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ABSTRACT

Although it is known that APOE genotype is the strongest genetic risk
factor for late-onset Alzheimer’s disease, development is a multifactorial
process. Alcohol use is a contributor to the epidemic of Alzheimer’s
disease and related dementias in the US and globally, yet mechanisms
are not fully understood. Carriers of the APOE & allele show elevated risk
of dementia in relation to several lifestyle factors, including alcohol use.
In this review, we describe how alcohol interacts with APOE genotype and
aging with potential implications for Alzheimer’s disease promotion. Age-
related immune senescence and “inflammaging” (i.e., low-grade
inflammation associated with aging) are increasingly recognized as
contributors to age-related disease. We focus on three immune pathways
that are likely contributors to Alzheimer’s disease development, centering
on alcohol and APOE genotype interactions, specifically: 1) microbial
translocation and immune activation, 2) the senescence associated
secretory phenotype, and 3) neuroinflammation. First, microbial
translocation, the unphysiological movement of gut products into
systemic circulation, elicits a proinflammatory response and increases with
aging, with proposed links to Alzheimer's disease. Second, the
senescence associated secretory phenotype is a set of intercellular
signaling factors, e.g., proinflammatory cytokines and chemokines,
growth regulators, and proteases, that drives cellular aging when
senescent cells remain metabolically active. The senescence associated
secretory phenotype can drive development of aging-diseases such as
Alzheimer’s disease. Third, neuroinflammation occurs via numerous
mechanisms such as microglial activation and is gaining recognition as an
etiological factor in the development of Alzheimer’s disease. This review
focuses on interactions of alcohol with APOE genotype and aging along
these three pathways that may promote Alzheimer’s disease. Further
research on these processes may inform development of strategies to
prevent onset and progression of Alzheimer's disease and to delay

associated cognitive decline.

Keywords: alcohol, heavy drinking, moderate drinking, Alzheimer’s
disease, APOE genotype, immune system, neuroinflammation, microbial

translocation, senescence associated secretory phenotype

© 2024 European Society of Medicine 1


https://doi.org/10.18103/mra.v12i8.5228
https://doi.org/10.18103/mra.v12i8.5228
https://doi.org/10.18103/mra.v12i8.5228
https://doi.org/10.18103/mra.v12i8.5228

l. Introduction

Alcohol use is a likely contributor to the epidemic
of Alzheimer's disease (AD) and related dementias
in the US and globally. In the US, 6.7 million people
are living with AD, including 1 in 9 adults over age
65". Dominantly inherited (or “early onset”) AD is
caused by rare mutations and represents <1% of
AD cases. The late-onset form of AD represents the
vast majority of cases. The APOE gene is the
strongest risk factor for late-onset AD**. Humans
possess two copies of APOE. Allelic variants €2, €3,
and & occur at frequencies of ~8%, 78%, and 14%,
respectively’. Having one or two & alleles increases
AD risk by 3 or 15 times, respectively*”. The &4
allele occurs at a disproportionately high frequency
in AD cases (~40%)*. The APOE €4 allele also is
associated with cognitive decline in non-demented
individuals during mid-to-late life®. In practice,
population-based research often compares €4
carriers (3/ &, &/ &) versus non-carriers due to low
rates of & homozygotes (~1-4%).

Despite vast research strides, the cause of late-
onset AD remains unknown. The amyloid cascade
model posited that deposition of amyloid-p in the
brain causes development of AD’. Recently, this
model has been expanded to incorporate
microbial seeding of the brain and chronic
neuroinflammation as possible causal factors®™°.
Innate immune mechanisms along the gut-brain
axis are emerging as key players in this process. In
particular, there are several immune pathways that
are affected by age and APOE and have known
neurobiological significance.

