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ABSTRACT

Globally, hypertension is the number one risk factor for death, affecting more
than 1 billion people. Hypertension is the result of the interactions among
genetics, epigenetics, environment, and lifestyle. The long-term regulation of
blood pressure rests on renal and non-renal mechanisms. The impaired renal
sodium handling in hypertension is caused by aberrant counter-regulatory
natriuretic/anti-natriuretic pathways. The sympathetic nervous and renin-
angiotensin systems are anti-natriuretic pathways. A counter-regulatory natriuretic
pathway is the renal dopaminergic system. Aberrant dopaminergic regulation
of renal sodium transport in hypertension is caused by a decrease in renal
dopamine synthesis and/or dysfunction of any of the 5 dopamine receptors
(D1R, D2R, D3R, D4R, & D5R). Normally, an increase in sodium intake increases
while a decrease in sodium intake decreases blood pressure, albeit transiently
until sodium balance is achieved. However, ~50 % of hypertensive and ~26% of
normotensive subjects have increased blood pressure on high sodium intake,
a case of salt sensitivity, while ~20 % have increased blood pressure on a low
sodium intake, a case of inverse salt sensitivity. Low and high sodium intakes are
associated with increased incidence of cardiovascular events/mortality. In humans
with inverse salt sensitivity, there is a linear relationship between the number of
single nucleotide polymorphisms in DRD2 (rs6276 and 6277) and decreased renal
D2R expression. The increase in blood pressure on a low sodium diet may be due
to increased activities of the renin-angiotensin and sympathetic nervous systems
that cannot be counteracted by D2R. Hypertension may be a cause or consequence
ofinflammation or oxidative stress. Deficient D2R function causes renal inflammation
independently of the increase in blood pressure. Subjects carrying DRD2 single
nucleotide polymorphisms have increased inflammation, mediated by decreased
regulation of the miR-217-Wnt5a-Ror2 pathway. The D2R, via paraoxonase2 and
sestrin2, maintains normal redox balance and blood pressure. In summary, the
D2R is important in the maintenance of normal blood pressure by regulating

renal sodium transport, vascular reactivity, inflammation, and redox balance.
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Introduction

Globally, hypertension is the number one risk
factor for death, affecting more than 1 billion
people. Hypertension is the 13th leading cause
of death in 2019" and the 12* leading cause
of death in the US in 20212, In 2019, essential
hypertension and hypertensive renal disease
were the 10" cause of deaths in non-Hispanic
blacks and non-Hispanic Asians, 13" in Hispanics,
and 14" in non-Hispanic whites®. Hypertension
increases the risk for cardiovascular and renal
diseases*®. Hypertension is the result of the
interactions among genetics, epigenetics,
environment, and lifestyle*'. Multiple genes
influence an individual's blood pressure'>?
and genetic risk scores for hypertension have

been calculated' 131617,

The long-term regulation of blood pressure
rests on non-renal and renal mechanisms'#?%
1. The impaired renal handling of sodium in
hypertension and salt sensitivity is caused by
aberrant counter-regulatory natriuretic/anti-
natriuretic pathways'?'0. The sympathetic
nervous system****4? and renin-angiotensin-
aldosterone system (RAAS)*¢%4 are anti-
natriuretic pathways. A counter-regulatory
natriuretic pathway is the renal dopaminergic
system, aberrations of which cause hypertension
22245464 |n this article we reviewed the role of
renal dopamine receptors, in particular the D2R,
in the maintenance of normal blood pressure
by regulating renal sodium transport, vascular
reactivity, inflammation, and redox balance.

Role of G protein-coupled receptor kinase
(GRK), GRK2, and GRK4 and dopamine in
hypertension.

Dopamine is synthesized by the kidney®*?,
specifically by the renal proximal tubule (RPT)*,

and therefore, aberrant renal dopaminergic
regulation of renal sodium transport in
hypertension may be caused by a decrease in
dopamine synthesis in the RPT?4¢and/or
dysfunction of any of the 5 dopamine receptor
subtypes (DiR, DR, D3R, D4R, & DsR)?2707¢,
Dysfunctions of D4R and D3R in hypertension
are caused by their desensitization, due to

71,77-79

increased GRK4 expression in rodents,

or GRK4 gene variants?*0892in humans. GRK2,

per se*%

, or by impairing D:R""7%% is also
involved in the pathogenesis of hypertension.
The D2R is regulated by GRK2, GRK3, GRKS5,
and GRKé7-1°". GRK4 is not in genome-wide
association studies and hypertension, maybe
because except for lllumina Human 1 M
beadchip, not all the GRK4 variants are in the

chips®.

