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ABSTRACT

With ongoing global research efforts to tackle coronavirus disease 2019
(COVID-19), increasing attention is directed toward the long-term sequelae
of COVID, entitled “long COVID” or post-acute sequelae of COVID-19.
These long-COVID symptoms persist beyond 12 weeks in over 10%-40% of
patients, with exertional fatigue predominant in at least 50%. Scientific
evidence has linked long COVID fatigue with mitochondrial dysfunction and
energetic dysregulation in multiple biological pathways. Single target-
directed treatments could be insufficient to treat these heterogeneous
disorders. A novel multi-targeted therapeutic strategy could better address
long COVID fatigue by restoring mitochondrial function. Our systems
biology platform identified mechanisms implicated in long COVID and
prioritized the composition of endogenous metabolic modulators focused
on amino acid combinations, related precursors, and metabolites with the
potential to address mitochondrial dysfunction. AXA1125 is a novel
composition of five amino acids (Leucine, Isoleucine, Valine, Arginine, and
Glutamine) and an amino acid derivative (N-acetylcysteine) that could safely
target multifactorial disease pathophysiology of fatigue-dominant long
COVID. Our phase lla, double-blind, randomized trial (NCT05152849) in
exertional fatigue patients associated with long COVID interrogated this
proposition and showed promising results. We hypothesize that AXA1125
holds the potential for improving functional clinical outcomes by targeting
multiple disease pathways and improving mitochondrial function and
energetics.

Keywords: amino acid, energetic dysregulation, exercise tolerance, fatigue,
long COVID, mitochondrial dysfunction, systems biology.
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Introduction

Globally, over 500 million people have been

infected with severe acute respiratory

(SARS-CoV-2).
Emerging clinical evidence indicates that

syndrome  coronavirus 2

some  patients  experience  long-term
symptoms irrespective of the disease severity.
The reported frequency of these long-term
to 30%2°.

Symptoms may persist from months to years

symptoms ranges from 10%
after the initial infection®®, and understanding
of the underlying mechanisms driving the
longevity and heterogeneity of symptoms is
evolving. First referred to as post-acute
sequelae of SARS-CoV-2 infection by the
National Institutes of Health?, these persistent
symptoms are also referred to as “long
COVID" or post-acute COVID-19 syndrome'®,
and have a long-lasting impact on the
affected patients and caregivers.

The latest pooled estimates from over 41
studies show that the regional prevalence of
long COVID was lower in the United States
when compared with Asia and Europe, with
prevalence ranging from ~30% to 50%, based
on the definititions reported in this meta-
analysis'’. Evidence from the Office of
National Statistics in the United Kingdom
indicates that over 2 million individuals in the
(3.1% of the United Kingdom

population) had self-reported long COVID as

region

of May 1, 2022, Assessing the prevalence of
long COVID is challenging considering factors
including, but not limited to, variations in
population, gender, geography, healthcare
access, inconsistent use of long COVID case
definitions, methodological quality, the
nature of reporting (self-reporting or clinical

diagnosis or survey questionnaire), the

severity of acute phase, and time since
long COVID's
impact beyond a post-epidemic syndrome is

infection’.  Nevertheless,
associated with poor quality of life, impacting

physical and mental well-being™™. This
impact unequivocally supports the critical
need to develop therapeutic strategies to
combat this syndrome, where currently, there

is no approved treatment.

Despite extensive ongoing research and
investigations, the pathophysiology of long
COVID remains complex and evolving'".
The multifactorial and heterogenous nature of
long COVID highlights the need to identify
and understand its underlying biology, natural
history, and symptoms defining disease
progression. Moreover, there is a requirement
to explore the potential persistent
hyperinflammatory state, the impact of the
immune system, organ damage, viral activity,
and predisposing factors for developing the

syndrome®?",

The clinical symptoms of long COVID are
usually varied and affect multiple organ
systems, including  the  neurological,
cardiovascular, musculoskeletal, respiratory,
dermatological, endocrine, and gastrointestinal
systems®. These symptoms adversely affect
the day-to-day activities and quality of life of
affected patients. Of the protracted and
fluctuating symptoms associated with long
COVID, fatigue remains one of the most
and debilitating

aspects of this complex syndrome' %% A

consistent,  persistent,
systematic review of 25 studies (N=9,751)
reported that at least 50% of individuals with
long COVID

Neuropsychologic symptoms, often referred

experienced  fatigue®.

to as “brain fog,” follow in the frequency of

23,30-34

occurrence . The most extensive study of
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long-term health effects in COVID-19 patients
to date showed that while long COVID
prevalence was associated with acute disease
severity, a sizeable portion of individuals with
the milder impacted
(hospitalized [49.98%], symptomatic [27.48%]
[18.95%)]

from the

disease is also
and asymptomatic patients)®.

