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ABSTRACT 
Living organisms are required to sense the environment accurately in 
order to ensure appropriate responses. The accuracy of estimating 
the environmental input is severely limited by noise stemming from 
inherent stochasticity of the chemical reactions involved in signaling 
pathways. Cells employ multiple strategies to improve the accuracy 
by tuning the reaction rates, for instance amplifying the response, 
reducing the noise etc.. However, the pathway also consumes energy 
through incorporating ATP in phosphorylating key signaling proteins 
involved in the reaction pathways. In many instances, improvements 
in accuracy elicit extra energetic cost. For example, higher 
deactivation rate suppresses the basal pathway activity effectively 
amplifying the dynamic range of the response which leads to 
improvement in accuracy. Higher deactivation rate also enhances the 
energy dissipation rate. Here, we employed a theoretical approach 
based on thermodynamics of information to explore the role of 
accuracy and energetic cost in the performance of a Mitogen 
Activated Protein Kinase signaling system. Our study shows that the 
accuracy-energy trade-off can explain the optimality of the reaction 
rates of the reaction pathways rather than accuracy alone. Our 
analysis elucidates the role of interplay between accuracy and 
energetic cost in evolutionary shaping of the parameter space of 
signaling pathways. 
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Introduction 
Every living cell has to accurately sense the external 
environment in order to ensure appropriate 
response. The sensing is carried out by cell signal 
transduction systems which convey the message of 
external stimulus to the internal machinery of the 
cell. Various chemical reaction pathways are 
involved in sensing the environmental cues by 
specific membrane receptors, activation of the 
signal transduction cascade and finally in triggering 
gene expression changes. These chemical reaction 
pathways are inherently stochastic in nature1–3. 
Stochasticity is an integral part of life at the cellular 
level. Processes such as gene expression, the cell 
cycle and signal transduction are inherently 
stochastic making it difficult to predict their nature. 
Inherent stochasticity in the external and internal 
environment makes cell response heterogeneous. 
This heterogeneous response severely limits the 
accuracy of estimating the input by the population 
of cells. However, this phenotypic heterogeneity can 
sometimes be useful. For example, E. coli, 
Staphylococcus sp. are able to resist antibiotics due 
to phenotypic heterogeneity1. But in majority of 
cases, to process the cellular information correctly 
the cells need to be able to respond to these noisy 
signals appropriately implying that cells decode the 
environment in a probabilistic fashion.2. 
Stochasticity is often referred to as noise. This noise 
can either be intrinsic, i.e. a result of the process 
itself or, extrinsic, i.e. caused due to other processes 
or environmental factors3. 
 
Information theoretic approaches have proven to 
be a great asset in estimating precision of signal 
decoding by cellular networks4. The change in the 
output (e.g. stimulated expression of a gene) carries 
information about the input variable. In general, the 
precision with which the input value can be 
estimated from measuring the output improves with 
larger changes (i.e. dynamic range) of the output 
and with lower output noise. According to Cramer–
Rao inequality, the error in estimating the input from 
the output is bounded by the Fisher information, 
defined as the relative entropy change of the 
output distribution for an infinitesimal change in the 
input around a given input value5. Furthermore, 
information transmission of signaling systems can 
also be estimated by calculating the mutual 
information, which is increasingly being used to 
characterize biochemical signaling networks6,7. The 
mutual information measures the mutual 
interdependence between the input and the output 
distributions by calculating the relative entropy of 
the output distributions conditioned on the input with 
respect to the unconditioned output distributions8. In 
both cases, more information can be extracted 
about the input from the output distribution if the 

relative entropy change is large. The change in 
input is reflected in the output via the signaling 
pathway. To quantify the information transmission 
accuracy, we can use mutual information and/or 
Fisher information9, 10. 
 
Cells have evolved to employ multiple strategies for 
better information transmission namely negative 
feedback to reduce noise, negative regulation to 
amplify output dynamic range, dynamic 
measurement etc11. However, improvement of 
information transmission utilizing such strategies in 
turn imposes extra burden to the cell by 
accentuating energy consumption/dissipation12. 
Since, the associated chemical processes in signaling 
operate out of thermal equilibrium, the energy 
dissipation is inevitable. The close connection 
between information and heat dissipation in non-
equilibrium processes is established on a strong 
theoretical footing owing to the resolution of the 
long standing puzzle of Maxwell’s demon through 
the Landauer erasure principle in the last century13. 
Entropy production rate is the measure of heat 
dissipation in non-equilibrium processes and 
entropy production rate also represents the energy 
consumption in many systems at steady state. In the 
signaling cascade operating through 
phosphorylation-dephosphorylation cycles, the 
energy consumption is essentially achieved through 
constant ATP consummation flux in the 
phosphorylation reaction and subsequent 
dissipation in the dephosphorylation reaction14. This 
cycle of ATP flux maintains a non-equilibrium 
steady state under the action of an external 
stimulus. Since accuracy of the response is crucial to 
the cell’s survival, cells have adapted to respond so 
that they have to consume as little energy as 
possible to accurately respond to information, make 
changes to the internal processes after learning 
about the external processes and do this robustly.15. 
But, how cells navigate the parameter space in 
designing the signaling network to achieve this 
trade-off of minimizing energy consumption and at 
the same time maintain a required accuracy level is 
not fully understood yet. 
 
Here, to explore the issue, we constructed an ODE 
based model of the phosphorylation cascade in 
yeast S. cerevisiae pheromone response pathway 
incorporating random extrinsic noise in the protein 
levels resulting in heterogeneous cell to cell 
variability in response. This pathway mediates 
communication and ultimately mating between two 
haploid mating types of S. cerevisiae16. S. 
cerevisiae has two type of mating cells, MATa and 

