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ABSTRACT

Artificial intelligence’s capability to analyze and interpret
complex data is transforming neuro-oncology by enhancing
the precision of diagnosis and enabling personalized
treatment plans. Particularly, applications in radiogenomics
are instrumental in identifying molecular markers from imaging
data, potentially reducing the need for invasive procedures
and accelerating molecular diagnostics. This review discusses
various artificial intelligence methodologies, from machine
learning to deep learning, mentioning a number of their
current use cases and the challenges faced in clinical
integration. In addition, future directions, such as multimodal
data integration and the need to address technical and ethical

implications, are highlighted.
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Introduction

The emergence of artificial intelligence (Al) in
healthcare, particularly in neuro-oncology,
marks a transformative shift in traditional
medical practices. Al technologies are
increasingly integrated into various aspects of
patient care, from diagnostics to treatment
planning’>. In neuro-oncology, Al's ability to
analyze complex medical data rapidly and
precisely offers significant promise. It can
identify subtle patterns in imaging, genetic
information, and clinical data that might elude
human detection, leading to better diagnosis
of tumors. Furthermore, Al-driven models can
predict patients' responses to various
treatments, enabling personalized therapy
regimens that are tailored to individual

genetic profiles and disease characteristics*®.

Imaging techniques are rapidly advancing as

non-invasive technologies, becoming
increasingly essential in the diagnosis and
prognosis of various diseases. The use of

radiological imaging data to predict genomic

and  molecular markers, known as
radiogenomics, facilitates accurate lesion
categorization and treatment planning.

Additionally, the application of Al techniques
to imaging for predicting genomic information
or treatment responses—often imperceptible
to the human eye—is emerging as a
prominent research area in the intersection of
Also,

imaging sequences
(including T1-weighted imaging (T1WI), T2WI,
T2  fluid-attenuated
(FLAIR), and

advanced MRI techniques, such as diffusion,

Al and medicine. compared to

conventional tumor
inversion  recovery

contrast-enhanced  T1WI),

perfusion, and spectroscopy, can provide

additional information about the tumor's

pathophysiology, which enhances diagnostic
and prognostic insights and aids in targeted
histopathological evaluation’®. Introducing
these new techniques, which reflect additional
information, has created new opportunities

for applying Al.

This paper provides a comprehensive review
of Al imaging technologies in neuro-oncology.
We aim to illustrate if Al has the potential to
enhance the precision and effectiveness of
treatments by leveraging predictive analytics
to assess molecular markers and predict
therapeutic outcomes. This review highlights
the crucial role of radiological imaging as a
tool in the Al-enhanced diagnostic and
treatment processes within neuro-oncology.

Foundations of Al in Medicine:

A broad range of technologies designed to

mimic human cognition in analyzing,
interpreting, and comprehending complex
data is encompassed by Al. Machine learning
(ML), as a part of Al, is characterized by
machine algorithms that can autonomously
identify intricate patterns in data, execute
tasks, and incrementally enhance their pattern
recognition using gathered information. Deep
learning (DL), a subset of ML, consists of
multiple layers of interconnected artificial
neurons that autonomously learn to represent
features from data. This occurs without the
necessity for manual feature engineering,
which sets it apart from traditional ML

algorithms?1°,

In medical applications, Al technologies are
different

segmentation, object detection, classification,

employed for tasks, including
and generation. Segmentation is the process

of semantically dividing individual pixels of an
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image into areas of interest and background,
which is crucial in medical imaging for
isolating organs or quantifying abnormalities
such as tumors. By applying this technique,
tumor volumetric measurements can be
accurately performed. Object detection
identifies and locates objects within an image

using rectangular bounding boxes but does

not precisely delineate the tumor. Classification
categorizes what is present in the image, such
as 'glioblastoma(GBM)’ or ‘lymphoma’, ‘normal
white matter’, etc. Generative Al creates new
images or data from existing datasets, which
is valuable for expanding datasets to train Al

systems.(Figure-1)

a )