This  focused

contributions of alcohol to the development of

review examines  potential
late-onset AD, with an emphasis on interactions of
alcohol with aging and APOE genotype. We begin
by establishing a historical context for the
relationship between alcohol and AD. Next, we
discuss relevant models of alcohol’s interaction
with age and APOE genotype on three key immune
pathways that are likely contributors to AD
development, specifically: 1) microbial translocation

and immune activation, 2) the senescence

associated secretory phenotype (SASP), and 3)

neuroinflammation.

|. BACKGROUND AND CONTEXT ON ALCOHOL
USE IN RELATION TO ALZHEIMER'S DISEASE

In the United States, 55.3% of adults report any
alcohol use and 26.5% report binge drinking in the
past month''. Moreover, 72% of adults ages 45-64
and 55% of adults ages 65+ used alcohol in the
past year'?. Further, 11% of adults ages 45-64 and
4% of adults ages 65+ engage in high-risk drinking
(5+ for men, 4+ for women on a given day) at least
weekly'. High-risk drinking has increased 49% for
45-64 year olds and 65% in 65+ individuals in less
than two decades'?. Chronic heavy drinking puts
older adults at heightened risk for cognitive
decline, dementia, serious infections, frailty, falls,
hospitalization, and overall mortality’*?'. The
number of older adults in the US is expected to
nearly double by 2060??, yet understanding of
alcohol use and its effects during the age process

remains limited.

The association of alcohol use disorder with
dementia is substantial. A study conducted
nationwide in France found that alcohol use
disorder is associated with >3-fold increase in
dementia risk, stronger than the association of
smoking, obesity, hypertension, low education, or
depression?. Similarly, after adjusting for common
risk factors, an Australian population-based, case-
control study linked mid-life alcohol use disorder to
development of dementia®. Like the €4 allele,
heavy drinking is associated with faster AD onset®.
In fact, the reduction in time to AD onset for heavy
drinking, at 4 years, surpasses that of & carriage, at
2.7 years.” Individuals with alcohol use disorder
exhibit accelerated brain aging, with brain age

averaging 4 years older than chronological age®.

The effects of long-term, but non-disordered,
alcohol use are less unclear. This pattern is
representative of most US adults who consume
alcohol. Moderate drinking was long thought to
protect against age-related brain atrophy,
cognitive decline, and dementia. However, these

purported protective effects have come into
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question. A recent meta-analysis found that the
maximum protective effect of alcohol against
dementia is achieved at a modest dose of 6 g/day,
equivalent to half of one standard drink?. Notably,
many older studies defined “moderate” drinking
as 2-4 drinks per day?. There is growing awareness
of sampling biases in observational studies. A
systematic review found an association of light to
moderate alcohol use with lower risk of cognitive
decline or dementia®. Yet the review noted many
limitations of observational studies, including non-
standardization of alcohol use, lack of control for
confounds, misclassification of former drinkers,

exclusion of heavy drinkers, and survivor bias®.

Recent longitudinal studies suggest that moderate
drinking alcohol is harmful or at least not protective

14,30-33 FO r

for brain health and cognition in aging
example, accounting for abstainer bias, wherein
those who abstain have a greater burden of health
conditions independent of alcohol use, eliminated
the “J-shaped curve” and instead gave evidence
of a negative association between midlife alcohol
use and cognitive performance 25 years later®>. A
30-year prospective cohort study found no
protective effect of light or moderate drinking over
abstinence®. Instead, higher alcohol consumption
correlated with lower gray matter density,
hippocampal  atrophy, and white matter
degradation®?. Similarly, an MRI analysis of over
36,000 individuals in the UK Biobank detected a
negative association of alcohol use with gray and
and white matter

white matter volumes

microstructural indices at just 1-2 drinks per day™.

In summary, several decades of research studies
have asked, “Is moderate drinking protective

Figure 1. Schematic diagram of the model wherein alcohol interacts with aging and/or APOE genotype to promote AD development through specific pathways of
neuroinflammation, the SASP, and microbial translocation and related immune activation. Created by the author using Biorender.

against dementia?” The highly discrepant set of
answers to this question points to the importance
of methodological rigor and also suggests that
individual risk factors are at play. Perhaps a more
salient question is, “For which individuals does
alcohol use pose a potential risk factor for
dementia?”

This review examines aging and APOE genotype
as likely moderators of the effect of alcohol on
immunological and neurobiological mechanisms
linked to AD (Figure 1). Prior research gives reason
to posit interactions of alcohol with APOE on
pathways leading to development of AD. First,
APOE is known to moderate the association of
alcohol use with key health outcomes related to
AD, including coronary heart disease® and
cerebrovascular disease®. Second, €4 carriers have
a higher risk of dementia in relation to several
lifestyle factors, not limited to alcohol use but also
including physical inactivity, diet, and smoking®’.
Third, APOE €4 moderates the association of
alcohol with cognitive and neurobiological outcomes.
Prospective population-based studies report that
moderate or heavy alcohol use increases risk of
dementia in €4 carriers but not non-carriers® . For &
carriers (but not non-carriers), drinking at least once
per month at midlife was associated with an odds
ratio of 7.4 for dementia, relative to never
drinking®. Similarly, €4 carriers, but not non-
carriers, who consumed moderate alcohol in late
life showed cognitive decline*'. At the same time,
other studies have yielded contrary or null findings