Emerging evidence ongoing

investigations into the mechanisms and
determinants of such persistent symptoms
implicates mitochondrial dysregulation and
inflammatory pathways in exertional fatigue

due to long COVID3*38,

of SARS-CoV-2
infection and disease progression to long
COVID is driven by the dysregulation of
multiple biological pathways, limiting the

The biological cascade

effectiveness  of single-target therapies
(Figure 1). Multifactorial disorders such as
long COVID could benefit from a multi-
targeted drug combination therapeutic
approach’, offering advancements in the
novel, next-generation tools and technologies
and systems biology research which can
reveal underlying disease mechanisms and
highlight viable therapeutic hypotheses?4%-43,
Such

advance

approaches offer opportunities to

multi-targeting  network-based
tactics to elucidate disease mechanisms and
advance therapeutic combination strategies
these mechanisms,

against combining

large-scale  biological

state-of-the-art  data

advanced  and

investigation  with
science approaches. Axcella Therapeutics
(United States of America) has an established
research foundation that can support the
specific design of endogenous metabolic
(EMM)

biological

modulator compositions  for

which
could be involved in diseases*. With a focus

multifactorial pathways,

on amino acid (AA) combinations and related

precursors  and metabolites,  these
formulations can concomitantly have the
potential to address multiple facets of chronic,
multifactorial diseases in a safe and tolerable
manner, as demonstrated by clinical and non-
clinical data. For example, the effects of
EMMs in specific combination contributed to
the development of AXA1125 to target the
multifactorial pathophysiology that has been
found to positively impact individuals with
nonalcoholic  steatohepatitis ~ (NASH)*4.
AXA1125 comprises five AAs (Leucine [L],
Isoleucine [l], Valine [V], Arginine [R], and
Glutamine [Q] and an AA derivative N-
acetylcysteine [Nac]; LIVRQNac; referred to as

AXA1125 in human studies)*.
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AXA1125 Can be Targeted to Impact Key Dysregulated Biological Pathways

EMMs can improve mitochondrial, inflammation/immune, and endothelial dysfunction in Long Covid
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Figure 1: The key biological pathways that AXA1125 can target.
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AXA1125 is a novel composition of five AAs (Leucine [L], Isoleucine [I], Valine [V], Arginine [R], and Glutamine [Q]) and an AA derivative

(N-acetylcysteine), with multi-targeting potential to restore functioning of biological processes compromised in long COVID, namely,

mitochondrial energetics, inflammation, oxidative stress, and endothelial function. Branched-chain AAs (i.e., L, I, V) play a crucial role

in improving mitochondrial bioenergetics and reactive oxygen species (ROS) scavenging by modulating the mammalian target of

the rapamycin complex/endothelial nitric oxide signaling pathway. Arginine is a crucial substrate for nitric oxide (NO) synthesis, and

its metabolism plays multiple roles in vascular biology, mediated primarily through NO-dependent mechanisms. Glutamine, the most

abundant AA in the body, plays an anaplerotic role by replenishing TCA cycle intermediates to generate reducing equivalents that

drive the mitochondrial respiratory chain. Nac is an antioxidant that also plays a neuroprotective role, inhibits oxidative stress, reduces

inflammation, and replenishes reduced antioxidant enzyme levels.

