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ABSTRACT

Osteoarthritis affects approximately half a billion people worldwide and
creates a significant economic burden, accounting for up to 2.5% of the
national gross domestic product. Despite extensive research, a disease-
modifying osteoarthritis drug remains unavailable. 2-hydroxyisocaproic
acid is a physiological substance and the 2-hydroxy analogue of the
essential amino acid leucine. This study investigates the potential of 2-
hydroxyisocaproic acid to down-regulate key proteases involved in articular
cartilage degradation. Specifically, we explore the use of 2-hydroxyisocaproic
acid to inhibit the activity of matrix metalloproteinase 13 and a disintegrin
and metalloproteinase with thrombospondin motifs 5, aiming to reduce the
degradation of type Il collagen and aggrecan, respectively, in osteoarthritis.
Our findings demonstrate that 2-hydroxyisocaproic acid modulates and
reduces the activity of both matrix metalloproteinase 13 and a disintegrin
and metalloproteinase with thrombospondin motifs 5. Notably, 2-
hydroxyisocaproic acid’s reversible inhibition of these enzymes does not
involve covalent bonding, positioning it as an enzyme modulator or down-

regulator rather than a direct inhibitor.

© 2024 European Society of Medicine 1


mailto:tuomo.karila@outlook.com

Introduction

Arthritis manifests in over 100 distinct forms, among
which osteoarthritis (OA) is predominant. This
condition is characterized by structural impairments
in hyaline articular cartilage (AC), compromised
subchondral bone integrity, synovial tissue
hypertrophy, enhanced vascularity, and instability
of tendons and ligaments."? The etiology of OA,

however, remains not fully elucidated.?

Globally, OA was identified as the fourth leading
cause of disability in 2020.* By 2021, over 22% of
individuals aged over 40 were suffering from knee
OA, affecting an estimated 500 million people
worldwide.® In the United States alone, there were
54 million diagnosed cases and an additional 66
million self-reported cases in 2019.¢ Beyond being
a prevalent ailment second only to back pain, OA
accounts for an annual financial impact of $460
billion in medical expenses in the U.S.® Beyond
personal hardship, the socioeconomic implications
in developed nations are profound, accounting for

1.0% to 2.5% of the gross domestic product.’

Emerging evidence suggests that the primary
pathological events in OA involve changes in AC,
leading to subsequent synovitis and subchondral
bone degradation.? It was not until the 1980s that
the conceptual understanding of OA evolved from
mere mechanical "wear and tear" degradation to a
disease characterized by specific biochemical
pathways causing AC damage.”” OA is now
recognized as a final common pathway influenced
by multiple factors, most notably age, genetic
predispositions, joint trauma, altered biomechanics,
and obesity.">" This pathogenesis is likely triggered
by trauma, leading to inflammation and the release
of matrix-degrading enzymes,” with altered
biomechanical stress contributing to changes in
chondrocyte metabolism, degradation of the
specialized cartilage extra cellular matrix (ECM), and
apoptosis of articular chondrocytes.' Inflammation
is now strongly linked to the pathogenesis of OA,
with synovitis often arising as a secondary response

to cartilage damage, serving as a crucial link in the
initiation and progression of the disease.™

Experimental studies, such as a single ex vivo impact
to human cartilage, have shown cell death at the
impact site, immediate release of inflammatory
cytokines like interleukine-6 (IL-6) and tumor necrosis
factor-a (TNF-a), radial progression of apoptosis,
and cartilage degeneration extending to adjacent
non-impacted areas." This disruption of chondrocytes'
resting state may be viewed as an injury response
that triggers developmental programs, leading to
matrix remodeling, inappropriate hypertrophic

maturation, and cartilage calcification.™

The initial loss of aggrecan is a critical early event
in OA, beginning at the joint surface and extending
to deeper zones, followed by collagen fibril
degradation and mechanical tissue failure.”
Although proteoglycans are more remodeled under
physiological conditions than collagens,® the
sequence of degradation in the cartilage matrix
components during OA development remains
complex; collagen degradation typically follows
the loss of aggrecan. Aggrecan loss can be reversed,
but collagen degradation is irreversible, though
cartilage cannot be repaired once collagen is lost.”!
Eventually, a feedforward loop ensues as AC
fragments, broken down by chondrocyte-derived
proteinases, irritate the synovium, leading to
secondary synovitis and further increases in proteases
and inflammatory cytokines from synovial cells, thus
perpetuating the disease cycle.”? OAis also associated

with low-grade systemic and joint inflammation. 82324

The metalloproteinase families, particularly a
disintegrin and
thrombospondin  motifs (ADAMTSs) and matrix
metalloproteinases (MMPs), are key mediators of