Salt sensitivity and Inverse Salt Sensitivity
(ISS).

An increase in sodium intake usually increases
while a decrease in sodium intake usually

decreases blood
6,11,24,25,37,39,54,57,58,61,62,73,75,78,81,84,102-106

pressure®
However,
there are some humans whose blood pressures
increase with a low sodium intake'®'?! and
after acute waterloading'?. The hypertensive
effect of low sodium intake occurs in a minority
of the hypertensive (11-28%) and normotensive
(15-41%) human population, with an overall
10-20%"°.
prevalence of ISS is greater in those with
normal than high BMI""?. These would be the

individuals who would be prescribed anti-

prevalence of However, the

hypertensive treatment and advised to decrease
their sodium intake. In patients with ISS, their
blood pressure would increase. Thus, the need
to identify individuals with ISS, by genetic and
clinical testing. A low sodium intake can also
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be associated with increased incidence of
cardiovascular events''¢12112312 chronic kidney

116,125,126,127,128.129,130 in
I

disease®'%, or mortality
the presence or absence of vascular disease,
diabetes, or hypertension. The association
between low sodium intake and risk of
cardiovascular disease or death remains after
“extensive statistical adjustment for confounders
and extensive efforts to avoid reverse
causation™'”. ISS has also been reported to
occur in non-genetically modified rodents.
Sprague-Dawley rats with two kidneys'3#134
one kidney'>"3¢ fed a low salt diet (0.04% NaCl
or 0.004 +/-0.001 mEq sodium/gram body weight)

also developed hypertension. Nonetheless, the

or

existence of ISS continues to be disputed'’-'%.
The increased mortality with low sodium intake
can be counteracted by a high protein intake'?.

D2R salt sensitivity and ISS

In mammals, there are two D2R isoforms,
DRD2 short, DRD2 long, the former is mainly
presynaptic while the latter is mainly post-
synaptic'*''. There are three D2R isoforms in

teleosts’. The renal D2R isoform is the DRD2

145

long™>. DRDZ2 variants are associated with

hypertension®> 146148,

Germline deletion in the kidney of aromatic
amino acid decarboxylase which synthesizes
dopamine® or any of the dopamine receptor

22,54,55,70,73,74,76,150,151I inc|uding

subtype genes
Drd255,149,151-155

hypertension'?. Renal-selective DrdZ silencing

causes salt-sensitive
using Drd2 siRNA also increases blood pressure,
but salt sensitivity was not tested’®'. The
D2R also regulates renal dopamine production;
renal aminoacid decarboxylase activity is
decreased in 20-30-week-old Drd2-/- mice'?.
Ozono et al reported that Drd2-/- mice fed
0.01% or 0.1% NaCl diet are normotensive,

but blood pressure also increased when fed 4%
NaCl diet, which was related to insufficient
increase in sodium excretion™?'3, The effect
of mouse strain on salt sensitivity has to be
taken into consideration. Ozono et al used
C57BI/6J x DBA/2J mice that were fed the diets
for 8 weeks, starting at 6 weeks of age™?',
C57/BIl/6J mice have high catechol-o-methyl
transferase activity whereas DBA/2J mice have
low catechol-o-methyl transferase activity''’,
DBA/2J mice have been reported to develop
salt-sensitive hypertension when they are fed
a low magnesium diet™®. C57BI/6J mice may ™16
or may not''"**have salt-sensitive hypertension,
which may be strain-dependent’®. It is also
possible that age is a factor involved in ISS; in
humans, younger than older individuals are
more likely to have ISS while the converse is
true for salt sensitivity'?'%. Indeed, the ISS of
blood pressure (increase in blood pressure on
low salt diet and decrease in blood pressure
on high salt diet) in Sprague-Dawley rats was
manifested as early as 6 weeks of age'. The
blood pressure of Drd2” mice can be
influenced by sodium intake; high NaCl intake
increases blood pressure that is normalized by
a normal NaCl intake but increased again by
a low sodium intake, a case of both salt
sensitivity and [SST6¢171,

