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ABSTRACT 
Inflammation, a critical aspect of the immune system's defense and 

recovery processes, manifests in two primary forms: acute and chronic. 

Understanding and controlling these responses are vital for managing 

various inflammatory conditions. 2-Hydroxyisocaproic acid is a 

physiological substance and the 2-hydroxy-analogue of the essential 

amino acid leucine. This research focuses on the interaction of 2-

Hydroxyisocaproic acid with key inflammatory mediators, matrix 

metalloproteinase 8, and Developmental Endothelial Locus 1. Matrix 

metalloproteinase 8 plays a significant role in the inflammatory process. 

Developmental Endothelial Locus 1 acts as a crucial immunomodulator, 

maintaining tissue homeostasis. Our findings reveal that 2-

Hydroxyisocaproic acid inhibits the fragmentation of Developmental 

Endothelial Locus 1 by dose-dependently modulating and reducing the 

matrix metalloproteinase 8 activity. Notably, 2-Hydroxyisocaproic acid’s 

reversible inhibition of matrix metalloproteinase 8 does not eventually 

involve covalent bonding, positioning it as an enzyme modulator or down 

regulator rather than a direct inhibitor. This property of active matrix 

metalloproteinase 8 reduction by 2-Hydroxyisocaproic acid opens new 

avenues for therapeutic intervention, particularly in managing excessive 

inflammatory responses, such as the "cytokine storm" observed in lung tissue 

inflammation or arthritic joints like in osteoarthritis. 
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Introduction 

Inflammation constitutes an integral component of our 
innate defense and recuperative mechanisms, intricately 
orchestrated by the immune system. It is the intricate 
orchestration wherein the immune system discerns and 
eradicates deleterious foreign entities while concurrently 
facilitating the regenerative process. This phenomenon 
manifests as either an acute, immediate response or a 
chronic, enduring condition, often eluding clear 
demarcation.1,2  
 
The immune system demonstrates precise control over 
inflammatory processes to prevent the occurrence of 
excessive immune reactions, which have the potential to 
precipitate an over-exuberant host response, ultimately 
culminating in the detriment of the subject in question. It is 
worth noting that local tissues do not merely serve as 
passive receptors of immune surveillance; rather, they 
exert a substantial influence over the initiation and 
regulation of both immune and inflammatory responses.3 
Homeostatic factors originating from specific tissue 
sources play a pivotal role in governing the inception and 
cessation of immune responses. These factors meticulously 
modulate the recruitment and activation of immune cells, 
as well as the functional adaptability of both tissue-
resident and recruited immune cells.3 
 
In this intricate orchestration, Developmental Endothelial 
Locus-1 (DEL-1) emerges as a key immunomodulator, 
serving as the linchpin in restoring and preserving the 
homeostatic equilibrium within the microenvironment of 
tissues. DEL-1 operates by striking a delicate balance 
between inflammatory responses and the mechanisms of 
immune regulation, thus facilitating the reestablishment 
and maintenance of the harmonious state in the tissue 
microenvironment.4 It is also expressed in joint tissues.5  
 
A glycoprotein of 52 kilodaltons, DEL-1 is mainly secreted 
by endothelial cells, demonstrating an affinity for 
association with both the endothelial cell surface and the 
extracellular matrix. In humans, it is encoded by the EDIL3 
gene.6 This multifaceted protein is expressed in the 
endothelial cell population, as well as within a select 
subset of macrophages. Thus, is not surprise that DEL-1 
exerts a regulatory influence over crucial biological 
processes, namely angiogenesis, apoptosis, as well as cell 
adhesion and migration.7 DEL-1 has shown also to act in 
an anti-inflammatory and protective fashion.7 
 
This effect of DEL-1 is expresses by a ligand for 
lymphocyte function-associated antigen (LFA)-1. Del-1 
exerts its inhibitory effect on neutrophil recruitment during 
inflammation by counteracting LFA-1-dependent 
adhesion.7 Actually, Del-1 competes with intercellular 
adhesion molecule 1 (ICAM)-1 for binding to LFA-1 on 
leukocytes, inhibiting their adhesion to the endothelium 
and subsequent migration into the tissue, thereby playing 
a critical role in modulating inflammation.5 Additionally, 
Del-1 extends its regulatory impact to encompass the 
restraint of complement-dependent phagocytosis in 
macrophages.8 Thus, acting as a modulator of 
macrophage-1 antigen (Mac-1) function, particularly in 
Mac-1-mediated complement-dependent phagocytosis, 
Del-1 aligns with its proposed role as an endogenous 
homeostatic agent contributing to tissue equilibrium. Thus, 

this regulatory function holds potential significance in the 
context of inflammatory, infectious diseases, and tissue 
injury.8 
 
