers only or both. The feasibility 
ratings likely led to statistically significantly lower 
ratings when we combined the significance, validity, 
and feasibility ratings in the VIADS group. 
Meanwhile, we did notice VIADS groups generated 
more complex hypotheses than control groups, 
however, the complexity is not a measurable 
dimension in our current instruments. Detailed results 
can be found in the reference 9. 
 
Our follow-up questions focused on participants’ 
past experiences related to hypothesis generation. 
Reading, conversations, and interactions with peers, 
colleagues, and advisors, as well as attending 
conferences were highly rated and repeatedly 
mentioned as events that had facilitated or 
provoked new ideas in the past. From the answers, 
we were unable to identify a single specific tool 
that could be used to facilitate the process or 
capture the initial ideas during the hypothesis 
generation process. Detailed results can be found in 
the references 8,9. 
 
The usability evaluation of VIADS was embedded 
in the hypothesis generation study sessions. The 
VIADS group participants were asked to complete 
an additional modified version of the System 
Usability Scale—SUS 109,110 survey in addition to 
the follow-up questionnaire at the end of their study 
sessions. The SUS score ranged widely, 37.5–87.5, 
with mean and median values of 71.9 and 75, 
respectively. Although the SUS score had a 
relatively large range, the participants provided 
overwhelmingly positive feedback on VIADS and 
unanimously agreed that VIADS offers new 
perspectives on datasets, see detailed results in the 
references 8,9,107,111. Figure 3 shows the summary 
milestones and publications of the project, and 
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readers can refer to them for detailed descriptions 
of the respective methods and results. 

 
Figure 3 Summary flow of hypothesis generation project milestones and publications—# refers to PMID 
 
3.3 DID WE ACCOMPLISH OUR STUDY 
OBJECTIVES? 
The number of participants in the experienced 
group was insufficient to completely achieve our 
planned objectives. However, we obtained novel 
findings from the component that conducted among 
inexperienced clinical researchers. These findings 
are related to the baseline measurements, number, 
and mean unit time and cognitive events needed to 
generate a data-driven scientific hypothesis on 
average; and differences between inexperienced 
clinical researchers using VIADS or other analytical 
tools. Our results suggest that use of VIADS results 
in significantly shorter unit time and significantly 
fewer cognitive events to generate a hypothesis on 
average during the process. In addition, the use of 
VIADS scored significantly lower feasibility ratings 
than the control group who used other analytical 
tools. We also observed differences between 
experienced and inexperienced clinical researchers 
in their valid hypothesis rates when they were 
measured under the same standards and assessed 
by the same group of experts. The experienced 
group had 10% higher valid rate than the 
inexperienced clinical researcher group. In 
conclusion, although we could not completely 
answer the research questions raised at the 
beginning of the study, we are extremely 
encouraged by these novel findings, which provide 
us with adequate evidence to move the project to 
the next phase. 
 

4. Discussion 
4.1 RESULT INTERPRETATIONS AND SIGNIFICANCE 
To the best of our knowledge, this is the first human 
participant study to generate data-driven scientific 
hypotheses of clinical research in a simulated 
setting. This work is significant for the following 
reasons. First, our experiments demonstrated the 
feasibility of the human participant study in 