metalloproteinase with

cartilage destruction in OA.%

The hallmark of OA pathology is extensive AC
damage.”® MMPs, a family of calcium-dependent
and zinc-containing endoproteinases, vary in
substrate specificity, cellular localization, activation,
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and inducibility, belonging to the metzincin protease
superfamily.! They possess broad substrate
specificities, degrading not only ECM and basement
membranes (BM) but also various bioactive non-
matrix proteins, with 23 different types of MMPs
encoded by 24 human genes.?® MMPs also process
and release cytokines, chemokines, insulin-receptor,
and growth factors from their precursors or cryptic

sites.?28

A principal collagenolytic enzyme, MMP-13 targets
mature AC for degradation and is predominantly
expressed in connective tissue.” It degrades type
Il collagen in cartilage, as well as proteoglycans,
types IV and X collagens, osteonectin, and perlecan
in AC.*° Clinical studies have associated high MMP-
13 expression with AC destruction.®® MMP-13's
role in early OA development is significant, being
five to ten times more effective at degrading type
Il collagen than other collagenases.? It plays a dual
role in ECM destruction, degrading both collagen
and the proteoglycan aggrecan.®

The  ADAMTS

metalloproteinases comprises nineteen members

family of secreted zinc
known for their ability to bind and degrade

extracellular  cartilage  matrix
ADAMTS-4 and -5 are the primary mediators of
aggrecan cleavage in situ, playing significant roles

in AC degradation.®*3

components.®

LD-2-Hydroxy-isocaproic acid (HICA, also known as
leucic acid), an organic acid with the chemical
equation C4H1203 and a molecular weight of 132.2
g/mol, is an end product of leucine metabolism in
human muscle and connective tissue, naturally
occurring in mammalian organisms. During fasting,

serum concentrations of HICA increase.®

2-Hydroxyisocaproic acid, classified within the 2-
hydroxycarboxylic acid group of amino acid
metabolites, is part of the broader category of
carboxylic acids, characterized by a carboxyl group
(-COOH). This compound, among other carboxylic
acids, has been reported to inhibit various MMPs,

particularly with derivatives of glutamine inhibiting
MMP-8.3¢ Some amino acid derivatives have shown
in vitro effects on inhibiting connective tissue
breakdown, and some molecules have been patented
for treating degenerative joint diseases, though

none are currently in clinical use.

In OA, the loss of aggrecan facilitates MMP-13
mediated degradation of exposed type Il collagen.
Both ADAMTS-5 and MMP-13 remain compelling
therapeutic targets, provided that their side effects
on physiological functions can be minimized.®
Despite the absence of a disease-modifying
osteoarthritis drug (DMOAD), the broad-spectrum,
low-grade inhibition of MMPs could address the
multifactorial nature of the disease more effectively
than targeting a single enzyme, which might cause
uncontrollable systemic damage.*’

Demonstrating efficacy in inhibiting a range of
proteases, HICA has been effective against human
MMP-2, -8, and -9, as well as neutrophil elastases
and cathepsin G in vitro.®%*! This study aims to
explore HICA's impact on key AC-degrading
enzymes, offering a new potential therapeutic
approach for OA.

Material and Methods

This experiment was carried out to demonstrate
inhibition of recombinant human a disintegrin and
metalloproteinase with thrombospondin motifs 5
(ADAMTS-5/Aggrecanase 2, #CC1034, Chemicon,
International. Inc.) and
metalloproteinase 13 (MMP-13, #30100802, BioTeZ,
Berlin-Buch, Berlin, Germany) mediated break down
of aggrecan (CC1890, Sigma-Aldrich, Darmstadt,
Germany) by 10% rasemic D,L-2-hydroxy-isocaproic
acid (HICA, Leios OU, Tallinn, Estonia) at pH 7.4. As
positive inhibitor controls llomastat (llo, #CC1010,
Millipore) and chlorhexidine (CHX, Corsodyl®, [2
mg/ml] (GlaxoSmithKline, Breandby, Denmark) were
used and 50 mM Tris-HCl-buffer (TNC): pH 7.5; 0.2
M NaCl; 1.0 mM CaCl,) was used as neutral assay

human matrix

buffer solution in this study.*?
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Briefly, MMP-13 was preincubated 1 hour at 37°C
with p-aminophenylmercuric acetate (APMA, A9563,
Sigma-Aldrich) to optimally activate (pro)MMP-13.
As substrate, aggrecan was added and then
ADAMTS-5 or with APMA activated MMP-13 as
catalytic/proteolytic enzyme, TNC, as neutral control,
and then 10% HICA, CHX or llo as protease/MMP-
inhibitors were added. After that, they all were
incubated together to find out the effects of different
inhibitors on time function at a temperature of +37°C
from 1 hour (h) to 2 days (d). Thus, the reactions were
individually terminated by boiling with modified
Laemmli's buffer. When the last incubation time
was finished the samples were electrophoresed by
8% SDS-PAGE. After the electrophoresis the
defragmentation of aggrecan was visualized using
Silver Stain Pierce® #24612, Thermo Fisher
Scientific Inc., Vantaa, Finland). More details about
the volumes of samples used in the experiment are
described in the figure legends.