The majority of the genetically distinct but structurally 
related matrix metalloproteinases (MMPs) primarily 
function outside cells and are commonly associated with 
processing extracellular matrix (ECM) proteins. However, 
the belief that MMPs exclusively target ECM proteins is a 
misconception. These enzymes also degrade various non-
ECM bioactive substrates, including cytokines, 
chemokines, serpins, adhesion molecules, complement 
components, growth factors, and even receptors such as 
the insulin receptor. Particularly, collagenases MMP-1, 
MMP-8, and MMP-13 stand out for their ability to cleave 
core matrisome proteins and non-matrix bioactive 
substrates.9 Notably, collagenolytic MMPs are 
increasingly expressed in osteoarthritis (OA) cartilage. 
Interestingly, MMP-8 can be found and is de-novo 
expressed in OA lesions even in the absence of 
neutrophils, challenging the traditional perception of 
MMP-8 as solely a neutrophil collagenase. Under the 

influence of proinflammatory cytokines like TNF-α and IL-

1β, chondrocytes or synovial cells demonstrate the 

capability to inductively de-novo express and produce 
MMP-8 de-novo.10 Correspondingly inductive de-novo 
expression has been evidenced by synovial fibroblasts 
and endothelial cells.11 
 
2-Hydroxyisocaproic acid (HICA), also known as leucic 
acid, 2-hydroxy-4-methylvaleric acid, or 2-hydroxy-4-
methylpentanoic acid, possesses a molecular weight of 
132.16 g/mol.12 HICA, being the 2-hydroxy-analogue of 
the essential amino acid leucine, is a physiological 
substance. It emerges as a by-product of the leucine-
acetyl-CoA pathway, precisely as an end product of 
leucine metabolism within human tissues, most notably in 
muscle and connective tissue.13,14 It has been 
demonstrated to exhibit safety when administered within 
recommended dosages, and it continues to be available 
in the market as a dietary supplement designed for the 
enhancement of performance.15-17,18 unpublished data HICA 
exhibited cytostatic properties at all concentrations 
tested, while showing no cytotoxicity up to 10 mg/mL 
regardless of exposure time. It demonstrated no 
genotoxic effects below 5 mg/mL. HICA maintained 
approximately 70% of its osteogenic differentiation 
potential at 1 mg/mL.19,20 It’s Na-salt LD50 have been 
tested with mouse, and it was noted to 650mg/kg iv.21 
Naturally occurring within mammalian organisms, HICA 
exhibits elevated concentrations in serum during periods 
of fasting.13 In circulation HICA is unbound and exhibits a 
plasma concentration in healthy adults ranging from 0.1 
to 0.25 µmol/l, with a mean value of 0.25±0.02 µmol/l. 
 
In the pathogenesis of OA, inflammation has been 
identified as a pivotal factor.22 Synovitis, identified as a 
secondary process triggered by innate immune activation 
subsequent to cartilage damage, assumes a critical role 
in both initiating and perpetuating OA.23 Several studies 
consistently correlate the presence of synovitis in OA with 
increased pain and joint dysfunction. Furthermore, 
synovitis exhibits potential as a predictive factor for 
accelerated rates of cartilage loss in specific patient 
cohorts.22 Hence, addressing inflammation promptly in 
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OA may offer the potential for a disease-modifying 
therapeutic agent. 
 
Nieminen and colleagues in 2014,24 first unveiled 
evidence of the impact of HICA on DEL-1. In their in vivo 
research revealed that the expression of DEL-1 
significantly increased following HICA treatment. 
Inflammation plays a vital role in physiological functions 
and significantly impacts various processes. However, 
within clinical contexts, a pivotal objective involves 
devising a compelling strategy to mitigate inflammation 
specifically in OA, which is acknowledged as the leading 
cause of disability.25 The current study proposes the 
application of compounds like HICA to strategically 
manipulate and down-regulate the exaggerated immune 
and proteolytic response at specific loci and stages of 
inflammation. This approach aims to limit hyperactive 
immune and proteolytic responses, offering a targeted 
strategy in the treatment of various inflammatory 
disorders including such as OA. 
 