for alcohol-APOE interactions on cognition*?43,

Neuroinflammation

Senescence associated

secretory phenotype AD
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(SASP) development
& Microbial
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Moreover, there is evidence for an alcohol-aging
interaction on AD development. Age-related
immune senescence and “inflammaging” (chronic
low-grade inflammation associated with aging) are
increasingly recognized as contributors to age-
related diseases**. Alcohol use disorder is a
risk factor for AD and

dementias?®??4¢, Even with moderate drinking, it is

recognized related

widely observed that alcohol affects older
individuals differently from younger individuals.
For example, acute moderate alcohol causes
greater disruptions to cognition and neural activity
in older adults**". Older age may present a
sensitive period during which alcohol exerts more
deleterious effects on key pathways, ultimately

promoting AD neuropathology.

Il. CANDIDATE MECHANISMS OF
ALCOHOL USE AS A CONTRIBUTOR
TO ALZHEIMER'S DISEASE

[ILA. MICROBIAL TRANSLOCATION AND IMMUNE
ACTIVATION

Alcohol impacts microbial translocation and
innate immune function: Alcohol consumption
can induce systemic inflammation through its
effects on the Gl tract and on circulating immune
cells. Alcohol use perturbs composition of the
intestinal microbiota and induces intestinal
hyperpermeability via disruption of tight junction
proteins®™>*. In turn, these effects lead to microbial
translocation, i.e., the unphysiological movement
of microbes from the gut into systemic

circulation®'°2, The concentration of

lipopolysaccharide (LPS) in plasma is used widely
as a marker of microbial translocation (see Table 1).
Also known as endotoxin, LPS is a component of
cell walls of Gram-negative bacteria and a ligand
for the innate immune receptor, toll-like receptor 4
(TLR4)*. Binding of LPS to TLR4 on monocytes or
macrophages initiates a proinflammatory immune
cascade. Two accessory proteins necessary for
binding of LPS to TLR4 are LPS binding protein
(LBP) and soluble cluster of differentiation 14
(sCD14)>**’". Both LBP and sCD14 are upregulated
as part of the acute phase response. Recognition
of LPS by TLR4 stimulates monocytes and
macrophages to  secrete  pro-inflammatory
cytokines and chemokines, including tumor necrosis
factor-a  (TNF-a), monocyte chemoattractant

protein-1 (MCP-1), and interleukin-6 (IL-6)>%".

Consistent with the premise that heavy drinking
causes microbial translocation, individuals with
alcohol use disorder or heavy drinking exhibit
chronic elevations in LPS, LBP, sCD14, and pro-
inflammatory cytokines®®*’. These elevations tend
to remediate  within  weeks of alcohol
cessation®®"¢8 Whereas alcohol’s gastrointestinal
effects are most marked with chronic heavy use,
experimental studies in humans have shown that a
single binge-level dose can cause intestinal
damage and/or microbial translocation in healthy
humans’®’". For example, a dose that raised blood
alcohol level (BAL) to approximately .09 g/dL
caused increases in LPS, LBP, and sCD14 at 30
minutes through 24 hours™. Thus, alcohol activates
a pro-inflammatory cascade through pathways

mediated by the gut and innate immune cells.

Table 1: Biomarkers of microbial translocation and immune function

Effect of chronic
Immune pathway/process
heavy alcohol
Lipopolysaccharide (LPS) Microbial translocation N
LPS binding protein (LBP) Immune response to LPS A
Soluble CD14 (sCD14) Monocyte activation N
Cytokines/chemokines (TNF-a, MCP-1, IL-6) | Pro-inflammatory signaling A
Effects of alcohol on these pathways are dose- actually  reduce  pro-inflammatory  cytokine

dependent: Alcohol at moderate doses may

production, according to in vitro human cell studies

© 2024 European Society of Medicine 4



and rodent models”?. Moderate alcohol in healthy
organisms may stimulate immune response,
thereby increasing microbial clearance’”. Although
dose comparison studies in humans are lacking, a
simian model of moderate vs. heavy drinking found
that moderate doses upregulated transcription and
activation of metabolic and immune signaling
genes, including APOE’*. In contrast, heavy alcohol
elicited a resting pro-inflammatory state paired
with suppressed response to an acute immune

insult (i.e., LPS stimulation)’*.