In experiment two MMP-13 activity was measured
by catalytic activity assay as described previously.*
In brief, MMP-13 was captured from assay buffer
monoclonal

solution using MMP-13-spesific

antibody-coated 96-well plates. The wells were

washed three times with PBS-T (phosphate buffered
saline solution containing 0.05% [v/v] Tween-20 and
incubated with 125-pl assay buffer (50 mM Tris-HCI,
pH 7.6, 150 mM NaCl, 5 mM CaCly, 1 uM ZnCl; and
0,01% [v/V] Brij-35), to which 15 pl (50 pg/ml) modified
pro-urokinase (UKcol) and 10 pl (6 mM stock)
chromogenic substrate S-2444 was added. Color
development was recorded by measurement of
Auygs using a Titertek Multiskan 8-channel photometer.
For measurement of total activity (already active plus
latent MMP-13) in biological fluid, the immobilized
MMP-13 was incubated With assay buffer containing
0.5 mM APMA for 2h, after which UKcol and S-2444

were added and activity was recorded.®

Results

In the first experiment, we show that 10% D,L-2-
hydroxy-isocaproic acid (HICA) inhibited the
breakdown of aggrecan by both ADAMTS-5 and
MMP-13 proteases (lanes 5 and 11, respectively).
Figure 1 shows that HICA prevents break down of
aggrecan. Therefore, both ADAMTS-5 and MMP-13
may be considered to be modulated enzyme
activities by HICA rather than prevent enzyme activity
like by chlorhexidine (CHX) in our study (Figure 1).

Figure 1. lllustrates the inhibition of recombinant human a disintegrin metalloproteinase with thrombospondin
motifs 5 (ADAMTS-5) and human matrix metalloproteinase 13 (MMP-13) mediated break-down of aggrecan by

10% rasemic D, L-2-hydroxy-isocaproic acid (HICA). Molecular weight markers are indicated left. Figure 1 shows
that 10% HICA inhibited the breakdown of aggrecan by both ADAMTS-5 and MMP-13 proteases (lines 5 and
11, respectively). Figure 1 shows that HICA prevents break down of aggrecan. Therefore, both ADAMTS-5 and

MMP-13 may be considered to modulate enzyme activity rather than prevent enzyme activity like chlorhexidine

in our study. Chlorhexidine (CHX). llomastat (llo)

Sample with concentrations in lines:

1. 0,25 pl molecular weight standards, Bio-Rad
2.4,2 ul Aggrecan (0,5 pg/pl)

3. 4 pl ADAMTS-5 (0,1 pg/pl)

4. 4,2 ul Aggrecan + 4 yl ADAMTS-5 + 6 pl TNC-buffer, inc: 2d

ol

oo N O

. 4,2 ul Aggrecan + 4 yl ADAMTS-5 + 6 pl 10% HICA, inc: 2d

. 4,2 ul Aggrecan + 4 pyl ADAMTS-5 + 6 pl CHX (2 mg/ml), inc: 2d

.1 pI MMP-13 (0,2 pg/pl) + 3 pl 2 mM APMA + 6 pul TNC

. 4,2 ul Aggrecan + 1 pl MMP-13 (0,2 pg/pl) + 3 pl 2 mM APMA + 6 pyl TNC, inc: 1h

© 2024 European Society of Medicine 4
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9.4,2 pl Aggrecan + 1 yl MMP-13 (0,2 pg/pl) + 3 pl 2 mM APMA + 6 pul TNC, inc: 2d

10. 4,2 pl Aggrecan + 1 pl MMP-13 (0,2 pg/pl) + 3 pl 2 mM APMA + 6 pul CXH, inc: 2d

11. 4,2 yl Aggrecan + 1 pl MMP-13 (0,2 pg/pl) + 3 pl 2 mM APMA + 6 ul 10% HICA, inc: 2d
12. 4,2 yl Aggrecan + 1 ul MMP-13 (0,2 pg/pl) + 3 ul 2 mM APMA + 6 pl llo. inc: 2d

HICA's reversible inhibition of ADAMTS-5 and MMP-
13 does not eventually involve covalent bonding
and should thus be regarded as an enzyme modulator
or down-regulator rather than a direct inhibitor.