FLAIR

Classification model Seg.ment.atior.n model
classifying MRIs into delineating different

T1, T2, CE-T1, and parts of the GBM

K FLAIR / \ tumor on MRI / K

A R & D)
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rectangle around the of MRI for expanding

tumoral area / \ datasets /

Figure 1 - Examples of Different Al Model Types: T1-weighted (T1), T2-weighted (T2), Fluid-Attenuated Inversion
Recovery (FLAIR), Contrast-Enhanced T1-weighted (CE-T1), Glioblastoma (GBM), Magnetic Resonance Imaging (MRI).

Another way to categorize Al models in
medicine involves classifying them based on
their medical tasks. Diagnostic models, for
example, may be designed to predict
genomic or epigenomic information directly
from imaging data, a task beyond human
capability. Prognostic models utilize imaging
alone or in combination with non-image data
(models that use different kinds of data are
called multimodal  models), including
molecular and clinical information, to assess
disease prognosis or evaluate patient survival.
Lastly, there are models that assess treatment
response, which determines whether a treatment
is affecting a tumor and possibly estimates the
magnitude of the response. These may be
intermingled in various applications, such as a

model that diagnoses a tumor grade and

predicts a genomic biomarker. These can then
be used to provide a prognosis, all of which

may influence treatment planning™'.

It is important to note that to develop an
accurate Al model, a sufficiently large dataset
of images paired with labels like genomic or
molecular information for each case s
essential. The dataset must be high-quality
and diverse enough to enable the model to
learn different patterns for accurate prediction
and ideally be sourced from multiple institutions
with diverse populations. Multi-institutional
datasets ensure models’ generalizability and

applicability across different institutions.

Radiogenomics

Genetic mutations play a crucial role in the

development of brain tumors; changes in
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cellular genes might transform normal cells
into cancerous ones. In modern medicine,
with detailed tumor classification and various
treatment options, identifying these mutations
during diagnosis is crucial for selecting the
optimal treatment'?. The traditional and gold-
standard methods for assessing molecular
markers typically involve obtaining tissue
samples and conducting histological assays to
determine genomic or epigenomic profiles.
However, brain tumor resection may not
always be safe based on the tumor location,
and biopsy-based methods can lead to
complications. Consequently, noninvasive
alternatives are crucial for acquiring genetic
and histologic information. Radiogenomics
operates on the underlying assumption that
subtle, often undetectable patterns in medical
imaging may correlate with genomic and
epigenomic markers. Al models aim to
capture this subtle quantitative information

and transform it into valid genomic predictions.

The most-studied molecular marker in brain
tumors is isocitrate dehydrogenase (IDH)
mutation status. The IDH 1 and 2 enzymes
oxidize isocitrate to a-ketoglutarate and thus
play a crucial role in energy production and
maintaining the redox balance of the cell.
Mutations in the genes for these enzymes
(IDH1 and IDH2) are strongly linked to glioma
and other forms of cancer and are associated
with distinct clinical characteristics. Patients
presenting with gliomas carrying the IDH-
wildtype gene typically face a poorer
prognosis than those with IDH mutations.
The most common methods for detecting IDH
mutations are immunohistochemistry and
Sanger DNA sequencing, though a wide
range of other DNA-based techniques also

exist'*". While Sanger sequencing has a low

limit of detection, next-generation
sequencing remains prohibitively expensive.
Therefore, the search continues for a reliable
and robust pathological gold standard'®'.
Numerous studies have been published that
utilize ML algorithms and imaging to detect or
classify glioma tumors into IDH mutated or
wild type, reporting varying levels of
success'. A meta-analysis of 26 studies
involving 3,280 patients found that radiomics
features had a pooled sensitivity of 79% (95%
Cl: 76, 83) and specificity of 80% (95% Cl: 76,
83) for detecting IDH mutations'. Another
study using three centers’ datasets applied
ML techniques and achieved an 85.45%
accuracy rate in classifying IDH status®. One
study showed that training models to classify
IDH and 1p19g-codeletion status (evaluating
multiple molecular markers) could detect the
genomic mutation better than a single gene,
with an overall accuracy of 85.7%. They also
used diffusion-weighted MRI and showed that
using those sequences rather than anatomical