Here, we hypothesize that AXA1125, a novel
EMM composition, has the potential to
restore multiple aspects implicated in long
COVID, including dysregulated energetics,
metabolic hijacking, increased oxidative
stress and inflammation, and restoring cellular
preference for oxidative phosphorylation over
glycolysis, thereby restoring cellular energy
its  multi-targeted

metabolism  through

mechanism of action.

of
dysfunction and inflammation in
long COVID: An unmet need

Emerging non-clinical evidence suggests that
SARS-CoV-2 infects cells and hijacks cellular

metabolism to maximize viral production and

Evidence mitochondrial

replication, thereby dysregulating mitochondrial
processes?. In patients with severe outcomes,
mitochondrial disruption triggered by SARS-
CoV-2 involves high ferritin levels, leading to
oxidative stress and impaired mitochondrial

4849 viral

function Moreover, persistent
fragments can continue to exacerbate and
suppress mitochondrial function, leading to
sustained of

endothelial cells with SARS-CoV-2 promotes

cellular stress®. Infection

mitochondrial dysfunction, vascular

inflammation, increases mitochondrial
deoxyribonucleic acid (DNA) release, and
activates toll-like receptor 9 signaling, inducing
inflammatory responses that could lead to
cellular exhaustion and immune metabolic

dysfunction®'. This process may contribute to
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a cytokine storm and thrombotic complications
in patients with severe COVID-19 infection®%.
Consistent with these observations, our
internal research knowledge database and
extensive natural language processing driven
data mining of literature and clinical data
registries have supported mitochondrial
dysfunction as one of the primary overarching
mechanisms for long COVID-induced fatigue,
with implications on dysregulated bioenergetics
and lipid metabolism, impaired immune
response, increased oxidative stress and
proinflammatory state, and dysregulated
endothelial function®8. Although we believe
that mitochondria dysregulation is a key factor
for long COVID patients, a comprehensive
review by Davis et al. highlights that there are
other key related mechanisms to also
consider, including immune dysregulation,
microbioata disruption, blood clotting, and

neurological signaling dysfunction?'.

Long COVID symptoms, especially fatigue,
are characteristic of the potentially damaging
and largely inexplicable post-viral syndrome
labeled myalgic encephalomyelitis or chronic
fatigue syndrome?*. These symptoms have
also been linked to long lasting reduction in
serotonin levels driven by interferon-related
inflammatory factors that lead to memory
impairment. There has been studies that have
shown serotonin reulgated key mitohcondria
Mitochondrial

stress are

functions in  neurons®.

dysfunction and oxidative
implicated as significant vulnerability risk
factors in  long COVID  patients™.
Mitochondria yield 90% to 95% of the body’s
total energy by producing
(ATP)

phosphorylation®, while the rest of the body’s

adenosine

triphosphate through  oxidative

energy is generated through glycolysis in the
cytoplasm®®. Mitochondria are also involved in
redox signaling, glycemic regulation, and the
cellular  proinflammatory  response®’.
Dysfunction in any of these pathways could
lead to clinical symptoms of fatigue, muscle

weakness, and cognitive decline®®4?,

Monocytes and macrophages play a central
role in the pathogenicity of SARS-CoV-2%.
These immune cells adapt their metabolism
and become highly glycolytic upon infection,
nurturing rapid SARS-CoV-2 replication®®. The
viral infection prompts enhanced
mitochondrial reactive oxygen species (ROS)
production,  stabilizing  hypoxia-inducible
(HIF-1a)  and

promoting glycolysis. HIF-1a directly inhibits

factor-1a consequently
T-cell responses, reducing epithelial cell
survival®®. The pathophysiological alterations
in mitochondria lead to reduced oxidative
capacity and antioxidant defense. This effect
is driven by increased ROS production,
reduced oxidative phosphorylation levels,
increased pro-apoptotic signaling pathways,
and decreased or impaired ATP synthesis,
causing mitochondrial dysfunction®. Increases
in ROS have been linked to pathologic
cascades wherein oxidative damage causes
impaired lipid metabolism, increases protein
degradation and DNA damage and potentially
accelerates neurodegenerative processes®?’.

Restoring mitochondrial  function  could
improve exertional fatigue due to long COVID
by restoring favorable bioenergetics, reducing
stress, and

inflammation and oxidative

improving endothelial function®#®. Various

potential therapies using mitochondria-
targeted molecules are being pursued to treat
metabolic syndromes, improve mitochondrial

health®””’¢, and restore perturbed mitochondrial
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metabolic pathways and redox balance”.
Several markers, such as lactate, creatine,
pyruvate, and AAs, are being investigated for
their role in integrated mitochondrial stress
response. Of these markers, two growth factors,
i.e., fibroblast growth factor-21 and growth
differentiation factor 15, have been quantified
to diagnose mitochondrial dysfunction,
particularly attributable to acute COVID-19
infection®’8, AXA1125 could potentially improve
mitochondrial function by restoring cellular
respiration/energetics and enhancing cellular
response under higher metabolic demand

conditions, for example, during exertion.