Material and Methods 
This study was performed to test the inhibition of the 
MMP-8 mediated DEL-1 fragmentation by both isomers 
of HICA dextro (D) and levo (L). The degradation of DEL-
1 by active MMP-8 was determined essentially by using 
SDS-PAGE described.26,27 Briefly: first recombinant 
human MMP-8 enzyme (#30100702, Proteaimmun) was 
preincubated 1 hour at 37°C with the optimal 
organomercurial proMMP-8 activator p-
aminophenylmercuric acetate (APMA, #A9563, Sigma-
Aldrich) and used inhibitor candidates different HICA 
isomers (D-HICA, #CAS 20312-37-2, Santa Cruz 
Biotechnology; L-HICA, #219827 Sigma-Aldrich), 2-
hydroxy-isovaleric acid both D- and L-forms (HMB, 
#379093 Sigma-Aldrich) at indicated concentration. 
Then the recombinant human DEL-1 (#6046-ED-050, R&D 
System) at indicated concentration was added as a 
substrate and after that all let incubate overnight at 
+37°C. Using 11% SDS-PAGE with Silver Stain Pierce® 
(#1610449, Bio-Rad, Finland) methods, the inhibition 
process was visualized. In this study, Ilomastat (Ilo, 
#CC1010, Millipore) were used as a positive synthetic 
inhibitor and TNC-buffer, 50 mM Tris-HCl-buffer: pH 7,5; 
0,2 M NaCl; 1,0 mM CaCl2 as negative controls.28 
In this first experiment, the volumes have been constant of 
substrate (Del-1), enzyme (MMP-8), and activator 
(APMA) as well as various inhibitor candidates 
(HICAs/HMBs). Thus, minimizing the changing factors in 
the experiment, wanting to find out which of the HICA 
forms would best inhibit MMP-8 activity. There is an 
illustrative   table   below   the   Figure  1   A  about   this 

experimental setup. 
 
In the second experiment, the inhibition effects studied 
with increased concentration of D-HICA with above 
mentioned the methods. The inhibitory effect of the 10% 
D-HICA form was investigated by adding it amounts to 2 
µl gradually to 8 µl. Otherwise, the amounts of substrate, 
enzyme and activator were constant and the same as in 
the first experiment, keeping in mind the reliability of the 
results. The observation table from this experiment is also 
below the Figure 1 B. 
 

Results 
In the first experiment, we compared the ability of 
different forms of HICA, all at the same concentrations, to 
prevent MMP-8 from fragmenting the DEL-1 substrate 
under otherwise identical experimental conditions. The 
results of this experiment revealed that D-HICA was the 
most effective inhibitor of DEL-1 fragmentation by 
suppressing MMP-8 activity (Figure 1A). The L-HICA form 
also exhibited some degree of substrate protection, 
albeit less effectively than the D-HICA form. 
 
In the second experiment, we sought to investigate 
whether there was a dose-response relationship in the 
inhibitory potential of D-HICA. This second experiment 
demonstrated a dose-dependent enhancement of the 
inhibitory effect of D-HICA under the same experimental 
conditions as in the first experiment, with DEL-1 as the 
substrate and MMP-8 as the enzyme (Figure 1B). 
 
HICA's reversible inhibition of MMP-8 does not eventually 
involve covalent bonding and should be regarded as an 
enzyme modulator or down-regulator rather than a 
direct inhibitor. 
 