There is a linear relationship between the
number of single nucleotide polymorphisms
(SNPs) in the DRD2 (rs6276 and 6277), and
decreased expression in urine-derived renal
proximal tubule cells in humans with [SS,
suggesting the involvement of DRD2V0171,
The D2R negatively interacts with angiotensin
type 1 receptor (AT1R) in several tissues'’?'73,
other than the kidney, which may be related
to D2R and AT1R heterodimerization, at least
in the rat striatum'3, The D2R also negatively
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interacts with AT1R in the kidney'’4, e.g., renal
prOXimal tUbU|e149’155’175. DopamineS4,62,64,174—1SOI
via D1 R62,63,181—183I D3R73,184—187I D4R74,186,‘|88’ and
D5R7576136137 - 3lso interact with the renin-
angiotensin system in the kidney. DRD2 gene
variants that decrease D2R expression and/or
function impair the ability of the D2R to
impede AT1R function and probably the a1-
adrenergic receptor function®, as seen in
Sprague-Dawley rats which have ISS™3%'3%, The
hypertension in Drd2” mice on normal sodium
diet (0.6% NaCl) is due to increased activity of
the sympathetic nervous system™"'® but not
the renin-angiotensin system'™'. However, in
rats fed a low sodium diet, the increase in
blood pressure may not™* or may be due to
an increase in the renin-angiotensin
system®3132134135 and sympathetic activities**'*?,
including an increase in renal nerve activity
and norepinephrine content'®*, but the genes

involved in this process are not known.
D2R, inflammation, and oxidative stress

Dopamine and all its receptors in the kidney,
as related to their role in maintaining normal
blood pressure, also involves their ability to

inflammation189-191

regulate and prevent
oxidative stress'?”?. However, oxidative stress
can also cause dopamine receptor, e.g., D1R,
dysfunction. Excessive stimulation of the
D2-like but not D1-like receptors can also
increase the production of reactive oxygen
species'™. High concentrations of dopamine
(50-500 uM), via D2R can cause death of brain
blood

lymphocytes that has been related to increased

striatal neurons and peripheral
production of reactive oxygen species'”'%.
Low concentrations of dopamine (1-1000 nM)
can also increase the production of reactive

oxygen species in the mitochondria of opossum

kidney cells'”. However, a low concentration
of dopamine (1 uM), via D1-like receptors, can
also decrease the production of reactive
blood
lymphocytes'?. Pharmacological studies have
shown that D2-like receptors, D2R'%198202,
D3R198200203206 3 df D4R2WO20720% are protective

of neurons, oligodendrocytes, mesencephalic

oxygen species in  peripheral

cells, retina, vascular endothelial cells, and
mouse, rat, and human renal proximal tubule

cells against oxidative stress.

The DZR keeps the blood pressure in the
normal range™""> in part by regulating renal
inflammation’>, renal production of reactive
oxygen species™, and renal sodium
handling™?. Germline deletion of Drd2 in mice
results in enhanced vascular reactivity to a -
adrenergic and ETB receptors but not to
AT1R?'9 but this is different from studies that
have reported D2R and AT1R interaction in
the kidney (renal proximal tubule cells',
kidneys from obese rats'’* or kidneys after
renal denervation') and other tissues, such
as the ventricular myocytes”? and brain
striatum'32"" Germline deletion of Drd2 in
mice also causes reactive oxygen species-
dependent hypertension'™*. The renal-selective
silencing of Drd2 by the renal subcapsular
infusion of Drd2 siRNA into the left kidney but
not the right kidney in 8-10-week-old C57Bl/6J
mice increased systolic and diastolic blood
pressures’®. The left renal-selective silencing of
DrdZ2 in right nephrectomized mice by the left
ureteral infusion of AAV-9 carrying Drd2 siRNA
also increased their blood pressures. The lack of
Drd2in the kidneys of these mice was associated
with increased expression of proinflammatory
and profibrotic factors and serum creatinine.
The increased blood pressure and renal

proinflammatory and pro-fibrotic factors were
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mitigated or normalized by the rescue of Drd2
with the retrograde ureteral infusion of AAV-9
virus carrying the normal Drd2. However, the
role of oxidative stress in these experiments

was not determined.