Treatment of a complex disease —

multi-targeted therapeutics for

restoring biological homeostasis

in complex, heterogeneous diseases

The identification of successful treatment
opportunities for multifactorial diseases is
challenging. Single-target treatment approaches
have often been unsuccessful in fully addressing
the needs of complex and heterogeneous
disorders’™®. Long COVID is a highly
heterogeneous disorder with likely multiple
underlying pathophysiological mechanisms'"’.
The heterogeneity may be due to various
reasons, including differing degrees of
immunologic and inflammatory injury due to
acute infection, patients’ underlying responses
and risk factors, and the expected sequelae of
post-critical illness®. The prevalence, severity
of symptoms, and the likelihood of multiple
mechanisms underlying long COVID make a
multi-targeted

therapeutic approach a

pressing unmet medical need.

Endogenous metabolic modulators describe

a broad spectrum of molecular families,

including AAs, fatty acids, other lipids, bile
acids, ketone bodies, hormones, and other
molecules. As a result of their action on
multiple disease nodes and metabolic
pathways in a diseased condition, EMMs can
potentially restore metabolic homeostasis in
diseases

human involving

44,81-85

underlying
metabolic dysregulation Amino acids
are critical constituents to life-sustaining
biochemical processes underlying cellular
metabolism and energetics, including the
tricarboxylic acid (TCA) cycle, where the
oxidation of carbohydrates, proteins, and fats
converges®. Moreover, AAs and related
metabolites and precursors are the primary
regulation and

controllers of metabolic

homeostasis of the body?®-#

. Being native to
the body, EMMs are generally well tolerated
and recognized as safe in
45,90 Therefore, with the

appropriate combination of these EMMs,

therapeutic

application

targeted modification of complex diseases
could be achieved.

Our translational research and systems
biology foundation support the specialized
design of EMM compositions with the
potential to impact multifactorial diseases.
The same is endorsed by our pre-clinical and
clinical data for NASH/nonalcoholic fatty liver
(NAFLD), type 2 diabetes,

inflammation, and muscle-related frailty**4>?",

disease

Our therapeutic approach results from
curating decades of research on individual
AAs and their combinations. These roles of
AAs can be leveraged to develop treatments
for diseases with complex biology using novel
EMM

compositions®. We linked AA biology to

disease-specific therapeutic

putative underlying long COVID disease

mechanisms, biomarkers, and symptoms
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through our internal tools and platform-based
process. Network biology and data mining
approaches inform on published and evolving
mechanisms in the disease condition under
These

subsequently interrogated based on clinical

investigation. mechanisms  are
disease registries from the patient population
to expand our understanding and could
potentially unveil specific mechanisms
implicated in long COVID or other complex

disorders to target therapeutically.

Compositions of EMMs anchored by AAs can
be designed to safely target and modulate
multiple targets and pathways simultaneously
and therefore have great potential as tools for
a multifactorial approach to treating complex,
heterogeneous diseases.

Amino acid combinations targeting
mitochondrial dysfunction: Bridging
the gap

Metabolomics analysis revealed that the lipid
and AA metabolism super pathways were the
most enriched between patients hospitalized
with mild and severe COVID-19 and healthy
controls”. Data on AA metabolism supports
continued  redox

imbalance,  impaired

bioenergetics, and abnormal immune

responses in patients with long COVID®.

As substrates, AAs have demonstrated multi-

targeted roles in regulating metabolism.
Branched-chain AAs (i.e., L, |, V) play a crucial
role in improving mitochondrial biogenesis,
and ROS

scavenging by modulating the mechanistic

cellular energy metabolism,
target of the rapamycin complex/ endothelial
nitric oxide signaling pathway”™". They
provide a significant source of cellular energy

via acetyl coenzyme A and succinyl coenzyme

A generation”™. Arginine is involved in

multiple metabolic processes, and its
depletion could disrupt several cellular and
organ functions” and induce T-cell or
endothelial dysfunction?”. Arginine is a crucial
substrate for nitric oxide (NO) synthesis, and
its metabolism plays multiple roles in vascular
biology and diseases, mediated primarily
through NO-dependent mechanisms™?. NO
attenuates the reduction of cytochrome C
oxidase, facilitating the release of intracellular
superoxide from the mitochondria and
providing signals for vasodilation'®. The
induced through NO