MATα.The α cells secretes the α pheromone which 

binds the G protein-coupled receptor (Ste2) and 
stimulates the canonical mitogen-activated protein 
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kinase (MAPK) cascade, leading to activation of the 
MAPK Fus317–19. Fus3, the major MAPK of the 
mating pathway, induces cell-cycle arrest, mating-
specific changes in cell morphology by expression 
of mating genes including genes that encode 
components or regulators of the MAPK cascade20. 
Previous studies demonstrated that the pheromone 
pathway transmits information with high precision, 
as exemplified by a linear relationship between 
receptor occupancy and downstream responses21 
(“dose–response alignment”) and by a uniform 
morphological transition of cell population into a 
mating-competent state (“shmooing”) at a critical 
pheromone concentration12, 22, 23. Such uniformity in 
the output implies existence of, likely multiple, 
mechanisms to improve precision of information 
transmission within the pathway like noise 
reduction24. The pathway also consumes energy 
during phoshorylation of Fus3 under pheromone 
induction and the energy consumption is likely to 
increase as the negative regulator like phosphatase 
Msg5 is produced at higher level14. On the other 
hand, higher basal pathway activity would increase 

energy consumption but reduce accuracy.  Thus, how 
these different parameters in the pathway are 
tuned to optimize the energy-accuracy trade-off is 
central to the evolutionary design of the signaling 
system. We show here the relation between energy 
consumption and accuracy of information 
transmission for different scenarios and compare it 
with experimentally fitted parameter values for the 
pheromone response pathway. Our study offers a 
theoretical framework to understand the reaction 
rates on the basis of evolutionary optimization. 
 

Methods 
Analytical expression for accuracy and efficiency 
For a non-equilibrium stochastic process of a 
random variable x, the steady state probability 

distribution can be denoted by p(x,α) where α is the 

control parameter. Following Hatano-Sasa 
formulation25 for transition between non-equilibrium 
steady states, the non-equilibrium free energy can 
written as 

 

𝜙 = 𝑙𝑜𝑔(𝑝(𝑥, 𝛼)) 
 

The conjugate force corresponding to the control parameter α is given by 

𝑋(𝑥, 𝑎) =
𝛿𝜙(𝑥, 𝑎)

𝛿𝑎
 

For a small change in the value of α to α + δα, the average change in the conjugate force around the steady 

state value can be derived using linear response theory  
 
Where, 

𝑥(𝑡 − 𝑡′) =
𝑑

𝑑𝑡
⟨𝑋(𝑡)𝑋(𝑡′)⟩𝑠𝑠 

 
The thermodynamic internal energy due to the process can be represented as 

𝐸 = 𝛼⟨∆𝑋⟩𝑠𝑠 
 

and the corresponding excess power generated due to the process is32 
 

𝑃𝑒𝑥 =
𝑑𝑎

𝑑𝑡
⟨∆𝑋⟩𝑠𝑠 

By integrating by parts, we can finally get 
 

𝑃𝑒𝑥(𝑡) = (
𝑑𝑎

𝑑𝑡
)
2

∫ 𝑑𝑡′
∞

0

⟨𝑋(0)𝑋(𝑡′)⟩𝑠𝑠 

 
Following the steps above, it can be shown that, 
 

𝑃𝑒𝑥(𝑡) = (
𝑑𝑎

𝑑𝑡
)
2

∫ 𝑑𝑡′
∞

0
⟨𝑋(0)𝑋(𝑡′)⟩𝑠𝑠 = (

𝑑𝑎

𝑑𝑡
)
2

∫ 𝑑𝑡′
∞

0
⟨𝑋(0)𝑋(0)⟩𝑠𝑠𝑒

−𝛾𝑡′    

    
 
 
Since, the fisher information F at steady state is defined as, 
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𝐹 = ⟨𝑋(0)𝑋(0)⟩ = ⟨(
−𝛿𝑙𝑜𝑔(𝑥, 𝑎)

𝑑𝑎
)

2

⟩ 

 
Thus, finally the calculation leads to a power-accuracy trade-off 27. 
 

𝑃𝑒𝑥 =
𝐹

𝑌
(
𝑑𝑎

𝑑𝑡
)
2

 

 

According to Cramer–Rao inequality var(α) ≥ 1/F which imply that 

 

𝑃𝑒𝑥 ≥
𝐹1

(∆𝑎)2𝑌
(
𝑑𝑎

𝑑𝑡
)
2

=
𝑎2

(∆𝑎)2𝑌
(
𝑑𝑎

𝑎𝑑𝑡
)
2

 

𝐴(𝑎)

𝑃𝑒𝑥(𝑎)
≤ 𝑦𝑟𝑎

2 

 

Here, 𝐴(𝑎) =
𝛼2

∆𝑎2
is the accuracy of estimating the signal and inverse of  

𝑑𝛼

𝑑𝑡
represents time scale of the signal 

change 𝜏𝛼 . In order to make the efficiency unitless, we multiply the equation by 𝑃𝑒𝑥(0), i.e. power 

consumption when α = 0. The efficiency 

 

𝜂(𝑎) =
𝑃𝑒𝑥(0)𝐴(𝑎)

𝑃𝑒𝑥(𝑎)
≤ 𝑃𝑒𝑥(0)𝛾𝜏𝛼

2 

The efficiency is the accuracy obtained in estimating the signal α per unit of fold change in the power 

consumed   
𝑃𝑒𝑥(𝛼)

𝑃𝑒𝑥(0)
. 

 
For the single stage phosphorylation-dephosphorylating reaction system considered here as shown in the 
figure above, the steady state equation for phosphorylated protein concentration is given by, 

𝑑𝑥

𝑑𝑡
= (𝛼0 + 𝛼1𝛼)𝑋𝑇 − (𝛼0 + 𝛼1𝛼 + 𝛽)𝑥 

 
The Langevin equation at steady state is, 
 

𝑑𝑥

𝑑𝑡
= (𝛼0 + 𝛼1𝛼)𝑋𝑇 − (𝛼0 + 𝛼1𝛼 + 𝛽)𝑥 + 𝜂(𝑡) 

 

 
 
The steady state distribution around the steady state is given by, 
 

𝑃(𝑥, 𝑎) =
1

√2𝜋𝜎2
𝑒−(𝑥−𝜇)

2 2𝜎2⁄  

 
For the case of phophorylation reaction (Supplementary information), 
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𝜇 =
𝛼0 + 𝛼1𝛼

𝛼0 + 𝛼1𝛼 + 𝛽
𝑋𝑇; 𝜎

2 =
(𝛼0 + 𝛼1𝛼)𝛽

(𝛼0 + 𝛼1𝛼 + 𝛽)
2
𝑋𝑇 

 
 

The accuracy12, 28 is the fisher information with respect to the input α and if we assume that total number 

of the sensing molecule XT is large (Supplementary information), it can be shown to be given by , 

𝐴(𝑎) =
𝛼2

𝜎2
(
𝜕𝜇

𝜕𝛼
)
2

=
𝑎2𝑎1

2𝛽

(𝑎1𝑎 + 𝑎0)(𝑎1𝑎 + 𝑎0 + 𝛽)
2
𝑋𝑇 

 

The total accuracy can be quantified by summing over the input signals, 𝐴𝑡𝑜𝑡𝑎𝑙 = ∫ 𝐴(𝛼)𝑑𝛼
∞

0
.  