In the second experiment, we demonstrated an
inhibition of MMP-13 mediated break-down of

e

collagen by rasemic D,L-2-hydroxy-isocaproic acid
(HICA), which is shown in Figure 2. HICA was found
to exert effective inhibition of the activity of MMP-
13 at a concentration level 25 pg/ml. At 24 ng/ml
MMP-13 concentration there was 73% decreased
activity noted and with 1.5 ng/ml concentration 72%
decrease (Figure 2).
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Figure 2. Inhibition of matrix metalloprotease 13 (MMP-13) activity by rasemic D,L-2-hydroxy-isocaproic acid

(HICA) using modified pro-urokinase and chromogenic S2444 as substrate. MMP-13 activity was measured

as described previously.* For a more detailed description, please refer to the Material and Methods section.
HICA was found to effectively inhibit the activity of MMP-13 at a concentration of 25 pg/ml. At an MMP-13

concentration of 24 ng/ml, a 73% decrease in activity was noted, and at a concentration of 1.5 ng/ml, there

was a 72% decrease.
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Discussion

The aim of this study was to evaluate if HICA can
inhibit key proteases involved in AC degradation.
HICA was found to relatively inhibit or to down-
regulate the human ADAMTS-5 aggrecanase when
aggrecan served as the substrate. Similarly, human
MMP-13 collagenase activity was also relatively
inhibited, both when aggrecan and collagen were

used as substrates.

Since the late 1970s, over 56 MMP inhibitors have
been explored as clinical candidates, but only three
have been clinically evaluated for cardiovascular
indications: doxycycline for acute coronary syndrome
and periodontal disease, Batimastat for coronary
stent restenosis, and PG-116800 for preventing post-

ischemic left ventricular dilation.> To date, no MMP-
13 inhibitor has reached clinical practice.* Since
2005, MMP inhibitors have been targeted for cancer
(24 drugs), arthritis (27 drugs), and cardiovascular
disease (10 drugs).”®

Inhibitors of matrix metalloproteinases MMPs could
be effective in preventing the destruction of AC.
Carboxylic acids, particularly tetrahydroisoquinoline-
3-carboxylates, have shown promise in inhibiting
MMP-8 42 Nakai and colleagues from Scripps Research
Institute identified potent MMP-13 inhibitors through
high-throughput screening and activity-based
protein profiling.*® Adhikari and colleagues designed
glutamine derivatives that initially showed potential
in inhibiting MMPs.%

© 2024 European Society of Medicine 6



Limited bioavailability and lack of enzyme selectivity
have hindered the development of MMP inhibitors.
Peptidomimetic compounds with a hydroxamic acid
moiety were noted as very potent MMP inhibitors
in the early phase of OA but still exhibited poor
bioavailability and little specificity for targeted
MMPs. Additionally, hydroxamic acid inhibitors are
rapidly metabolized by the liver's first-pass
metabolism and require frequent administration to
maintain therapeutic plasma levels. More selective
compounds are needed due to the overlap of
function among individual enzymes and the complex
inter-relationships involved in the expression,
activation, and natural inhibition within the MMP
family, which may necessitate multienzyme inhibition
to ensure efficacy for targeted diseases.*® Although
PF152 seemed to be a very promising molecule
that dose-dependently and selectively inhibited
MMP-13 in experimental models, it was shown to
cause nephrotoxicity by affecting the organic anion
transporter 3.21:22

Amino  acid  derivatives such as = L-2-
hydroxyisocaproate (HICA), a leucine analog, have
been reported to influence protein synthesis similarly
to L-leucine, exhibiting multiphasic responses that
include inhibition of protein degradation at
concentrations as low as 0.1 mM.22 HICA has also
been identified as an inhibitor of other proteinases™
and is considered an anti-catabolic agent in clinical
and experimental studies.>>** HICA is classified as
“anti-catabolite” and is widely used in the body

building community.*

A physiological substance, HICA has a plasma
concentration in healthy adults of 0.25+0.02 pM,
and in circulation, it is not bound to plasma proteins.®
Normal child serum concentration is 0.71+£0.51 uM
and range 0.02-2.04 (n=10).%> It is found in human
plasma, saliva, urine, amniotic fluid, and breast milk.©>
¢ Foods such as certain cheeses, sourdough, beer,
radish, wines, and soy sauce also contain HICA 7%