signaling and the regulation of adhesion

vascular relaxation

marker expression on the endothelial surface
improves circulatory dynamics and redox
balance and could potentially mitigate
COVID-19 vasculopathy””?. Glutamine, the
most abundant AA in the body, plays an
anaplerotic role by replenishing TCA cycle
intermediates  to

generate  reducing

equivalents that drive the mitochondrial

101102 A decrease in von

respiratory chain
Willebrand Factor (vVWF) polymerization by
Nac has been described in preclinical
models'®, and the VWF-ADAMTS13 axis has
been implicated in long COVID exercise
intolerance’®. The AA derivative, Nac, also
plays a neuroprotective role by restoring
inhibiting

oxidative stress, and replenishing the reduced

mitochondrial dysfunction,

antioxidant enzyme levels'®1%8,

The potential benefits of AXA1125 in long
COVID
bioenergetics,

include improved mitochondrial

reduced inflammation and
oxidative stress, and improved endothelial
function. Induced substrate mobilization and
increased NO

perfusion

signaling could enhance

and vascular conduction, and
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reduce vascular inflammation, protein  2). The potential of AXA1125 in increasing

breakdown, and muscle fatigue post-exercise.
Increased preferential fatty acid oxidation
relative to glycolysis restores viral infection-
driven bioenergetic changes, whether in
presence or absence of viral fragments, and
AXA1125 has

expression for fatty acid metabolism genes in

been shown to increase
primary human hepatocytes exposed to free

fatty acids and tumor necrosis factor-a (Figure

fatty acid oxidation, its impact on lipid
metabolism, and its effects on inflammation,
insulin resistance, and fibrosis have been
established in pre-clinical and clinical studies
on multifactorial diseases such as NASH/
NAFLD*?". Taken together, we hypothesize
that AXA1125 could potentially target the
multifactorial pathophysiology of exertional
fatigue associated with long COVID.

—>—o0 L-palmitoyl Carnitine

Fatty acid degradation (29/43) (fdr: 2.1e-06)
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Figure 2: The effect of AXA1125 on the expression of genes involved in fatty acid metabolism in primary human hepatocytes exposed
to free fatty acids and TNF-a(Journal of Hepatology, 77:5718-5718, 2022).

Synopsis of AXA1125 Clinical
Proof-of-Concept Study

Currently, there are 12 ongoing trials for
COVID
(https://www.clinicaltrials.gov). The translatability

fatigue due to long

of our hypothesis was investigated in a single-
center clinical trial (NCT05152849) conducted
in collaboration with Oxford University
Radcliffe (United Kingdom). This Phase lla trial
was a double-blind, randomized, placebo-
controlled study evaluating the efficacy and
safety of AXA1125 in patients with exertional
fatigue associated with long COVID. This
study was conducted according to the
protocol, the ethical principles that have their

of Helsinki,
including the current International Council for
Harmonization  Good
Consolidated Guideline E6 R2,

national and

origins in the Declaration

Clinical ~ Practice
and all
applicable local laws and
regulations. Written and oral information
about the study was provided to all
participants in a language understandable by
the participants. Written informed consent
was obtained from each participant before
any study procedures or assessments were
performed. Each participant’s willingness to
participate in the study was documented in
writing in a consent form signed and dated by

the participant. Each investigator kept the
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original consent forms, and copies were given
to the participant. This study was approved by
the Fast-Track Research Ethics Committee,
Health Research Authority (Stratford, London,
United Kingdom). In this trial, patients with
fatigue-predominant long COVID were
randomized (1:1) to receive AXA1125 (67.8
g/day) or a matched placebo in two doses for
28 days, with a one-week safety follow-up
phase. The primary endpoint assessed the
improvement in mitochondrial function within
skeletal muscles from baseline to Day 28,
evaluated  through changes in the
phosphocreatine recovery time, which was
assessed using 31-phosphorus magnetic
resonance spectroscopy and is a measure of
oxidative capacity. An exploratory biomarker
panel was utilized to evaluate the impact on
mechanisms