APOE genotype moderates innate immune
response: Rates of AD are elevated 3 times in
heterozygous € 4 carriers and 15 times in
homozygous € 4 carriers®”. However, the ubiquity
of apolipoprotein E (apoE), encoded by the APOE
gene, throughout the body has made it difficult to
pinpoint mechanisms by which it leads to AD
through

development. One possibility s

interactions  with  the  immune  system.
Apolipoproteins support innate immune response
to microbial pathogens such as LPS. Immune
response to insults such as systemic LPS may be
dysregulated in APOE € 4 carriers in ways that
ultimately =~ promote ~ AD  neuropathology.
Apolipoprotein  dynamics appear to play a
determining role in the differential innate immune
responses observed between € 4 carriers and non-
carriers, in that different APOE genotypes exhibit
differential capacity for apoE production and LPS
neutralization”>®. In clinical research, chronic low-
grade inflammation increased risk and hastened
onset of AD in € 4 carriers, but not non-carriers®’. It
is speculative that response to alcohol is shifted
toward pro-inflammatory signaling in € 4 carriers,
thereby blocking the anti-inflammatory effects of
moderate alcohol and increasing risk for AD.
Consistent with this premise, alcohol use was
positively associated with inflammatory cytokine IL-

6 in APOE € 4 carriers, but not in non-carriers®.

Aging is associated with microbial translocation:
In animal models, aging causes alterations in the
gut microbiota and intestinal barrier permeability
that lead to higher plasma LPS, LBP, and sCD14

levels, indicative of microbial translocation®-8. |

n
older but not younger rats, LPS exposure led to
liver inflammation, pointing to age-related
vulnerability to sequela of microbial translocation®’.
In human observational studies, LBP is higher with
age, particularly in those with metabolic syndrome

and poorer physical functioning® .

Similarly,
sCD14 predicts cardiovascular disease risk and all-
cause mortality in older adults”. Age-related
microbial translocation is a probable source of the

chronic low-level inflammation observed in aging”.

Biomarkers of microbial translocation and
immune function are linked to Alzheimer's
disease development: Biomarkers in Table 1 are
relevant to development of AD. Plasma LPS is
elevated in individuals with AD compared to
controls™. A study comparing gut microbiota
composition in individuals with AD and controls
found significant microbiota alterations in AD that
were associated with cerebrospinal fluid (CSF)
markers of amyloid and tau burden”. Higher gut
levels of pathogenic Gram-negative bacteria may
contribute to elevated plasma LPS in AD™.
Whereas it was previously believed that LPS does
not cross from periphery into brain under
physiological conditions, a novel immunoassay
study in rodents recently showed that LPS does
enter the brain via lipoprotein transport mechanisms”.
Further, recent human studies have identified
elevated LPS levels in postmortem brain tissue,
including cortex and hippocampus, of individuals
with AD®%, These findings suggest that systemic
LPS has significance for the development of AD.

Both LBP and sCD14 are significant due to their
role as acute phase proteins that reflect immune
response to LPS and are emerging as predictors of
AD development. In community-dwelling adults
over a 12-year period, LBP at baseline predicted
AD development, with a one-unit standard
deviation elevation in LBP associated with 33%
higher odds of AD”. In the Framingham Heart
Study cohort, a one-unit standard deviation
elevation in sCD14 was linked to a 12% higher risk
of incident dementia over a 10-year period™.