Oxidative stress has been shown to be
important  in  the  pathogenesis  of
hypertension?'>?", This occurs when there is
an imbalance in the production and quenching
of reactive oxygen species. Reactive oxygen
species are generated by the activity of
NADPH oxidase, cyclooxygenases, xanthine
oxidases, lipogenesis, iron-catalyzed Fenton
reaction, and nitric oxide synthases?'*. NADPH
oxidase is responsible for about half of the
production of reactive oxygen species and the
mitochondria is responsible for the remaining
half, at least in the kidney?®. It should be
recognized, however, that normal generation
of reactive oxygen species is important in

cellular signal transduction?'?.

As aforementioned, germline deletion of

Drd2 in mice causes reactive oxygen species-

dependent hypertension™*. The D2R keeps
reactive oxygen species in “normal” state by
increasing the activity of anti-oxidant enzymes,
e.g., DJ-17¢, paraoxonase 22/, and sestrin®'® and
decreasing the activity of oxidant enzymes,
i.e., NADPH oxidases''?'¢?"" (Figure). There
are seven NADPH oxidase homologs, four (Nox1,
Nox 2, Nox4, and Nox5) are expressed in the
vasculature and the kidney?'???2; they are the
major sources of reactive oxygen species????'.
Nox5 may be responsible for the oxidative
stress in renal proximal tubules in human
essential hypertension??. The neuroprotective
effect of D2R has been reported to be related
to DJ-1 (aka Park 7)?'¢. The D2R normally
regulates DJ-1 expression in renal proximal
tubules cells?’®. The ability of D2R to regulate
the production of reactive oxygen species is
related, in part, to an increase in DJ-1
expression. Renal-selective silencing of Dj-1 in
mice increases Nox4 expression and NADPH
oxidase activity, production of reactive oxygen
species, and blood pressure.

Figure 1
D,R
Activati(!n of D,R D;R SNPI5= rs6276,
| rs6277, and rs800497
r | l ] miR-217
¢ PON2 p-Akt
ALDO HO-2 DJ-1 Wnt5a-Ror2
E Scstlrinz NF-kB
v ,l, TGF-1
i
v

__________________________ > NADPH ‘oxidases

Normal ROL production

Normal blood pressure

Schematic representation of the role of renal D2R on the regulation of oxidative stress. The broken

lines indicate inhibitory effects, whereas the solid lines indicate stimulatory effects. ALDO, aldosterone;

D2R, dopamine D2 receptor; HO-2, heme oxygenase-2; NF-kB, nuclear factor-kB; NRF2=nuclear factor

Medical Research Archives | https://esmed.org/MRA/index.php/mra/article/view/5051 5



https://esmed.org/MRA/mra

Medical
Research
Archives

The Role of Dopamine D2 receptors and Oxidative Stress in the Pathogenesis of Hypertension

erythroid factor 2-related factor 2; rs=reference SNP; SNP=single nuclectide polymorphism, SOD=superoxide
dismutase, TGF-B1, transforming growth factor-beta 1 (adapted from Yang J, Villar VAM, Jose PA, et al.

Renal Dopamine Receptors and Oxidative Stress: Role in Hypertension. Antioxid Redox Signal. 2021;

34(9):716-735. doi: 10.1089/ars.2020.8106).

The nuclear factor erythroid factor 2-related
factor 2 (Nrf2), which by itself does not have

antioxidative function?®

, participates in the
defense against oxidative stress in many
tissues, including the kidney?*?% by regulating
the expression of several antioxidant genes??,
including NO??. Nrf2 is downstream of D2R
and DJ-1202228230 1 J-1 is regulated by D2R%0,
DJ-1 induces superoxide dismutase 2 (SOD2)
expression in the kidney?”. SOD may be
downstream of Nrf2?'¢, SOD inhibits NADPH
oxidase 5 in human renal proximal tubule
cells, the expression of which is increased in
hypertension??. In addition, germline deletion
of Drd2 in mice increases the expression of
Nox1, Nox2, and Nox4™*. Germline deletion
of Drd2 in mice increases blood pressure’™!1°
that is salt-sensitive'™?'%3, This may be related
in part to the lack of impairment in the
suppression of aldosterone secretion when
D2R expression/function is impaired™*; D2R is
expressed in the adrenal zona glomerulosa®!
and germline deletion of Drd2 increases
aldosterone production™. Aldosterone secretion
in humans can be negatively regulated by D2R
agonists and DRDZ2 expression the adrenal
cortex is decreased in aldosterone-producing
adenoma®'#?  Aldosterone stimulates the
production of reactive oxygen species by
stimulating NADPH oxidase activity?®*. An
aldosterone antagonist,  spironolactone
normalized the blood pressure and the
production of reactive oxygen species but did
not affect Drd2 expression in D27 or D2**
mice, indicating that the aldosterone effect is

downstream of D2R"4.