The average power consumption in the units of the ATP to ADP conversion free energy (ATP consumption 
rate)  
  

The total efficiency over the input can be quantified by 𝜂𝑡𝑜𝑡𝑎𝑙 = ∫ 𝜂(𝛼)𝑑𝛼
∞

0
 

 
 
 
Breaking of detailed balance and Entropy production rate 
In the previous section, we assumed an expression of the power consumption and in this section, we are 
providing a derivation of the expression from the entropy production rate in case of the chemical reaction 
system when detailed balance is broken. 
 
 
 
 
 
 
 
 
 
 
  
For the above chemical reaction system, the transition between the two states are driven by an external 

force due to the enzyme alpha in addition to the equilibrium transition rates αeq and βeq. The external 

driving breaks the detailed balance of the cycle leading to entropy production rate and power consumption 
by the cycle28. 
The steady state is given by, 
 

𝑋2 =
𝑎0 + 𝑎1 + 𝑎𝑒𝑞

𝑎0 + 𝑎1𝑎 + 𝑎𝑒𝑞 + 𝛽𝑒𝑞+𝛽1
 

 
The corresponding entropy production rate is, 
 

𝐸𝑅𝑃 = [(𝑎0 + 𝑎1𝑎)𝑋1 − 𝛽𝑎𝑋2]𝑙𝑜𝑔
𝑎0 + 𝑎1𝑎

𝛽1
+ [𝑎𝑒𝑞𝑋1 − 𝛽𝑒𝑞𝑋2]𝑙𝑜𝑔

𝑎𝑒𝑞
𝛽𝑒𝑞

 

 

The external driving force exerted by the enzyme α associate a free energy F to the reaction in addition to 

the equilibrium free energy E. Thus one can associate the reaction rates with the driving force free energy 
and the equilibrium reaction rates29, 
 

𝑎0 + 𝑎1𝑎 = 𝑎𝑒𝑞𝑒
∆𝐹 2⁄  

𝛽1 = 𝛽𝑒𝑞𝑒
∆𝐹 2⁄  

Which implies that 
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𝑙𝑜𝑔
𝑎0 + 𝑎1𝑎

𝛽1

𝛽𝑒𝑞

𝑎𝑒𝑞
= ∆𝐹 

 
Additionally, if the free energy F is large enough we can make an assumption that 
 

𝑎0 + 𝑎1𝑎 ≫ 𝑎𝑒𝑞 

𝛽𝑒𝑞 ≫ 𝛽1 
With this assumption, 

𝐸𝑃𝑅 = 𝑋𝑇
𝛽𝑒𝑞(𝑎0 + 𝑎1𝑎)

𝑎0 + 𝑎1𝑎 + 𝛽𝑒𝑞
∆𝐹 = 𝛽𝑒𝑞𝜇∆𝐹 

 
Here, ∆F corresponds to the free energy change of 
ATP hydrolysis. Thus, the previous assumption that 

the power consumption is βµ (energy in the unit of 

ATP hydrolysis free energy, thus the unit is Ft−1) is 
legitimate in the limit shown above where the 
equilibrium activation rate is much smaller that the 
driven activation rate due to ATP hydrolysis free 
energy. Intuitively, the ATP consumed per unit time 

in the forward reaction is given by (α0 + α1α)X1 

which is equal to βX2 at steady state since forward 

reaction rate should balance the reverse reaction 
rate at steady state. The above calculation 
demonstrates the result in a more rigorous fashion 
starting from breaking of detailed balance in a 
non-equilibrium steady state and the corresponding 
entropy production rate. 
 
 
 
 

Detailed mathematical model for simulation 
study 
We consider one-step phosphorylation and 
cascade of the model pathway, where the receptor 
pheromones activate kinase Fus3 and which induces 
the activity in Msg5 and GFP. The system is 
modelled as a set of Ordinary Differential 
Equations. We build a mathematical model where 
X is phosphorylated and thus activated by 
pheromone s. This X after phosphorylation becomes 
X p which is a promoter of GFP as well as P. P then 
activates the phosphatase which in turn promotes 
the dephosphorylating of X p back to X. This system 
is modelled using simple Ordinary Differential 
Equations (ODEs). The simulations were performed 
using the ode15s solver in MATLAB 2019b for a 
population of 500 cells. Here X represents inactive 
Fus3, X p represents active or phosphorylated Fus3 
and P represents Msg5 proteins respectively. Given 
below are the reactions and corresponding ODE’s 
of the different proteins in the pathway 

 
Reactions 

• 𝐺𝑥 → 𝐺𝑥 + 𝑋 

• 𝑋 
𝑃
⇔
𝑠
 𝑋𝑝 

• 𝐺
  𝑋𝑝

→   𝐺 + 𝑃 

• 𝐺𝐺𝐹𝑃
  𝑋𝑝

→  𝐺𝐺𝐹𝑃 + 𝑃𝐺𝐹𝑃 

• 𝑃 ⟶ 𝜙 

• 𝑋 ⟶ 𝜙 

• 𝑋𝑝⟶𝜙  

 
𝑑𝑋

𝑑𝑡
= 𝑗𝑥𝑁𝐺𝑥 +

𝐽𝑝𝑜𝑠𝑋𝑃

𝑋𝑝+𝐾1
+ (𝐾2𝑃 + 𝑃𝑏𝑎𝑠𝑎𝑙)𝑋

𝑝 − (𝐾1𝑆 + 𝑆𝑏𝑎𝑠𝑎𝑙)𝑋 − 𝑑𝑠𝑋   (6) 

 
𝑑𝑋𝑃

𝑑𝑡
=(𝐾1𝑆 + 𝑆𝑏𝑎𝑠𝑎𝑙)𝑋 − (𝑘𝑎𝑃 + 𝑃𝑏𝑎𝑠𝑎𝑙)𝑋

𝑝 − 𝑑𝑥𝑋
𝑃   (7) 

 
𝑑𝑃𝐺𝐹𝑃

𝑑𝑡
=
𝑗𝐺𝐹𝑃𝑁𝐺𝐺𝐹𝑃𝑋𝑃

𝑋𝑝+𝐾𝐺𝐹𝑃
− 𝑑𝐺𝐹𝑃𝑃𝐺𝐹𝑃   (8) 

 
𝑑𝑝

𝑑𝑡
=
𝑗𝑝𝑁𝐺𝑝𝑋

𝑝

𝐾2+𝑋𝑃
− 𝑑𝑝𝑝   (9) 
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For differing values of the parameters Pbasal, k1 and Sbasal we simulate a population of 500 cells with normal 
noise introduced in the production rates of all proteins. The values of aforementioned parameters were 
changed by making the fitted value 2-fold, 5-fold, 10-fold, 20-fold, 25-fold, 30-fold and 35-fold of itself 
and dividing the fitted value by 2, 5 and 10. 
 