capturing the hypothesis generation process in a 
clinical research context facilitated by data 
analytical tools and established the baseline 
measures. It also brought forth the fact that it is a 
truly challenging process. Second, our findings 
indicated that using VIADS improved the efficiency 
of the process among junior clinical researchers. We 
speculate that VIADS may have provided more 
structured guidance for clinical researchers during 
the hypothesis generation process, an explanation 
supported by the evidence from the comparison of 
the unit time per hypothesis and the cognitive events 
used between the VIADS and control groups. Third, 
we found that the VIADS group received a 
significantly lower rating in feasibility and 
subsequently in the total rating of the summation of 
feasibility, validity, and significance. We recognize 
that lower feasibility does not necessarily mean the 
participants in the VIADS group were more 
creative. However, the lower feasibility rating 
appeared to indicate a deviation in that direction. 
One likely scenario is that the participants in the 
VIADS group may have started to think in a more 
complex manner instead of linearly by looking at 
the hierarchical graphs generated by VIADS during 
the data analysis and hypothesis generation. These 
hierarchical graphs include not only hierarchies but 
also semantics. Additional rigorous and larger-scale 
studies will be required to prove this scenario.  
Fourth, the slightly lower ratings in validity and 
significance may be related to the one-hour training 
that the experimental group participants received 
to learn how to use VIADS. Six out of eight 
participants had a three-hour session with a brief 
break in between while the control group 
participants have a two-hour session. We wonder 
whether the three-hour session affected 
participants' cognitive load negatively and 
unconsciously, since the hypothesis quality ratings 
indicated cognitive overload in the experimental 
group compared to the control group. Although the 
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participants’ answers to the open-ended questions 
at the end of the study were positive about VIADS 
and its ability to present the data in new ways, the 
literature suggests that cognitive overload will 
negatively affect participants’ performance 45, 
especially when the participants learn a new tool 
and perform other tasks simultaneously. Fifth, we 
established metrics and instruments to measure 
scientific hypotheses in the clinical research context. 
The metrics and instruments are critical tools for 
consistently measuring hypotheses. They can also be 
used by peer reviewers during paper or grant 
proposal reviews or by investigators to prioritize 
multiple potential research projects before investing 
too much time and resources.   
 
4.2 INSIGHTS, EXPERIENCE, AND LESSONS FOR 
FUTURE STUDIES 
The literature, especially medical reasoning 
literature, indicates that the experience level is 
critical during medical reasoning. Experienced 
physicians and junior physicians use different 
strategies to solve clinical problems. For this reason, 
in our study design, we categorized clinical 
researchers into experienced and inexperienced 
groups based on their years of clinical research 
experience. We expected to determine whether 
similar differences exist among clinical researchers 
during hypothesis generation for research projects. 
However, although we used the same platforms and 
channels to recruit experienced and inexperienced 
clinical researchers, the recruitment efforts were 
unsuccessful among experienced clinical researchers 
and the experienced groups were underpowered. 
That component of our study did not generate 
anticipated results; the data collected were used 
for informational purposes without further statistical 
analysis.  Experienced clinical researchers may 
have other priorities, and participating in a study 
on hypothesis generation may be outside their 
interests. However, experience in clinical research 
does not necessarily imply rigorous thinking, and 
observations suggest that some clinical researchers 
would still benefit from such activities or ways of 
thinking during hypothesis generation for research 
projects. 
 
VIADS appears to be a helpful tool in secondary 
data analytical, summarizing, and visualization 
work, therefore enabling clinical researchers to 
generate hypotheses more efficiently. However, 
because of the complex nature of VIADS, we still 
need to elucidate which parts of VIADS play which 
role in facilitating hypothesis generation. For 
example, our current results cannot answer whether 
the visualization part of VIADS, the data analysis 
part of VIADS, or both worked in facilitating clinical 
researchers during hypothesis generation. In 

addition, VIADS, or the visualization parts, may 
stimulate participants’ thinking, as exemplified by 
the significantly lower feasibility ratings in the 
VIADS group. However, without a carefully 
designed study, we are uncertain of the speculation. 
 
A few lessons learned during the study could be 
beneficial for future studies. We learned that it was 
critical to check the devices each time before a 
study session, more so when a new device or a new 
piece of the device was introduced, as we had to 
make sure that it was working with all existing 
software packages. We also realized the need to 
intentionally design the schedule to avoid a 3-hour 
continued session, as well as to separate the training 
and study sessions on different dates whenever 
possible. Alternatively, at the very least to separate 
the training and study sessions with a significant 
break in between, i.e., 5-10 minutes are 
inadequate. Although putting the two sessions 
together might be easier or more convenient for 
both participants and the study facilitator, the 
training and study sessions together can cause 
additional cognitive loads to participants, affecting 
the results negatively. 
 
4.3 LIMITATIONS OF THE STUDY 
Considering the complex nature of scientific 
hypothesis generation, many of the limitations of this 
study may be still beyond our current technological 
boundary. That is, some of the measurements may 
be beneficial in answering critical questions but 
unrealistic. For example, how exactly the scientific 
hypotheses were initiated and formed while 
participants analyzed datasets cannot be 
answered clearly because our current technology 
cannot yet capture the process explicitly. The think-
aloud protocol is currently the only available 
method to capture the process; while it is not ideal, 
it is nonetheless a reality that we can use. 
 