images improved accuracy to 88.8%'.(Figure-2)
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Figure 2 - Images A and B display tumors characterized by wild-type isocitrate dehydrogenase (IDH), while images C

and D show examples of IDH mutated. Artificial Intelligence is employed to identify and distinguish patterns in these

tumors that may not be readily apparent to the human eye.

Radiogenomics has also been applied to

pediatric  neurooncology. For instance,
diagnosing medulloblastoma (MB) subgroups
through molecular marker categorization
provides a noninvasive, presurgical approach
to MB risk stratification?. The status of these
molecular subgroups predicts prognosis and
unlocks the potential for more precise
treatment. In MB patients, the Wingless
(WNT) pathway, when mutated, generally
leads to better outcomes and may allow for
less aggressive treatment approaches. The
Sonic Hedgehog (SHH) pathway varies more
in its implications based on age and specific
mutation subtype, influencing treatment and
prognosis differently. The other two categories,
group 3 and group 4 tumors, are often
provisionally bundled as non-WNT and non-
SHH MB due to a lack of identification of
driver mutations®. A retrospective study
involving MRI data from pediatric patients
across 12 international sites used ML to
differentiate these clinically relevant MB
subgroups—WNT, SHH, Group 3, and Group
4—with impressive precision. By extracting
1800 radiomic features from T2 and contrast-
the study

developed a two-stage classifier that effectively

enhanced T1-weighted scans,

distinguished  non-WNT and  non-SHH
subgroups and then further identified WNT
from SHH with a binary F1 score of 95% for
WNT, demonstrating its superior diagnostic
ability. Another classifier differentiated high-
risk Group 3 from Group 4 with an AUC of
98%, showcasing the potential of Al to
provide noninvasive, presurgical insights that
could influence treatment plans and
potentially lead to more targeted genetic
analyses, all while avoiding the complications
and limitations associated with invasive and

expensive molecular testing®.

Other genomic factors, including 1p/19q co-
deletion, Tumor Protein 53, and B-Raf proto-
oncogene, among others, are critical in
diagnosing and prognosticating neuro-
oncological diseases”?. We have highlighted
only a select few studies in the field of
radiogenomics detection; a comprehensive

review of all examples is beyond our scope.

Al in Predicting Response to

Therapy
The ability of Al to predict the effectiveness of
treatment early in the process can result in

optimizing treatment regimens and could
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spare patients from ineffective therapies. For
instance, Al algorithms can analyze historical
treatment data alongside real-time patient
data to predict how a patient might respond
to a particular therapy based on genetic,
phenotypic, and clinical characteristics?>".
This predictive capability enables oncologists
to tailor treatments more precisely and to
make informed decisions about whether to
continue, adjust, or halt a given therapeutic
strategy. This approach enhances the
potential for successful outcomes and plays a
role in personalized medicine, where treatment
plans are increasingly based on individual

patient profiles rather than standard protocols.

An important Al application in neuro-
oncology is its use in predicting treatment
response by differentiating pseudoprogression
(PsP) from true progression (TP) in patients
with GBM. PsP and TP often manifest similar
imaging characteristics; however, PsP typically
stabilizes or resolves without the need for
aggressive treatment, whereas TP demands
more intensive management. This distinction
is vital, as it directly impacts treatment
decisions and patient outcomes®. Currently,
there is no gold standard imaging technique
or feature that can reliably distinguish
between PSP and TP. One recent example
demonstrating the capabilities of DL, a 3D-
Densenet121 model distinguished PsP from
TP that were considered indeterminate by
neuroradiologists with a 76.4% accuracy,
highlighting the potential of Al to interpret
complex  multi-parametric ~ MRl  data
effectively®. Liu et al. introduced an ensemble
DL model that utilized weighted gradients to
enhance MRI analysis, achieving 90.20%
accuracy. They also visualized maps of MRI