Calculating mutual information and accuracy 
To calculate mutual information between the input and output (in our case the input being the pheromone 
concentration, also known as the signal S and the output being the response R) we need to look at the 
probability distribution of both S and R and their joint probability distribution. However, we only know the 
conditional probability, P(R/S). Thus using the below equation 
We can write the mutual information as 
 

𝐼(𝑅; 𝑆) = −∑ ∑ 𝑃(𝑅|𝑆)𝑃(𝑆)𝑙𝑜𝑔
𝑃(𝑅)

𝑃(𝑅|𝑆)𝑆𝜖𝑆𝑅𝜖𝑆    (10) 

 
During the experiments, we vary the pheromone concentration to one of 11 values. As we run the same 
number of experiments for each one of the values we get a uniform distribution for the input. We then 
proceed to add noise in the production rate of all downstream proteins in our model and simulate the output 
R for different noise 500 times. The values of R are then arranged into 40 bins of a histogram. We use this 
histogram to estimate the probability distribution of the response R for each one of the 11 values of the 
signal S Thus we are able to find the mutual information by finding the entropy of the output R and 
subtracting the conditional entropy of output R given input S using the equation stated below. The input 
distribution 
 
P(S) is assumed to be uniform here since the the input distribution is not known in the actual environment and 
equally probable inputs is a legitimate assumption in that case. 
 

𝐼(𝑅; 𝑆) = 𝐻(𝑅) − 𝐻(𝑅|𝑆)   (11) 
 
To measure the accuracy in the dose-response curve we measure the derivative at every dose of the dose-
response curve and the standard deviation in the response. The accuracy is given as 
 

𝐴(𝑆) =
𝑆2

𝜎2(𝑆)
(
𝛿𝜇(𝑠)

𝛿𝑆
)
2
          (12) 

 
Where, 

𝜇(𝑠) = ∫𝑅𝑃(𝑆)𝑑𝑅   (13) 
 

𝑎2(𝑠) = ∫𝑅2𝑃(𝑆)𝑑𝑅(∫𝑅𝑃(𝑆)𝑑𝑅)2   (14)  

 

As the experimental data used is the single cell sequence data, we can obtain the µ(S) and σ 2(S) by using 

predefined functions in Python30. Using scipy31 package’s B-spline interpolation, we are able to obtain 
simulated dose-response curves. 
 
 
The interpolated curves, although discrete, can be used to obtain the accuracy. The derivative of the dose 
response curve can be given by 
 
𝛿𝜇(𝑠)

𝛿𝑆
= 𝑙𝑖𝑚
ℎ→0

𝜇(𝑆+ℎ)−𝜇(𝑆)

𝑆+ℎ−𝑆
   (15) 

 
For practical purposes h is chosen in the order of 

10−5 while obtaining the simulated dose-response 
curve. By substituting the result of Equation 15 in 
Equation 12 we obtain the accuracy for each dose. 
 
Parameter Estimation 

The parameters for the mathematical model were 
estimated using the genetic algortihm (ga) function 
in MATLAB’s global optimization toolbox. The loss 
function was set to minimize the root mean squared 
error (RMSE) between the experimental dose 
response curve and the predicted dose response 
curve from the model. The parameters were first 
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estimated for the MSG5 knock-out strain. Then 
keeping these parameters constant the rest of the 
parameters pertaining to Msg5 activity in the WT 
strain were estimated. 
 
Genetic Algorithm 
 
Genetic Algorithm (GA) is a population based 
global optimization method32. A fitness function is 
used to evaluate the quality of potential solutions 
which is RMSE for our problem. GA evlolves 
iteratively searching the entire search space by 
selecting, recombining and mutating individuals 
amongst a population. Being population based it is 
not prone to be stuck in a local optima and thus 
allows GA to find a global optima33, 34. 
 
 
 
 
 

Sensitivity Analysis 
 
To find the sensitivity of the dose response curve to 
the change in the parameter values we change a 
particular parameter while keeping all the other 
parameter values the same as they were obtained 
from parameter estimation. The parameter in 
question is changed by multiplying or dividing it by 
2, 5 and 10. We then take the root mean squared 
error (RMSE) between the dose-response curve 
obtained after changing the parameter and the 
experimental dose-response curve let it be 
RMSEchange. An average of all RMSEs for changes 
in the same parameter is taken, Mean RMSEchange. 
 

Let RMSE between the experimental dose-response 
curve and simulated dose-response curve for all 
parameter values being the same as obtained from 
the parameter estimation be, RMSEoriginal . 
Therefore we define sensitivity, or a particular 
parameter, as 

 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = |
𝑀𝑒𝑎𝑛𝑅𝑀𝑆𝐸𝐸𝑐ℎ𝑎𝑛𝑔𝑒 − 𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝑅𝑀𝑆𝐸𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
| 

 

Results 
 
The reaction rates display optimality through 
accuracy-energy trade-off instead of only 
accuracy 

 

We first consider a simple model shown above 
where the Fus3 protein can make transition between 
inactive (X1) and active states (X2). The activation 

occurs in presence of the pheromone (α) at a rate 

α1 along with a basal activation rate α0. The active 

state is deactivated at a rate β Previous studies 

utilized linear response around non-equilibrium 
steady state to arrive at accuracy-energy trade-off 
analytical equation starting from fundamental 
principles of non-equilibrium thermodynamics. An 
analytical calculation provides the accuracy in 
estimating the input (Methods section 0.1 for details 
 

𝐴(𝑎) =
𝛼2

𝜎2
(
𝜕𝜇

𝜕𝛼
)
2
=

𝑎2𝑎1
2𝛽

(𝑎1𝑎+𝑎0)(𝑎1𝑎+𝑎0+𝛽)
2𝑋𝑇       (1) 

 
Here, µ corresponds to the mean steady 
concentration of the active state X2, alpha 

represents the pheromone concentration, σ is the 

standard deviation in X2 and β is the deactivation 

rate as shown in the figure. The equation 1 above 

shows that while we keep α0 and α1 fixed, the 

accuracy is zero when β⟶0 as well as when β⟶∞. 