Monoamine oxidase which catalyzes the
degradation of dopamine to homovanillic acid®*
can also increase the production of reactive
oxygen species™ but not affected by dopamine
receptors in the kidney?*. Thus, dopamine can
also induce oxidative stress, involving H202
produced by monoamine oxidase?”’. However,
a reduction of dopamine catabolism by
suppression of monoamine oxidase B which
increases dopamine levels increases the activity
of D2R and decreases the deleterious effects
of reactive oxygen species®. Nitric oxide
synthase activity can also be regulated by
D2R%72%0 Oxidative stress and nitric oxide
deficiency have been linked to the pathogenesis
of hypertension®'. These pharmacological and
rodent genetic studies related to the D2R have
human relevance because as aforementioned,
variants of DRDZ2 are associated with human

essential hypertension®>146-148,

D2R SNPS and miR-217 pathway

Synonymous mutations in the human dopamine
receptor D2 (DRD2) affect mRNA stability and
synthesis of the receptor?”?. Several common
single nucleotide polymorphisms (SNPs) of
DRDZ2 are associated with decreased D.R
expression/function, increased vulnerability to
renal inflammation and injury®. DRD2 rs6276,
rs6277,and rs180047 (Tag1) are associated with
increased blood pressure and hypertension®*,
DRDZ2 rs7952106 and miR4301, that reside in
an intron of DRD2 and can negatively regulate
DRD2 expression?®3, are associated with
increased systolic blood pressure in children

with sickle cell disease?42%,
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D2R positively regulates the expression of
miR-217; subjects carrying DRD2 SNPs that
decrease D2R expression have increased
inflammation (TGFB1) that is related to
decreased regulation of the miR-217-Wnt5a-
Ror2 pathway. In the kidney, miR-217-5 mimic
decreases the expression of TGFB1%%. In
macrophages, miR-217 impairs activated STAT-
1-induced inflammation and oxidative stress
caused by smog-induced acute lung injury?¥’
and intestinal damage, related to oxidative
stress in ducklings?®. However, there are organ
specific effects. For example, in the brain,
miR-217 may increase inflammation and
oxidative stress?”’. In septic lung injury, miR-
217 also aggravates inflammation and oxidative

stress?™,

Conclusion

Normally, an increase in sodium intake
increases while a decrease in sodium intake
decreases blood pressure, albeit transiently
until sodium balance is achieved. However, ~50
% of hypertensive and ~26% of normotensive
subjects have increased blood pressure on
high sodium intake, a case of salt sensitivity,
while ~20 % have increased blood pressure
on a low sodium intake, a case of ISS. These
would be

individuals prescribed  anti-

hypertensive treatment and advised to
decrease their sodium intake. However, in
patients with ISS, their blood pressure would
increase. Thus, the need to identify individuals
with ISS, by genetic and clinical testing. In
humans with ISS, there is a linear relationship
between the number of SNPs in DRD2 (rs6276
and 6277) and decreased renal D2R expression.
The increase in blood pressure in mice with

decreased expression of D2R, e.g., Drd2” mice,

on a low sodium diet may be due to an increase
in the renin-angiotensin system and sympathetic
activities. The ability of dopamine and all its
receptors in the kidney to maintain a normal
blood pressure also involves not only their
ability to increase sodium excretion but also to
regulate inflammation and prevent oxidative
stress. The D2R keeps blood pressure and
redox balance in the normal state by increasing
the activity of anti-oxidant enzymes, such as DJ-
1, paraoxonase 2, and sestrin2, and decreasing
the activity of antioxidant enzymes, such as
NADPH oxidase. Deficient D2R function can
cause renal inflammation independently of
high blood pressure. Subjects carrying DRD2
SNPs have increased inflammation that is
mediated by decreased regulation of the miR-
217-Wnt5a-Ror2 pathway. Thus, the D2R is
important in the maintenance of normal blood
pressure by regulating renal sodium transport,
vascular reactivity, inflammation, and reactive

oxygen species.
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