Discussion 
There is a need for a pharmaceutical solution to finely 
modulate the host’s immune and exaggerated destructive 
proteolytic responses, facilitating pathogen clearance, 
mitigating exorbitant immune response, and expediting 
recovery while preserving tissue integrity. We presented 
an invention which aims to introduce compounds tailored 
for precise immune response adjustments at distinct host 
loci and stages. Thus, a conclusion could be drawn that 
HICA, through MMP-8 activity alteration, can maintain 
and also promote DEL-1’s and MMP-8’s homeostatic 
potentials.29 This could also include tempering over-
exuberant responses such as cytokine storms in specific 
tissues, thus averting undue organ damage and enabling 
a swift return to physiological equilibrium and 
homeostasis. 
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Figure 1. D,L-2-hydroxy-isocaproic acid (HICA) prevents human matrix metalloproteinase 8 (MMP-8) mediated 
fragmentation of recombinant human developmental endothelial locus-1 (DEL-1). Both HICA isomers relatively inhibit 
MMP-8 (A), but D-HICA isomer seams to inhibit the fragmentation of DEL-1 effective as L-HICA (A), and there is dose 
dependent inhibition noted with D-HICA (B). Molecular weight markers are indicated left. The labels + and – mean that 
the experiment has performed with or without about that reagent, respectively. 
 
A physiological substance, HICA, exerts immune response 
modulation by preventing fragmentation of DEL-1 in a 
dose-dependent manner. Its beneficial 
immunomodulatory effect may be achieved through the 
inhibition of MMP-8 at the loci. MMPs, a family of calcium 
and zinc-dependent proteolytic enzymes, have a 
broader substrate range than initially thought, 
encompassing in addition ECM molecules also numerous 

non-matrix bioactive molecules.30 HICA's reversible 
inhibition of MMP-8 does not eventually involve covalent 
bonding and should be regarded as an enzyme – 
eventually a bit “leaky” – modulator or down-regulator 
rather than efficient inhibitor, let alone “enzyme killer”.31 
 
The compound has been isolated from plasma,32 urine,33 
saliva,34 and amniotic fluid.35 Elevated HICA 
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concentrations are detected during extended fasting, 
post-exercise periods when proteins are utilized as an 
energy source, and in cases of diabetic ketoacidosis, as 
demonstrated by Liebich and Först.36 HICA quantification 
is feasible from human plasma in both adults and 
children.37 Furthermore, trace amounts, on the order of 17 

μg/l, have been ascertained within human breast milk as 

well.38 
 
In selected food products produced via fermentation, such 
as certain cheeses, dairy items, wines, and soy sauce, 
HICA is also present.39-44 Its noted properties encompass 
anti-inflammatory, antiproteolytic, anticatabolic, and 
antimicrobial attributes.45-47 Its wide-ranging 
antibacterial activity extends to both obligately and 
facultatively anaerobic gram-positive and gram-
negative bacterial species.48 
 
While the immune system's reliance on MMPs had been 
previously hypothesized, our in vitro study substantiated 
their pivotal role. Recent perspectives on matrix 
metalloproteinases (MMPs) suggest their regulation of 
diverse inflammatory and reparative mechanisms, 
implying a potential foundational role in the evolutionary 
progression of the immune system.49 
 
Targeting a wide array of biological entities, MMPs 
include proteinases, inhibitors, clotting factors, 
chemotactic molecules, latent growth factors, growth 
factor-binding proteins, cell surface receptors, cell-cell 
adhesion molecules, and nearly all structural extracellular 
matrix immunomodulatory proteins.50 A prevailing theme 
in MMP function is their involvement in inflammation, 
evident in various diseases displaying altered MMP levels 
associated with inflammatory conditions.49 Our work 
presents evidence of MMP proteolysis may modulate 
chemokine activity, finding is concordant with previous 
studies, specifically through the direct control of 
chemokine activity by certain MMPs via cleavage.51 
 

Also recognized as collagenase 2 or neutrophil 
collagenase, MMP-8 is primarily secreted by 
polymorphonuclear (PMN) granulocytes during 
inflammatory responses. While collagen type 1 remains 
its primary substrate, previous studies highlight its activity 
on various bioactive non-matrix substrates, including 
signaling molecules, receptors, growth factors, and 
cytokines.52-55 MMP-8 has also a critical role of in 
cardiovascular, diabetic and periodontal 
pathogenesis.29,55,56 
 
Owing to their pivotal significance in human physiological 
processes, an ideal inhibitor of MMPs should selectively 
intervene as needed, analogous to "cutting the tip of the 
iceberg". Regulating the activation of "harmful" cytokines 
or relevant molecules when their overproduction occurs. 
MMPs, akin to all secreted proteinases, undergo 
regulation at various stages: gene expression, 
compartmentalization, pro-enzyme activation, and 
enzyme inactivation. Further control is exercised through 
substrate availability and affinity.49 
 
Nieminen et al.24 first unveiled evidence of the impact of 
HICA on DEL-1. Their research revealed that the 
expression of DEL-1 significantly increased following 
HICA treatment. 