Thus, accuracy must have a maxima at a certain 

value of β . Similarly, we also observed similar 

conclusion for α1 while keeping other two 

parameters constant (Figure 1a). However, we 
observed that the maximum value of accuracy is 

increasing as value of β increases (Figure 1b). In 

fact, if both α1 and β are varied simultaneously 

while keeping the ration 
𝛽

𝑎1
 constant, the equation 1 

shows that the accuracy would keep on increasing 

as α1⟶∞ implying that the high accuracy would 

be attained at high values of α1 and β 

(Supplementary Figure S1a). Thus, the reaction 
rates would not reach optimum values. In case of the 

third parameter α0, we can clearly notice from 

equation 1 that the accuracy would always reduce 

as α0 increases. From this analysis, we can conclude 

that accuracy/information alone is not an ideal 
performance characteristic which would enable 
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evolution to select the reaction rates optimally. 
Since the reaction also consumes energy in form of 
ATP, we performed the calculation further by 
incorporating the power consumption. The average 

power consumption by the pathway at steady state 
is (Method section 0.2 for detailed derivation), 
 

 

𝑃𝑒𝑥(𝑎) = 𝛽𝜇 = 𝛽
𝛼0+𝛼1𝛼

𝛼0+𝛼1𝑎+𝛽
𝑋𝑇         (2) 

And the efficiency of performance of the signaling system is given by, (Methods section 0.1 for details) 
 

𝜂(𝑎) =
𝛼2𝛼0𝑎1

2𝛽

(𝛼0+𝛽)(𝑎1𝑎+𝑎0)
2(𝑎1𝑎+𝑎0+𝛽)

𝑋𝑇        (3) 

 
The equation 3 above for efficiency also shows 

optimal for α1 and β1. In fact, we can also see that 

by keeping 
𝛽

𝑎𝑎
 fixed, the efficiency tends to zero as 

α1 ∞ which implies that there exists a finite set of 

values of α1 and β when both α1 and β vary 

simultaneously. In contrast to previous case of 
accuracy, now even though the maximum efficiency 

initially increases with α1, it starts to reduce at high 

value of β (Figure 1b). As a result, in 2-dimension a 

maxima is observed giving rise to an optimum set 

of values for both β and α1 (Supplementary Figure 

S1b). Thus in conclusion, when one of the parameter 

is kept fixed (say α) and other parameter value is 

increased an optimum value is obtained even in 
case of only information, on the other hand if we 
consider the power-information trade-off we get a 
lower optimum value for the parameter is obtained. 
This observation is completely intuitive and also 
presented in the previous paper12. However, the 

surprise arises in two dimension when both 

parameters (α and β ) are tuned simultaneously, the 

information does not show any extrema, it keeps on 
increasing as both the parameters are increased , 
but the efficiency clearly show optimum values in 
two dimension when both parameters are tuned. So 
from a evolutionary point of view if only the 
information is considered as the fitness the 
parameters would not be optimized, the parameter 
values would take maximum possible values based 
only on physical constraint. In addition, the basal 

activation rate α0 also displays the optimal 

behavior according to the above equation. The 
analysis elicits the importance of accuracy energy 
trade-off for evolution to navigate the parameter 
space and select optimal reaction rates. In order to 
explore this new results with real data, we take 
recourse to a simulation and data fitting approach 
with real experimental data in the next section  

 
Data fitting algorithm provides estimation of the parameter values of the mathematical model 

 
 

In order to explore how different parameter values 
like activation/deactivation rates, basal pathway 
activity influences the information transmission and 
energy consumption through and further to 
investigate the hypothesis presented in the previous 
section for a real system, we constructed a simple 
ODE based mathematical model. In this model as 
shown above, a single layer MAPK cascade of the 
pheromone response pathway in S. cerevisiae is 
considered. The terminal MAPK Fus3 

phosphorylation is activated at a rate k1 

(equivalent to α1 in the analytical model) in 

presence of the pheromone signal s as well as a 

basal signal Sbasal (equivalent to α0 in the analytical 

model). Then the activated Fus3 is 
dephosphoryated at a rate k2 by a phosphatase. 
One component of the phosptases consists of Msg5 
protein which is also transcriptionally activated by 
the pathway output comprising a negative 
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feedback. The other component mediates a basal 
deactivation of phosphorylated Fus3 depicted as 

Pbasal (equivalent to β in the analytical model). The 

phosphorylated Fus3 finally activates the 
transcription of a set of mating specific genes and 
FUS1 is one of the genes which is used as a reporter 
for the pathway activity. To estimate the parameter 
values of the simple model, we utilized a previously 
published experimental data set12. In this 
experiment, the pathway activity at the single cell 

level was measured through a GFP tagged FUS1 
promoter using time-lapse fluorescence microscopy. 
The data set provides the dynamics of averages 
and variances over a population of cells at 11 
different pheromone concentrations.  
 
The experiments were performed for both a WT as 
well as an MSG5 knock-out strains to ascertain the 
effect of the Msg5 mediated dephosphorylation 
leading to the negative feedback loop discussed 
earlier. 

 

                                (a)                                                                                (b) 

 
Figure 1. The optimization of information transmission from the analytical calculation.(a) The 

accuracy as a function the induced activation rate (α1) at different values of the deactivation rate (β ) 

as indicated in the legend. (b) The efficiency as a function the induced activation rate (α1) at different 

values of the deactivation rate (β ) as indicated in the legend. The accuracy and efficiency are 

calculated by integrating Equation (1) and Equation (3) with respect to α from 0 to 100 keeping α0 
and XT fixed at 10 and 100 respectively. 