overarching implicated  in

mitochondrial dysfunction, including
bioenergetics and lipid metabolism, oxidative
stress and inflammation, endothelial function,
and mitochondrial health. The key secondary
endpoints in this trial included assessing
levels, a marker  of

lactate serum

mitochondrial increased

glycolysis
Fatigue Score, and safety and tolerability of

dysfunction, and

109111 "3 6-minute walk test, Chalder

AXA1125. Sixty participants were screened,
and 41 were randomized and included in the
final analysis. Study inclusion criteria were (j)
18-64 years of age, (i) with clinically
suspected COVID-19 = 12 weeks before
screening, (iii) displayed fatigue predominant
long COVID, as defined by a total fatigue
(bimodal) score of =8 on the Chalder Fatigue
Questionnaire 11, and (iv) with a post-

exertional skeletal muscle phosphocreatine

recovery rate constant >50 s (a marker of
impaired mitochondrial oxidative capacity)
measured using 31-phosphorus magnetic
resonance spectroscopy. Patients presenting

with other possible causes of fatigue (e.g.,

heart  failure, chronic  cardiovascular,
neurological, neuromuscular, or hepatic
disease,  hypothyroidism, or  clinically

significant anemia) were excluded. Intergroup
comparisons for categorical endpoints were
performed  with  the chi-square test.
Continuous endpoints were analyzed using
the analysis of covariance models with the
change or percent change from baseline as
the dependent variable and adjusted for
baseline value. While the study did not show
a statistically significant difference in the
experimental biomarker primary endpoint
due to a much higher than expected
in this patient population at
baseline, subjects who received AXA1125

variability

experienced  clinically and  statistically
significant improvement in mental (p=0.0097)
(p=0.0097)

compared to placebo subjects and the results

and physical fatigue scores
of this study are further described in a recently
published paper by Finnigan et al.”® The
physical and mental fatigue scores are the two
main components of the Chalder Fatigue
Score utilized in the study. Further studies are
needed to validate the improvements in
patient-reported outcomes in a larger cohort
of patients and the mechanistic drivers of

improvement.

Conclusion
The long-term consequences of COVID-19

infection pose a significant burden to society
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and the healthcare system, impacting the
quality of life of affected patients and the
associated support system. To address this
pressing medical need, we at Axcella
Therapeutics leveraged our systems biology
platform to identify putative mechanisms of
long COVID,

advancing the testing of our novel EMM

exertional fatigue due to

composition of AXA1125 toward approval as
a potential treatment option. Our preclinical
and clinical evidence demonstrates that
AXA1125 can potentially restore multiple
essential mechanisms involved in mitochondrial
biology, including improving bioenergetics
and reducing inflammation and oxidative
stress, and more work is needed to advance
and validate the clinical improvements seen
and the underlying mechanism of action. The
composition could be a targeted treatment
for exertional fatigue due to long COVID. In
the future, novel research mechanisms are
required to explore the factors contributing to
variations in long COVID disease impact
between individuals and across populations,
mechanisms underlying the symptoms of long
COVID, and the optimal treatment strategy
for this debilitating condition. Moreover,
subsequent studies are needed to validate
the improvements in long COVID fatigue with
AXA1125 and the underlying mechanism of

action.
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Manuscript Contribution To The

Field

Long coronavirus disease (COVID) 2019 or
post-acute sequelae of COVID-19 is a
syndrome wherein the symptoms of COVID-
19 persist for over 12 weeks. Fatigue is one
such long-lasting symptom observed in nearly
50% of patients with long COVID. Increasing
involvement  of

evidence suggests the

multiple  biological  pathways in  the
long COVID, with

mitochondrial dysfunction and inflammation

pathophysiology of

playing critical roles in the associated fatigue.
AXA1125 is a novel endogenous metabolic
modulator comprising 5 amino acids (Leucine,
Isoleucine, Valine, Arginine, and Glutamine)
and an amino acid derivative  (N-
acetylcysteine). AXA1125 is a multi-target
therapeutic that could potentially improve
mitochondrial function by restoring cellular

energetics and metabolism and reducing
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oxidative stress and inflammation. Therefore,
we hypothesize that AXA1125 may restore
mitochondrial function and act as a potential
treatment for fatigue associated with long
COVID.
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