In inflammatory and autoimmune disorders, an imbalance 
favoring IL-17 disrupts DEL-1 expression, exacerbating 
inflammation and promoting neutrophil recruitment. This 
reciprocal interaction between DEL-1 and IL-17 may play 
a role in hyperinflammation associated with conditions 
such as COVID-19 and Kawasaki disease. Notably, 
autoantibodies targeting DEL-1, particularly prevalent in 
Kawasaki disease, contribute to IL-17-mediated 
hyperinflammation, suggesting a humoral neutralization 
of DEL-1 function, allowing uncontrolled IL-17 activity.6 
Research conducted by Sohn et al.57 unveiled that IL-17 
levels are heightened not only in OA synovial fluid but 
also in the sera, although not to the extent observed in 
rheumatoid arthritis (RA) patients. 
 

The primary sources of IL-17 are CD+4 effector T cells 
and the Th-17 lineage.58 Moreover, IL-17 possesses the 
ability to induce chemokine production in osteoarthritic 
chondrocytes, a process effectively suppressed by the 
introduction of anti-IL-17 monoclonal antibodies.59 IL-17 
plays a pivotal role in stimulating the secretion of various 
cytokines and may contribute to the activation of multiple 
catabolic pathways, leading to cartilage and tissue 
damage in osteoarthritis.60 IL-17 activity inhibition may 
prevent chondrocyte apoptosis.61 DEL-1 protects 
chondrocytes against apoptosis triggered by 
intrinsic/extrinsic pathway activators and anoikis.62,63 
 

Moreover, DEL-1's presence is constitutively observed in 
various tissues, including the lung, brain, and bone. 
Nonetheless, its expression is notably prominent within the 
domains of endothelial cells, macrophages, and neurons. 
It is noteworthy that this glycoprotein is not merely limited 
to intracellular functions; rather, it also follows a secretion 
pathway and forms associations with either the cell 
surface or the extracellular matrix. 3  
 

Wang et al.64 proposed DEL-1 as a potential therapeutic 
avenue for inflammatory arthritis, highlighting its ability 
to interfere with arthritogenic processes both locally and 
systemically. Their findings demonstrate DEL-1's efficacy 
in restraining arthritis by limiting inflammatory cell 
recruitment to the joints. Surprisingly, DEL-1 also exerts a 
systemic effect, downregulating the induction of 
arthritogenic antibody responses in the lymph nodes.64 
This dual mode of action is founded on a localized 
mechanism within the joints, aligning with the previously 
elucidated anti-leukocyte recruitment role of endothelial 
cell-derived DEL-1. Simultaneously, a systemic mechanism 
comes into play, associated with the capacity of stromal 
cell-derived DEL-1 to temper the responses of T follicular 
helper (Tfh) cells and germinal center B (GC-B) cells within 
the lymph nodes. 
 

The enrichment of DEL-1 in the synovial fluid of 
rheumatoid arthritis (RA) patients with low-level 
inflammation, as opposed to those with high-level 
inflammation,65 implies a potential protective role for 
DEL-1 in human RA.64 The remarkable ability of DEL-1 to 
disrupt arthritogenic processes both locally and 
systemically lends credence to the notion that this 
molecule may indeed emerge as a propitious option for 
rheumatoid arthritis (RA) treatment. Their investigation not 
only demonstrated DEL-1's efficacy in restraining arthritis 
but also unveiled its capacity to curtail local recruitment 
of inflammatory cells to the joints.64 
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Serving as an endogenous inhibitor of the prominent 
leukocyte adhesion receptor LFA-1, DEL-1 effectively 
prevents the adhesion of leukocytes to the endothelium. 
Unlike numerous adhesion molecules, such as selectins and 
members of the Ig superfamily, which actively promote 
leukocyte adhesion to the endothelium, DEL-1, in contrast, 
exerts a unique function by actively impeding the binding 
process between leukocytes and the endothelium.7 In 
doing so, it effectively suppresses the infiltration of 
leukocytes into inflamed tissues.66 
 