 
We simulated the pathway through ODE’s (Method 
section 0.3 for detail of the simulation procedure) 
and implemented the fitting algorithm (Method 
section 0.3) on the average dose response curves at 
first four different time points and all the 11 
pheromone concentrations for the MSG5 knock out 
strain (Figure 2a). This provides us with the average 
of all the parameter values excluding the Msg5 
specific parameter values. Finally, the WT dose 
response curves are fitted keeping the previously 
obtained parameter values fixed and only varying 
the parameter values associated with Msg5 
mediated deactivation (Figure 2a; Supplementary 
Figure S2). Through this method, we were able to fit 
the dose-response curves of WT and MSG5 knock-
out strains simultaneously (estimated parameter 

values are provided in the Supplementary 
information). Since, the pathway activity is 
measured indirectly through the FUS1 gene 
expression output, we conducted a sensitivity 
analysis to validate whether the upstream 
parameter values have significant contribution to 
the curve fitting. Although the downstream 
parameters like the GFP production and 
degradation rates have higher sensitivities as 
expected, the key parameters of the core pathway 
e.g. k1, Sbasal and Pbasal also display significant 
sensitivities (Figure 2b; Supplementary Figure S2). 
Next, we would explore how the information 
transmission through the pathway is optimized by 
varying these key three parameters around their 
estimated values.  
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                     (a)                                                                                  (b) 

 

Figure 2. Reaction rates are estimated by fitting the experimentally measured dynamics of the 

pathway output with the mathematical model. (a) The fitted curves along with the experimentally 

measured GFP output values at the third time index are shown for the WT and the MSG5∆ strain as 

indicated. Only 10 data points among 11 data points are displayed in the figure since the pheromone 

concentration values are plotted in log-scale, the zero pheromone concentration data points are not shown. 

(b) Sensitivity analysis of all the parameters for the MSG5∆ variant. 

 
Higher basal dephosphorylating rate reduces the 
basal pathway activity and forces response to be 
induced at higher pheromone doses. 
First, in order to investigate the effect of basal 
dephophorylation rate on the responses, we 
generate dose response curves at different 
pheromone concentration by performing simulation 
by varying Pbasal around the estimated value (PE) 
while keeping the Msg5 concentration at zero, 

resembling the MSG5 knock-out strain (Figure 3a). 
Initially, the basal pathway activity is observed to 
be gradually reduced as the Pbasal increases while 
the saturation levels of Fus3 activity do not change 
significantly resulting in amplification of overall 
dynamic ranges. However, a very high value of 
Pbasal reduces the saturation level ultimately leading 
to compression of the dynamic range. 

 

                    (a)                                                (b)                                                (c) 
 
Figure 3. The accuracy displays an optimum for the basal deactivation rate (Pbasal ). (a) Dose-Response 

Curves for different values of Pbasal where PE corresponds to the estimated parameter value of Pbasal while 

keeping other parameter values fixed at estimated values. (b) The simulation results for accuracy vs 

pathway output at the Fus3 phosphorylation level for different values of Pbasal where PE corresponds to 

the estimated parameter value of Pbasal . (c) Mean accuracy vs Pbasal at four different values of the induced 

activation rate (k1) as indicated in the legend. PE corresponds to the estimated parameter value of k1. 

 
Accuracy and mutual information show an 
optimum with respect to basal phosphatase 
activity 

Next, we introduced noise through adding cell to 
cell variability in the protein concentrations 
(Methods section 0.3). The other parameters like 
phosphorylation/dephosphorylation rates and 
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degradation rates of proteins are kept fixed since 
those processes happen at much faster time scales 
and variability in those parameters would be 
filtered out at long time scales of protein production 
rates. The intrinsic fluctuation due to stochasticity is 
neglected since the intrinsic noise has been shown to 
be low for this pathway35. In presence of noise, the 
information transmitted through the pathway can be 
calculated by quantifying either the accuracy of 
estimating the input from the output or the mutual 
information between the input and output. The 
accuracy is bounded by the fisher information 
according to Cramer–Rao inequality. We 
calculated the accuracy at different pheromone 
concentration by varying Pbasal values(Figure 3b). 
We observed that accuracy is very small at low 
doses and gradually increase. But, it becomes small 
again at saturating dose as the response does not 
change even if the dose increases. The maximum 
accuracy is achieved at intermediate pheromone 
concentrations. To quantify the overall accuracy at 
a particular dose, the average accuracy is 
calculated. The average accuracy is also equivalent 

to calculating the mutual information between the 
input and output (Methods section 0.3.1). It is 
noticed that the average accuracy as well as mutual 
information improve as the Pbasal increases owing to 
the enhanced dynamic range but it starts to drop at 
high value of Pbasal due to reduced saturation level 
(Figure 3c; Supplementary Figure S3b). Thus, when 
other parameter values are fixed, the Pbasal exhibits 
an optimum where the accuracy is maximum. 
 
Higher basal pathway activity impairs accuracy 
Next, we explored the effect of basal pathway 
activity by varying Sbasal . Now, simulations were 
performed by changing values of Sbasal while 
keeping other parameter fixed. Clearly, if the 
value of Sbasal increases, the basal pathway activity 
elevates while the saturation level remains the same 
leading to a compression in the dynamic range. 
(Figure 4a). The compression in the dynamic range 
gives rise to low accuracy and mutual information 
(Figure 4b). Thus, the average accuracy and mutual 
information gradually diminishes with higher Sbasal 
(Figure 4c; Supplementary Figure S3a). 

 

              (a)                                           (b)                                                         (c) 
 
Figure 4. The accuracy degenerates with higher basal pathway activity (Sbasal ). (a) Dose-Response 

Curves for different values of Sbasal where PE corresponds to the estimated parameter value of Sbasal (b) 

The simulation results for accuracy vs pathway output at the Fus3 phosphorylation level for different 

values of Sbasal where PE corresponds to the estimated parameter value of Sbasal (c) Mean accuracy vs 

Sbasal at four different values of the induced activation rate (k1) as indicated in the legend. PE corresponds 

to the estimated parameter value of k1. 