One of the study's main limitations is the inadequate 
number of experienced clinical researchers, which 
prevented us from exploring the role of experience 
level during scientific hypothesis generation in 
clinical research. On the positive side, this may 
indicate that inexperienced clinical researchers are 
more eager to participate and could be future 
target users for any tools we develop for hypothesis 
generation. Meanwhile, this reality may indicate 
that experienced clinicians need more motivational 
encouragement and people skills to recruit 
successfully. 
 
Furthermore, we do recognize this study's limitations 
in capturing the hypothesis generation process. The 
think-aloud protocols have been a brilliant method 
in cognitive and psychology studies and usability 
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testing ever since they were introduced by Ericson 
and Simon 55. Although we recognize that this is the 
best strategy, we could use to capture the 
hypothesis generation process, the approach is not 
perfect, and there are limitations. The think-aloud 
protocol can only capture conscious processes 
articulated by participants. Therefore, we could say 
that our study revealed part of the process, not yet 
the whole cognitive process. It is potentially 
impossible to reveal the complete cognitive process 
of scientific hypothesis generation with our 
available technologies and approaches, a 
challenge beyond our current capacity. 
 
The last limitation is related to VIADS, which is a 
secondary data analytical tool by nature. Although 
it can facilitate hypothesis generation, it was not 
explicitly designed for this purpose. Although 
VIADS still shows its effectiveness in facilitating 
inexperienced clinical researchers in generating 
hypotheses, we believe that a more comprehensive 
tool to specifically support hypothesis generation 
will be much more effective. 
 
4.4 OPPORTUNITIES FOR FUTURE STUDIES 
The first opportunity is to capture participant’s 
thinking process more completely and accurately, 
which may include scientific hypothesis generation, 
scientific thinking, or scientific reasoning. With a 
better understanding of the thinking process, the 
results can be translated to guide the design and 
development of corresponding tools to improve the 
process. This means understanding how scientist 
think, and there are several studies on this topic. 
Another opportunity is the lack of support for 
scientific hypothesis generation. From the answers to 
our open-ended questions at the end of the study 
sessions and our own experience, there appear to 
be no specific tools to support the process. 
Considering the emergence of large language 
models, a probability model with an exceptional 
capability to predict and generate human-like 
fluent language, it reminded us that hypothesis 
generation is perhaps one of the unique traits of the 
human brain. However, we have an extremely 
limited understanding of the process, not to mention 
how to facilitate it to make it better. The area is 
unique and critical enough to be studied further and 
more thoroughly to maintain the strengths of the 
human species and improve research productivity 
and output overall. 
 

5. Conclusion  
Hypothesis generation is an important first step in 
any scientific research.  It is difficult to exemplify 

the process in concrete ways; therefore, it is difficult 
to teach and reproduce, even for successful 
investigation teams, investigators, and discoveries. 
However, it is a critical and early stage of the 
clinical research project life cycle. The more we 
understand the process, the better we may be able 
to facilitate and improve it, the clinical research 
projects, and the clinical research enterprise as a 
whole. From our human subject study, we have 
learned that intentional and structured guidance 
during hypothesis generation can facilitate the 
process, at least among inexperienced clinical 
researchers. VIADS, as an example of a potential 
tool, appears to make the hypothesis generation 
process more efficient, that is, significantly faster, 
by using significantly fewer cognitive events. 
Meanwhile, the number of hypotheses generated 
was similar between the VIADS and control groups. 
Regarding the quality of the hypotheses, the control 
group was slightly higher in validity, significance, 
and the feasibility is statistically significantly higher. 
We do notice the hypotheses generated by the 
VIADS groups seemed more complicated than those 
generate by the control groups. Therefore, we 
noted the results as mixed and inconclusive as to 
whether VIADS is helpful in the hypothesis 
generation process. The role of VIADS in hypothesis 
generation may be more complicated than that of 
linear effects. A larger-scale study with more 
functional tools focusing on hypothesis generation 
would likely generate more generalizable results, 
considering that VIADS is a secondary data 
analytical tool that was not developed primarily to 
facilitate hypothesis generation.  
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