The protein might selectively regulate Macrophage 
Migration Inhibitory Factor (MIF), a proinflammatory 
cytokine crucial in controlling leukocyte recruitment, 
innate and adaptive immunity, and tumor progression 
under conditions of low-grade inflammation or in resting 
cells. These findings suggest that Del-1 functions as a 

moderator of inflammation by suppressing NF-κB-

dependent (nuclear factor kappa-light-chain-enhancer of 
activated B cells) proinflammatory cytokine production in 
monocytes and macrophages.67 Alterations in human MIF 
expression due to genetic changes are linked to the 
severity of conditions such as asthma, cystic fibrosis, and 
rheumatoid arthritis.68 The study by Yuh et al.69 
demonstrated that DEL-1 has the capacity to activate a 
3 integrin–FAK–ERK1/2–RUNX2 pathway within 
osteoprogenitor cells, consequently stimulating new bone 
formation in mice. These results imply a potential 
therapeutic leverage of DEL-1 in the restoration of bone 
loss attributed to periodontitis and potentially other 
osteolytic disorders. 
 
A constituent of the cell-associated matrix, Del-1 is 
predominantly concentrated in the superficial zone of AC. 
This matrix potentially serves as a protective 
microenvironment surrounding the chondrocytes located in 
the superficial zone, thereby contributing to the 
safeguarding of the AC surface. Furthermore, Del-1 is 
significantly enriched within this region. Chondrocytes, 
when isolated from the superficial zone of articular 
cartilage via protease and collagenase treatment, 
maintain their association with the matrix, wherein Del-1 
is a principal element. This cell-associated matrix is 
posited to augment the protective capabilities of the AC 
surface by establishing a specialized microenvironment 
around the superficial zone chondrocytes.70 
 

The notion that synovial inflammation may play a pivotal 
role in the etiology of osteoarthritis (OA) gains 
compelling support from an array of investigations. 
Elevated levels of serum C-reactive protein (CRP) have 
been closely linked to the progression of OA.71-73 
Furthermore, it has been revealed that mechanical forces 
can directly trigger the production of inflammatory 
mediators within the cartilage and synovium.74 A 
comprehensive analysis of OA synovial fluid identified 
108 proteins, shedding light on the presence of low-
grade inflammation in OA.57 Some of these plasma 
proteins possess the ability to activate Toll-like receptor 
4 (TLR4), thereby inciting the production of a spectrum of 
inflammatory cytokines, including those associated with 
OA upregulation. The implications of these findings 
suggest that plasma proteins, whether exuded from the 
plasma or produced by synovial tissues, may function as 
damage-associated molecular patterns, thereby 
contributing to the low-grade inflammation observed in 

OA.57 Identifying inflammatory mediators provides 
potential targets for therapeutic interventions aimed at 
alleviating symptoms and mitigating structural joint 
damage in OA.22 
 
Notably, in certain instances, the degree of synovitis in 
OA and rheumatoid arthritis (RA) tissues can be 
remarkably similar, posing difficulties in distinguishing 
between the two.75 Recent research indicates the 
presence of low-grade inflammation in OA.76 Moreover, 
current studies demonstrate that indications of mild 
synovial inflammation impact 50-80% of patients, 
influencing disease advancement and symptomatic 
manifestation.77 
 
Intriguingly, OA can instigate systemic inflammation, and 
the notably high levels of cytokines in OA sera are 
primarily attributed to overproduction of these cytokines 
within the joint. This is further corroborated by the 
correlation between high-sensitivity CRP levels in the 
serum of OA patients and the degree of inflammatory 
infiltrate within their joints.57,72,78  
 
Inflammation notably increases in individuals with the 
early OA.79 A compelling distinction between early and 
late OA lies in the heightened mononuclear cell infiltration 
and the overexpression of inflammatory mediators in the 
early stages of the disease. This surge in inflammation in 
the early phases of OA often translates into more 
pronounced symptomatic presentations, signifying a 
natural course that diminishes over time. Therefore, the 
management of inflammation assumes particular 
relevance in the early stages of OA, contributing to 
patient compliance with ongoing treatment. Early 
interventions in OA may be as an optimal approach, 
capitalizing on a window of opportunity during which 
disease-modifying strategies targeting inflammatory 
processes may prove most efficacious for OA prevention 
and treatment.23 
 