 
Higher activation rate improves accuracy but 
accuracy degenerates at high activation rates 
Finally, to explore the effect of the pheromone 
induced activation rate, we varied the value of k1 
and simulated the pathway output. In this case, 
initially at a very low k1 value, the pathway is not 
induced at all, only operating at basal level (Figure 
5a). The mean accuracy is subsequently low (Figure 
5b). As the value of k1 is increased, the saturation 

level starts to grow, effectively amplifying the 
dynamic range of the dose response curve. Thus, the 
overall accuracy also improves (Figure 5c). 
However, at very high activation rates, the pathway 
gets activated even at very low doses giving rise to 
loss of accuracy and information (Figure 5c; 
Supplementary Figure S3c). Like the basal 
dephosphorylation rate, the activation also exhibits 
an optimum with respect to the accuracy. 
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             (a)                                                          (b)                                                 (c) 
 
Figure 5. The accuracy displays an optimum with respect to the induced activation rate (k1). (a) Dose-
Response Curves for different values of k1 where PE corresponds to the estimated parameter value of k1 . 
(b) The simulation results for accuracy vs pathway output at the Fus3 phosphorylation level for different 
values of k1 where PE corresponds to the estimated parameter value of k1.(c) Mean accuracy vs k1 at four 
different values of the basal deactivation rate (Pbasal ) as indicated in the legend. PE corresponds to the 

estimated parameter value of Pbasal . 
 
Thus, we observed that while other parameters 
remain fixed, both the Pbasal and k1 exhibit optimum 
values where the accuracy is maximum. However, as 
observed before, the maximum accuracy increases 
as the value of Pbasal increases. The basal activity 
mediated by Sbasal on the other hand does not show 
any such optimum. From an evolutionary point of 
view, if achieving high information transmission 
accuracy is desired, high parameter values will be 
selected for Pbasal and k1 whereas very low value 
of Sbasal would be desirable.  But, according to the 
experimentally obtained estimation, the estimated 
value of Pbasal and k1 are quite low. The estimated 
value of Sbasal is quite high. Furthermore, all the 
parameters would change simultaneously during 
evolution in contrast to the scenario considered here 
where all parameters were kept fixed to calculate 
the optimum value of either k1 or Pbasal . 
 
The optimality is not observed in 2-dimension 
As observed in the previous section that the values 
Pbasal and k1 show optimum values individually, we 
performed simulations by varying both Pbasal and k1 
simultaneously and calculated the average 
accuracy and mutual information for each set of 
values (Figure 6a). In fact, the accuracy and 
information keep on increasing along the diagonal. 
In corroboration with previous observation, for a 
particular value of k1 along a particular column the 
Pbasal has an optimum value where accuracy is 
maximum. Similar result can be observed along a 
row where k1 is fixed. But the maximum accuracy 
value keeps on increasing along the diagonal. 
Essentially, the 1-dimension curves can be thought 
of a projection of 2-D (Figure 6b; Supplementary 
Figure S4a). As expected, the Sbasal and Pbasal 
contour on 1-D. Thus, there seems to be no optimum 

values of k1 and Pbasal where accuracy or 
information is maximum. The desirable values of k1 
and Pbasal can attain any high values keeping the 
ratio same. Similar results are observed for the 
mutual information (Supplementary Figure S4c). We 
further performed simulations by varying Sbasal and 
Pbasal simultaneously do not show any optimum 
values since we already demonstrated that Sbasal 

does not posses any optimal value even in 1-
dimension. A natural consequence of this analysis is 
the hypothesis that the accuracy or information is 
not the only determining factor in naturally selecting 
the parameter values. In that case, the evolution 
would navigate towards very high values of Pbasal 

and k1 while keeping the value of Sbasal as low as 
possible. 
 
A trade-off between accuracy and energetic cost 
can explain the choice of reaction rates 
The phosphorylation of Fus3 by the upper kinase 
occurs by moving a phosphate group on ATP to one 
of the serine/threonine residues of Fus3, converting 
an ATP molecule to ADP. The cells energy budget 
effectively drains out due to this continuous cycle. 
The rate of energy consumption would increase with 
higher activation/deactivation rates. Intuitively, we 
can now imagine that even though the accuracy 
improves by making the activation/deactivation 
rate higher, the pathway will consume more power 
posing a fundamental trade-off for the cell. In order 
to explore this trade-off, we defined an efficiency 
for the pathway which naturally appears in 
equation for power-accuracy trade-off by a linear 
response theory calculation (Methods section 0.1 
and supplementary information for a detailed 
derivation). 
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𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝐴𝑇𝑃𝐹𝑜𝑙𝑑𝐶ℎ𝑎𝑛𝑔𝑒
         (4) 

 
Where ATP fold change is the fold increase in ATP 
consumption rate from the basal ATP consumption 
rate. This formulation essentially makes efficiency a 
unit-less number. From the simulation, we now 
calculated the value of efficiency at each dose and 
finally took an average over the doses. We 

observe that the Pbasal and k1 values shows an 
optimum low values close to the estimated value 
where efficiency is maximum (Figure 6c). The Sbasal 
also exhibits a finite value close to the estimated 
value (Figure 6d). 

 

  
 
                               (a)                                                                                          (b)  
 
 

 
                                (c)                                                                                          (d)  

 
Figure 6. Optimality of the reaction rates with respect to the accuracy-energy trade-off (a) Heatmap 

shows the accuracy as function of Pbasal and k1. The PE on x-axis corresponds to estimated value of the 

induced activation rate (k1) while The PE on y-axis corresponds to estimated value of the basal 

deactivation rate (Pbasal ). (b) Heatmap shows the accuracy as function of Sbasal and Pbasal . The PE on x-axis 

corresponds to estimated value of the basal pathway activity (Sbasal ) while The PE on y-axis corresponds 

to estimated value of the basal deactivation rate (Pbasal ). (c) Heatmap shows the efficiency as function of 

Pbasal and k1. The PE on x-axis corresponds to estimated value of the induced activation rate (k1) while The 

PE on y-axis corresponds to estimated value of the basal deactivation rate (Pbasal ). (d) Heatmap shows the 

efficiency as function of Sbasal and Pbasal . The PE on x-axis corresponds to estimated value of the basal 

pathway activity (Sbasal ) while The PE on y-axis corresponds to estimated value of the basal deactivation 

rate (Pbasal ). 