Effectively absorbed through active transportin the
human bowel, HICA can bypass the liver's first-pass

metabolism. 2% |t can also be assumed that HICA
is also passively absorbed from alimentary canal by
diffusion 62638 Thus, HICA does reach the target
tissue, the systemic circulation, when administrated

848 Topically, HICA is non-toxic even at high

orally.
doses and HICA is not cytotoxic nor genotoxic at
concentrations <10 mg/ml, regardless of the exposure
time, although it was cytostatic at all tested
concentrations. HICA retained about 70% of the

osteogenic differentiation potential at 1 mg/ml.282

Aggrecan, the predominant proteoglycan in
cartilage, is composed of chondroitin sulphate and
keratan sulphate binding to the linear core protein
hyaluronic acid backbone. It provides AC structural
rigidity, compressibility, and collagen elasticity.® &
Aggrecan gives a low coefficient of friction on the
joint surfaces and gives the cartilage protective

resiliency.?

Two major families within the metalloproteinase
class, namely a disintegrin and metalloproteinase
with thrombospondin motifs (ADAMTSs) and the
matrix metalloproteinases (MMPs), are principal
agents of cartilage destruction in arthritic conditions.?
Specifically, ADAMTS-4 and -5 are pivotal in the
cleavage of aggrecan in situ, significantly contributing
to cartilage degradation.?*** In healthy joints, distinct
locations within the cartilage are mapped by MMP
and aggrecanase neoepitopes, indicating that these
proteolytic enzyme groups operate at different
sites during the normal turnover of aggrecan.”?

The degradation of AC in arthritic diseases is
primarily mediated by MMPs and ADAMTSs, with
MMP-13 being a major collagenolytic enzyme in
this process (Vincenti and Brinckerhoff 2002). It is
critical for the progression of OA and is a prime
target for pharmacological intervention.?

Population growth, especially among the elderly,
and rising obesity rates do not entirely account for
the sharp increase in total knee replacements
observed in recent decades. It is reasonable to

assume that additional factors are at play. A
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notably high increase in knee replacements among
younger individuals is likely linked to an increase in
adolescent knee injuries and broader criteria for
undergoing this procedure.” Globally, joint
replacement surgeries are expanding at an annual
rate of 10%, with 95% performed on patients with
OA.” Addressing therapeutic targets at various OA

stages is critically needed.*

Despite successful anterior cruciate ligament (ACL)
repairs, which involve reconstruction of torn
ligaments, 45%-50% of these patients will eventually
develop OA.?#% Studies comparing OA prevalence
between reconstructed and healthy, operated knees
show a higherincidence of OA.% This suggests that
ACL reconstruction does not prevent OA, with a
threefold increase in OA prevalence observed in
knees post-reconstruction compared to their
healthy counterparts.

Bluteau et al.”® observed a significant surge in
MMP-13 and MMP-3 expression following ACL
surgery, with no change in the expression of tissue
inhibitors of MMPs (TIMP). The expression of MMP-
13 genes rose sharply post-surgery and remained
elevated. Similarly, a marked increase in MMP-13
gene expression was noted immediately after ACL
transection, which continued at high levels.
Corresponding increases in MMP-13 mRNA and
protein were observed in the synovium and meniscus.
The joint cavity releases substantial amounts of
MMPs into the joint fluid, potentially disrupting the
balance between tissue synthesis and degradation,
thus impeding ACL healing and exacerbating

osteoarthritis.ZZ

The inhibition of ADAMTS-5 may safeguard against
cartilage damage and aggrecan loss following OA
induction via surgical destabilization of the medial
meniscus.” It is noteworthy that blocking ADAMTS-
5 activity might also reduce pain, according to

preclinical studies.®

Conclusion

Proteases play a crucial role in normal physiological
processes, making their complete inhibition
unfeasible. Despite the incomplete understanding
of the arthritic disease and its destructive progression,
it is essential to modulate excessive protease activity
to restore physiological balance. Although significant
efforts have been made to develop effective therapies
or disease-modifying drugs for osteoarthritis and
its progression, success has been limited. This study
suggests that D,L-2-hydroxy-isocaproic acid, with
its ability to modulate enzyme activity and inhibit
key proteinases, may offer therapeutic benefits
across all stages of OA. The aim of this study was
to evaluate the potential of HICA to inhibit key
proteases involved in AC degradation. HICA was
found to significantly inhibit or down-regulate human
ADAMTS-5 aggrecanase activity when aggrecan
was used as the substrate. Similarly, human MMP-13
collagenase activity was also significantly inhibited.

© 2024 European Society of Medicine 8
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