© 2024 European Society of Medicine 5



Similarly, cytokines TNF-a and IL-6 and chemokine
MCP-1 are important markers of chronic inflammation
in the context of AD development. Studies comparing
these cytokines in AD and healthy individuals
report variable results. A meta-analysis concluded
that TNF-a and IL-6 did not differ significantly in
cross-sectional comparisons of AD and healthy
controls”. However, other studies suggest a
prospective association of these cytokines with
development of dementia. A meta-analysis of
prospective studies found that elevated IL-6 was
associated with 1.42 times the odds of cognitive
decline’®. In a community-based study, individuals
who developed incident dementia during a 2-year
follow-up had significantly higher TNF-a'".
Chemokine MCP-1 is elevated in AD and correlates
with severity of cognitive impairment'®'%, |t also
predicted cognitive decline over a 2-year period in
individuals with AD'%2,

[1.B. THE SENESCENCE ASSOCIATED SECRETORY
PHENOTYPE

The senescence associated secretory phenotype
(SASP) is an index of cellular aging: Cellular
aging manifests in secretion of a set of intercellular
signaling factors, e.g., proinflammatory cytokines
and chemokines, growth regulators, and
proteases, known as the SASP'*'%. Cellular
senescence is induced by a wide range of
intracellular and extracellular stressors known to
arrest cell growth and proliferation, which serves to
target potential malignancies'®. The SASP develops
when senescent cells remain metabolically active,
secreting a wide range of interleukins, chemokines,
growth factors, proteases, and extracellular matrix
components'®. Although the SASP likely evolved
as a tumor suppressive mechanism, the
accumulation of cells with this phenotype over time
and with age can itself drive disease'™'”. The
SASP is one of many candidate indices of
biological aging'®. One caveat is that SASP
biomarkers, including cytokines and chemokines

discussed here, are not specific to aging'®.

Cellular senescence drives aging at the organismal

level: The mechanisms that translate cellular

senescence into decline of physical condition are
an area of active scientific investigation. One such
mechanism is “inflammaging,” or chronic, low-

44,45

level, sterile inflammation**>. Possible causes of

inflammaging  include accumulated  cellular
damage, microbial translocation, senescence of
the immune system, and the SASP itself*4>1% The
accumulation of metabolically active senescent
cells expressing the SASP has pro-inflammatory
effects on surrounding cells and tissue. Core
elements of the SASP, including IL-6, IL-8, MCP-1,
and TNF-a, are strongly linked to other indices of
biological aging across clinical studies'”""’. To the
extent that lifestyle factors such as poor diet and
inactivity =~ promote  chronic  inflammation,
inflammaging may best be considered both a
cause and a consequence of age-related physical
decline®. Clinical research directly linking APOE
genotype to the SASP is limited at present.
However, preclinical evidence indicates that
ApoE4 promotes development of senescence in

neurons''®,

Alcohol may exacerbate SASP mechanisms:
Alcohol is a potential driver of inflammaging in
older individuals and APOE € 4 carriers. Previous
studies have investigated acute or chronic effects
of alcohol on cytokines and chemokines that are
markers of the SASP. Cytokines IL-6 and TNF-a and
chemokines IL-8 and MCP-1 are core components
of the SASPT0>107.119.120 that also show effects of
acute alcohol exposure in numerous research
studies®” 121124 Alcohol-induced changes in these
markers may be due to alcohol’s activation of
transcription factors, particularly nuclear factor
kappa light chain enhancer of B cells (NF-kB) and
release of nuclear proteins such as high-mobility
group box 1 (HMGB1)'%"%°, Signaling via NF-xB
and HMGB1 pathways drives SASP expression'?' 132,
Alcohol affects levels of many cytokines and
of which are SASP

components. However, studies showing reduced

chemokines, not all

telomere length, accelerated DNA methylation
aging, and induction of SASP in relation to heavy
alcohol use support the premise that alcohol may

promote cellular aging and senescence’*'%.

© 2024 European Society of Medicine 6



[I.C. NEUROINFLAMMATION

Neuroinflammation contributes to Alzheimer’s
disease development: The traditional amyloid
cascade hypothesis has evolved to incorporate
microbial seeding of the brain and chronic
neuroinflammation as etiological factors in
development of AD®™. In the brain, ApoE is
synthesized as a primary apolipoprotein™®. As
noted above, ApoE participates in removing
amyloid-B from brain, and the ApoE4 isoform is
less competent at amyloid-B clearance™. In
addition, € 4 carriage is associated with greater
pro-inflammatory response in the brain’s glial cells
and reduced capacity for neuroprotective
functions'''¥2. Mechanisms by which ApoE4
contributes to neuroinflammation in AD are

reviewed in detail elsewhere'®,

Until recently, it was believed that the brain was a
sterile environment not directly vulnerable to
microbial stimuli such as LPS. However, a recent
study showed that LPS is present in rat brain under
physiological conditions™, suggesting that there is
movement of microbial products from the
periphery into the CNS in the absence of disease.
Even without penetrating the blood-brain barrier,
systemic LPS induces pro-inflammatory CNS