 
The analysis suggests that the pheromone response 
pathway is not optimized to maximize information 
transmission but it needs to balance the energetic 
cost with information transmission for sustainability. 
It highlights the importance of both information 
transmission and energetic cost in determining the 

reaction rates of the signaling pathway. The 
analysis till now was performed for the MSG5 
knock-out strain to arrive at the conclusion. We 
repeat the same analysis by adding the feedback 
loop in the pathway. Considering only accuracy or 
information, the inability to obtain an optimum value 
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when Pbasal and k1 vary simultaneously appears 
here as well (Figure 7a; Supplementary Figure 
S4d). The Sbasal does not show any optimum as 
expected (Figure 7b; Supplementary Figure S4b). 

Finally the optimum values of k1, Pbasal and Sbasal 
arrive close to the estimated value when we 
consider the trade-off between accuracy and 
energetic cost (Figure 7c, 7d). 

 

  
                           (a)                                                                                          (b)  
 
 

(c)                                                                                          (d)  

 
Figure 7. Optimality of the reaction rates with respect to the accuracy-energy trade-off by including 

the negative feedback (a) Heatmap shows the accuracy as function of Pbasal and k1. The PE on x-axis 

corresponds to estimated value of the induced activation rate (k1) while The PE on y-axis corresponds to 

estimated value of the basal deactivation rate (Pbasal ). (b) Heatmap shows the accuracy as function of 

Sbasal and Pbasal . The PE on x-axis corresponds to estimated value of the basal pathway activity (Sbasal ) 

while The PE on y-axis corresponds to estimated value of the basal deactivation rate (Pbasal ). (c) Heatmap 

shows the efficiency as function of Pbasal and k1. The PE on x-axis corresponds to estimated value of the 

induced activation rate (k1) while The PE on y-axis corresponds to estimated value of the basal 

deactivation rate (Pbasal ). (d) Heatmap shows the efficiency as function of Sbasal and Pbasal . The PE on x-

axis corresponds to estimated value of the basal pathway activity (Sbasal ) while The PE on y-axis 

corresponds to estimated value of the basal deactivation rate (Pbasal ). 

 

Discussion 
Our study provides a theoretical formalism to 
understand the evolutionary choice of the reaction 
rates of a signaling pathway. The analysis is 
essentially based on the fundamental principle of 
information-thermodynamics connection13. We show 
that the information transmission cannot be be only 
determining factor for evolution to act on. The 
energetic cost in the transmitting signal also plays a 
crucial role in evolution. Here, we specifically 
analysed the trade-off between the accuracy and 

energetic cost around the estimated values of the 
pathway. In fact, the optimum values arrive close to 
the estimated value only when the energetic cost is 
also incorporated in the picture in addition to the 
information transmission. Consideration of only 
information transmission does not fully explain low 
values of activation/deactivation rates. Although 
the fraction of energy investment in the signaling 
cycle is small, previous experiments have 
demonstrated that this small amount of cost can 
have significant consequences for growth of single 
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cell organisms in evolutionary time scales12, 36. The 
role of energetic cost in cellular signaling systems 
has been implicated in previous studies12, 36–38. 
Apart from cellular signaling, the similar 
consideration in shaping the rates in reaction 
networks was investigated for error proof reading 
in translation39, as well as in copying biochemical 
systems40. 
 
In this study, we primarily used accuracy to 
determine the performance of the signaling system. 
The accuracy is defined as the fisher information at 
a particular input12,13 The conventionally used 
mutual information4, 9 shows similar results. The 
choice of accuracy is contingent on the fact that the 
accuracy can be quantified at a particular input, 
where as the mutual information can only be 
defined for a set of inputs. Since, energy 
consumption changes with the input, the individual 
efficiency defined here can only be calculated at a 
particular input and then taking average over all 
the inputs. Additionally, the fisher information 
naturally arises in connecting the power 
consumption to the accuracy using linear response 
theory discussed here25, 41, 42. In fact, a strong 
connection between mutual and fisher information 
has already already been established 
mathematically5. One of our conclusions that the 
trade-off would tune the reaction rates to lower 
values compared to the case when only information 
is considered and that conclusion is quite intuitive. 
But, the surprise comes into the multi parameter 
optimization case. When, one of the parameter is 
kept fixed (say alpha1) and other parameter value 
is increased an optimum value is obtained even in 
case of only information, on the other hand if we 
consider the power-information trade-off we get a 
lower optimum value for the parameter is obtained. 
This conclusion is completely intuitive. However, the 
surprise arises in two dimension when both 

parameters (α and β ) are tuned simultaneously, the 

information does not show any extreme, it keeps on 
increasing as both the parameters are increased , 
but the efficiency clearly show optimum values in 
two dimension when both parameters are tuned. So, 
from a evolutionary point of view if only the 
information is considered as the fitness the 
parameters would not be optimized, the parameter 
values would take maximum possible values based 
on the physical limit. Whereas, the consideration of 
power consumption would allow navigation to the 
optimum values indicated by the maxima of the hill. 
For this particular signaling pathway the estimation 
of the pheromone concentration is crucial for mating 
decision which make accuracy a natural choice for 
evolution to act on. However, we need to be careful 

applying the principle in general cases. It may 
happen that the primary aim of the signaling system 
may not be estimating the concentration of the input, 
but rather estimating the category of the input. Thus, 
the determining fitness factor must be chosen with 
care. Finally, the analysis should be extensively 
performed in multiple dimension. As we have 
illustrated the parameter values may display 
optimum in 1 dimension but not 2 dimensions. 
Similarly, optimum obtained in 2 dimensions may 
not be observed in higher dimension. 
 

Conclusion 
We conclude by positing that our study is able to 
demonstrate the importance of the energy accuracy 
trade-off. Despite the fact the simulation can 
capture the estimated reaction rates close to the 
optimum value, they are not exactly the same. The 
optimum value also depends on the range of the 
pheromone concentrations on which the analysis is 
performed. It is possible that we exactly don’t know 
the range of the pheromone concentrations the cells 
encounter in the natural environment and the 
pathway reaction rates would cater to the natural 
environment. Additionally, the parameter values 
are estimated through the gene expression output 
rather than directly at the phosphorylation level 
output which will, to some extent, obscure 
parameter estimation at the upstream level. The 
main aim of the study was targeted at 
understanding one universal design principle of a 
signaling pathway. In general MAPK cascade is a 
widely used signaling system in all eukaryotic 
organisms and the scope of the study can be 
extended to other organisms as well to shed light 
on network design of signaling pathway which can 
plausibly enhance our capability to manipulate 
signaling networks for other purposed e.g. disease 
or, sensor design etc. 
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