Similar to RA, OA exhibits elevated serum IL-17 levels in 
patients with early knee OA, implicating a potential 
pathogenic role in the disease 80,81. The correlation 
between serum IL-17 and the severity of knee OA-
related pain further underscores its potential as a marker 
for early intervention. Notably, among the IL-17 family 
cytokines, IL-17A stands out as the most extensively 
studied, with a demonstrated capacity to induce the most 
potent changes within the transcriptome of synovium and 
chondrocytes in OA patients.82 
 
Post-traumatic osteoarthritis (PTOA) resembles early OA 
in its inflammatory processes. Following an injury, the 
immune system acts as an initial responder at the injury 
site, aiding in debris removal and crucial tissue 
remodeling for repair. Cytokines released by immune 
cells stimulate tissue reconstruction, including 
differentiation of stem cells, development of blood 
vessels, activation of resident tissues, and synthesis of 
ECM. The specific tissue environment after trauma 
influences how the immune system reacts. Both tissue-
specific senescence-associated secretory phenotypes 
(SASPs) and resulting immune responses likely determine 
subsequent tissue repair, fibrosis, or progression to 
chronic disease. Joint trauma triggers an immune 
response through signaling molecules like damage-
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associated molecular patterns (DAMPs). Interestingly, 
addressing mechanical injuries or instability does not 
seem to prevent the development of PTOA, indicating 
additional biological mechanisms beyond mere wear and 
tear or pure inflammation.83,84 
 
A body of research consistently suggests that the 
presence of synovitis within the context of OA correlates 
with more intense pain and greater joint dysfunction. 
Additionally, it may serve as a predictive marker for 
accelerated rates of cartilage loss within specific patient 
populations.22 Given this nuanced understanding of OA 
pathogenesis, it becomes apparent that these 
inflammatory regulators represent potential targets for 
therapeutic interventions aimed at mitigating both 
symptomatic manifestations and the structural 
deterioration of the affected joints.75 
 
Regrettably, though our current understanding of DEL-1's 
roles in cartilage and its potential involvement in OA 
remains largely unexplored, as underscored by 
Rosenthal, Gohr, et al.85 in 2011. Though, a compelling 
challenge persists in our quest for a pharmaceutical 
intervention capable of finely tuning the host’s immune 
response, aiding in the efficient eradication of pathogens, 
mitigating excessive immune reactions, and expediting 
the recuperative process following an immune response, 
all while curtailing collateral tissue damage. 
Consequently, our work and the present invention sheds 
more light to the above and endeavor to furnish 
compounds and their application to artfully manipulate 
the host’s immune response at distinct and precise 
locations, as well as various stages. This includes the 
strategic limitation of hyperactive responses such as the 
dreaded "cytokine storm" occurring, for instance, within 
lung tissue or inflamed arthritic joint. The overarching aim 
is to avert harm to vital tissues and organs, thereby 
facilitating a swift return from such pathological states to 
a state of physiological equilibrium and homeostasis. 
 

Conclusion 
Current understanding of developmental endothelial 
locus 1's roles in articular cartilage and its potential 
involvement in arthritis remains largely unexplored. A 

compelling challenge persists in our quest for a 
pharmaceutical intervention capable of finely tuning the 
host’s immune response. There is a critical need to skillfully 
manipulate the host’s immune response at distinct and 
precise locations, as well as at various stages, including 
the strategic limitation of hyperactive responses such as 
the dreaded "cytokine storm." Our present findings 
reveal that 2-Hydroxyisocaproic acid in vitro inhibits the 
fragmentation of DEL-1 by dose-dependently 
modulating and reducing matrix metalloproteinase-8 
activity. Notably, the reversible inhibition of MMP-8 by 
2-Hydroxyisocaproic acid does not involve covalent 
bonding, positioning it as an enzyme modulator or down-
regulator rather than a direct inhibitor. This property of 
active matrix metalloproteinase-8 reduction by 2-
Hydroxyisocaproic acid opens new avenues for 
therapeutic intervention, particularly in managing 
excessive inflammatory responses, such as the "cytokine 
storm" observed in lung tissue inflammation or in arthritic 
joints like those affected by osteoarthritis. 
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