response'*

. Consequently, LPS-induced inflammation,
both systemic and in the CNS, is gaining attention
as a possible contributor to AD development'*. In
addition to stimulating pro-inflammatory response
in glial cells, LPS prevents clearance of amyloid-f
from the brain™. In AD, LPS colocalizes with
amyloid plaques, and LPS levels are greatly
elevated in the cortex and hippocampus of
postmortem AD brains, relative to healthy aged
adults®??. In sum, neuroinflammation related to
pathogenic stimuli such as LPS is central to

evolving understanding of AD.

(MRS)
detects neurometabolic perturbations related to

Magnetic resonance spectroscopy

AD  development: Neural correlates  of

neuroinflammation can be measured noninvasively
using MRS. At present, there is no direct method
non-invasively

to  safely  and measure

neuroinflammation in living humans. However,
MRS is a powerful, widely available, and
reproducible imaging method that detects subtle
differences in concentrations of brain metabolites.
Elevated choline and myo-inositol and lower N-
acetyl-aspartate (NAA) levels are consistently
found in neuroinflammatory diseases'®. Choline is
a marker of cellular membrane turnover'. Myo-
inositol, sometimes referred to as a glial marker, is
more accurately described as a part of second
messenger systems and an osmotic regulator'’.
Choline and myo-inositol often are elevated in
neuroinflammatory  and neurodegenerative
conditions. A marker of neuronal density and
viability, NAA typically is decreased in disease.
Derangement of any of these metabolite systems
has implications for brain health in aging.

Age-related neuroinflammation has its roots in
microglial activation, and it primes the brain to
produce a stronger response to internal and
external stressors and inflammatory stimuli'®™",
Human MRS

neurometabolic changes with deteriorations in

studies  link  age-related
cognition and physical health™*™¢. Older age is
linked to higher levels of myo-inositol and choline
in various brain regions'™"'%*. This pattern has been
interpreted as glial proliferation, glial activation,

turnove r1 57-162,164

and/or increased  cellular
Similarly, studies consistently link older age with
(NAA), which is
interpreted as indicating decreased neuronal
volume and/or density™” %1% The NAA/myo-

inositol ratio also is relevant to age-related

lower  N-acetyl-aspartate

neuropathology and cognitive decline'®?1531¢,

Neurometabolic alterations are implicated in AD
and predict its development: Elevated choline
and myo-inositol and reduced NAA consistently
are implicated in AD. A recent meta-analysis of
MRS studies comparing AD to control groups
concluded that AD groups exhibited significantly
lower NAA/Cr and higher choline/Cr, myo-
inositol/Cr, and myo-inositol/NAA ratios in
posterior cingulate and parietal cortex'®. [Metabolites

often are reported as ratios to creatine (Cr),

© 2024 European Society of Medicine 7



although the field is moving away from this
convention due to the potential for confounding
when Cr is not stable®’]. Meta-analytic effects sizes
were medium to large’™. In addition, MRS has
been used in cognitively healthy samples to detect
neurometabolic perturbations associated with €
4genotype and preclinical AD pathology. One
MRS study compared cognitively normal individuals
with and without abnormal CSF levels of AB42, an
established marker of AD pathology'. Those with
abnormal AB42 had higher myo-inositol/Cr in
precuneus and posterior cingulate cortex'*. Among
cognitively normal AB42-negative individuals,
APOE ¢ 4 carriers had higher myo-inositol/Cr than
non-carriers™®. In a study of cognitively healthy
older individuals, higher myo-inositol/Cr and
choline/Cr were associated with amyloid-p deposition

on positron emission tomography (PET).™

A prospective longitudinal study with 7-year
follow-up quantified NAA/Cr, myo-inositol/Cr, and
NAA/myo-inositol in 289 cognitively normal
individuals with mean age 752 Those who went
on to develop AD seven years later already had
lower NAA/Cr, higher myo-inositol/Cr, and lower
NAA/myo-inositol at baseline, compared to those
who remained cognitively normal™?.  Baseline
NAA/myo-inositol differentiated participants who
did versus did not develop AD with high specificity

2 Also, € 4 homozygotes had

and sensitivity
higher myo-inositol/Cr and lower NAA/myo-
inositol compared to non-carriers™?.  Another
longitudinal study followed cognitively healthy
older adults for an average of 2.8 years, reporting
that lower NAA/myo-inositol at baseline predicted
transition to mild cognitive impairment at follow-
up™>. In the same cohort, lower NAA/myo-inositol
and higher myo-inositol/Cr at baseline predicted
greater accumulation of amyloid-B on PET'™®.
Together, the findings point to alterations in myo-
inositol, choline, and NAA/myo-inositol as a risk

factor for AD development.