regions to boost interpretability and gain

clinician trust®®. Adding to the arsenal, Li et al.
deployed a deep convolutional generative
adversarial network that distinguished the
imaging features of PsP versus TP with a
notable accuracy of 92%*. Al's utility extends
to other imaging methods, such as amino acid
positron emission tomography imaging and
ML algorithms that analyze dynamic contrast-
enhanced and diffusion-weighted imaging,
offering deeper insights into GBM post-
behavior®*.  The
refinement and validation of these Al models
their
integration into clinical practice.

treatment ongoing

are crucial to ensure successful

Predicting treatment response in brain

metastasis is another use case for Al

algorithms. Notably, they are wused in
managing patients with brain metastases
undergoing stereotactic radiosurgery (SRS).
Utilizing ML models that integrate multimodal
MRI radiomics and clinical risk factors,
researchers have demonstrated exceptional
capability in identifying patients at risk of local
post-SRS,

accuracies with AUC values as high as 0.95%.

failure achieving  predictive
This showcases how ML models analyze

patient-specific, multi-modal information to

avoid treatment options likely to fail.
Furthermore, Al-driven tools such as
MEtastasis ~ Tracking ~ with  Repeated

Observations (METRO), which automatically
measures the largest 3D tumor diameter,
enhance the tracking and measurement of
brain metastases, correlating highly with
traditional manual methods and offering more
reliable assessments of treatment efficacy®.
Technologies such as these represent a
significant leap forward in customizing and
with  brain

enhancing care for patients

metastases.
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Practical Considerations
The application of published models in

radiology faces significant barriers, including
the availability of high-quality ground truth
data, the creation of generalizable, reproducible,
and interpretable methods that are robust to
the continued improvements/changes in MRI
techniques, and the incorporation of these
methods into practical workflows. Addressing
each of these challenges requires tailored,
case-specific solutions®. Here, we outline
several of these considerations and barriers.

One of the primary struggles in Al research is
the need for robust and homogenously
annotated datasets, as studies with small
sample sizes can lead to measurement bias. In
medical Al, data acquisition is costly, and the
dependency on large, well-labeled datasets
makes training supervised models challenging.
Currently, most neuro-oncology imaging
research areas other than gliomas face
challenges due to a lack of publicly available
much of the data

compartmentalized within various organizations

datasets, with

and hospital systems. To improve the
generalizability of algorithm performance
across different imaging sites, acquisition
parameters, and patient demographics, more
extensive and diverse datasets are needed.
Although collaborative efforts like the Cancer
Imaging Archive(TCIA) platform help to address
these issues by pooling resources to create
models, data and model sharing remain

complicated by concerns over patient safety®.

Another challenge is the inability to replicate
reported results due to the unavailability of
detailed methods, program code, and access

41-43

to datasets Different results obtained

using alternative datasets further complicate

matters. To address these issues, authors
should be encouraged to provide their code
and, ideally, their datasets along with their
manuscripts or at least include detailed
descriptions as per published checklists to
ensure adequate transparency*¢. Applying
these models in clinical settings remains
highly problematic or even unfeasible without

the ability to reproduce and validate results.