Alcohol, acute or chronic, affects neurometabolic
pathways implicated in AD: Alcohol affects
neurotransmitter

multiple systems and

neurometabolites. As with the immune system,
alcohol’s effects on neurometabolism greatly
depend on dose, timecourse, and chronicity of
alcohol consumption. In MRS studies of chronic
heavy drinkers, the most consistent finding is lower
NAA during early abstinence from alcohol'®. In
observational studies of moderate to heavy
drinkers who are abstinent at the time of imaging,
quantity of recent alcohol consumption correlates
with  higher choline levels, suggesting a
neuroinflammatory response’'”'. A recent meta-
analysis of observational MRS studies reported
lower NAA, choline, and GABA in chronic heavy
drinkers relative to controls’?. Meta-analytic
findings were nonsignificant for myo-inositol'2. In
regard to acute alcohol effects, a handful of MRS
studies have found significant changes in changes
in NAA, choline, and myo-inositol concentrations
during ascending, peak, and descending blood
alcohol (~.05-.07)"*"7%, Findings were mixed, likely
due to differences in route of administration (oral
vs. intravenous), brain regions of interest, and time

course of MRS measurements'’3175,

APOE genotype is related to markers of brain
health in cognitively normal individuals: In terms
of brain structural differences, APOE ¢ 4 carriers
show smaller volumes in medial temporal lobe in
young adult samples, with minimal effects in other

76 In healthy adults (mean age 39) with

regions
normal cognition, there was no main effect of
APOE genotype on MRI volumes of precuneus or
hippocampus, amyloid deposition, brain glucose
metabolism, or CSF markers'’. However, there was
an age by APOE interaction for amyloid
deposition, with € 4 carriers over age 50 showing

greater deposition'”’.

Another study found no
effect of APOE genotype on gray matter volume or
cerebral glucose metabolism but did identify
greater amyloid deposition in cognitively healthy
APOE carriers with mean age 49"8. Furthermore,
there is evidence from postmortem analysis that
APOE ¢ 4 interacts with molecular brain aging to
synergistically increase risk for AD'?. Few studies
have addressed the interaction of age and APOE

genotype on cerebral metabolites. One MRS study

© 2024 European Society of Medicine 8



found an interaction of age with APOE € 4 on
choline and myo-inositol in cognitively intact
individuals ages 50-86'®, However, a similar study
found no interaction of age and APOE on MRS
metabolites in cognitively healthy individuals ages

20-40 years versus 60-85 years'".

I1l. Conclusion

Alcohol is known to have pro-inflammatory effects
on both peripheral and central immune systems via
innate immune mechanisms'™''®. Whether alcohol
promotes or dampens inflammation depends
largely on dose and chronicity of exposure. Acute
low to moderate alcohol doses tend to have anti-
inflammatory effects in concert with immune
mobilization, whereas chronic and/or high doses
tend to exert pro-inflammatory effects in concert

72,183-187 However
. I

with  immune  suppression
contextual and individual factors such as age,
APOE genotype, and chronic health conditions
have not been investigated in controlled human
research as potential moderators of alcohol's
immune effects. Age is a key factor, as immune
senescence and “inflammaging” (i.e., chronic low-
grade inflammation associated with aging) are

increasingly recognized as contributors to age-

related diseases**. Overwhelming evidence links
circulating inflammatory biomarkers to cognitive
impairment, brain aging, morbidity, and mortality

188196 This review examined the

in older adults
potential for alcohol to exacerbate inflammation
related to aging and/or APOE genotype via several
pathways, specifically 1) microbial translocation
and immune activation, 2) the SASP, and 3)
neuroinflammation. Overall, there is evidence that
alcohol may interact with age and/or APOE
genotype along these pathways to promote

processes that increase risk for AD development.
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