The potential for bias in Al-related studies is
also a challenge. To gain a comprehensive
understanding of the clinical efficacy of these
models, systematic reviews and meta-analyses
with precise bias assessments are essential to
differentiate between studies with low and
high bias. A few manuscripts have been
released claiming to achieve nearly 100%
accuracy in detecting previously described
IDH mutation using MRI. Despite employing
sophisticated Al techniques, these papers
may suffer from various flaws, such as data
leakage, small sample sizes, and randomly
achieved acceptable results. While achieving
an accuracy rate above 90% may appear
promising, it should be approached cautiously
as it may not consistently deliver dependable

results3?4047

. To highlight the importance of
bias assessment, another recent systematic
review exploring the literature concerning
predicting MGMT status using Al assessed the
risk of bias in these studies. They found that
despite the apparent functionality of models
in this area, 27% of the published studies were
classified as high-risk for bias. This classification
was based on factors such as dataset size,
preprocessing methodologies, modeling
techniques, and reporting intricacies®. External
validation and thorough bias detection
reviews are two imperative steps required for

clinical utilization.
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The rapid evolution of medical imaging
acquisition techniques poses a significant
challenge to the widespread adoption and
longitudinal use of Al models in radiology. In
one study comparing GBM segmentation
performance on 3D fast spin echo versus
MRI

sequences, Al models trained on specific

inversion recovery gradient echo
imaging protocols exhibited substantially
degraded performance when applied to data
different Another

publication by Ellingson et al. highlighted the

from acquisitions®.

critical need for standardized brain tumor
imaging protocols in clinical trials to ensure
consistent image quality and interpretation
across sites®®. However, integrating such
protocols with additional clinically desired
sequences while accounting for variability in

scanner hardware and software versions

remains an ongoing obstacle for reliable Al
deployment over time and at different centers
with diverse imaging equipment. Overcoming
this obstacle is crucial for realizing the full
potential of Al in radiological practice. When
institutions consider implementing an Al
model, it's crucial for them to conduct a
comprehensive evaluation to determine if the
model performs effectively within their unique
operational context. This involves testing the
model's compatibility with existing systems
and verifying its accuracy and reliability in
their specific environment. Such assessments
help ensure that the Al application enhances
their workflows and meets their clinical or
operational requirements. (Table-1)

Challenges

Lack of robust and homogeneously
annotated datasets

Inability to replicate reported
results due to lack of code, detailed

methods, and access to datasets

Potential for bias in Al-related studies

Rapid evolution of medical imaging
acquisition techniques

Ensuring Al model compatibility
and

operational contexts

performance in  specific

Ways to Overcome

Collaborative efforts like the TCIA platform to pool
resources and create larger, diverse datasets.

Encourage authors to provide code, datasets, and
detailed descriptions following published checklists.

Systematic reviews and meta-analyses with precise bias
assessments to differentiate between low and high-bias
studies.

Standardized

accounting for scanner hardware and software variability.

imaging protocols in clinical trials,

Comprehensive evaluation of model compatibility with
existing systems, accuracy, and reliability in the specific

environment.

Table 1: Challenges and Ways to Overcome in the Use of Al in Neuro-Oncology (with The Cancer

Imaging Archive (TCIA))
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Future Directions and Conclusion

Future research should focus on addressing
the challenges associated with the
deployment of Al models in clinical settings.
This includes enhancing the quality and
diversity of training datasets to improve the
robustness and generalizability of Al systems
across different populations and imaging
technologies. Collaborative efforts between
medical institutions and Al researchers are
crucial to amass large-scale, annotated
datasets that reflect the wide spectrum of

clinical scenarios encountered in practice.

Moreover, developing standardized protocols
for Al applications in neuro-oncology will
ensure consistent and reliable results. These
protocols should include guidelines for data
collection, model training, and validation
processes that adhere to rigorous scientific
and ethical standards. As Al models become
more integrated into clinical workflows,
continuous monitoring, and evaluation will be
necessary to assess their impact on patient
outcomes and to refine their predictive

capabilities.

In conclusion, Al holds the promise of
revolutionizing the field of neuro-oncology by
enhancing the accuracy of molecular
diagnostics and the efficacy of treatment
protocols. By continuing to leverage Al in
conjunction with radiogenomics and advanced
imaging techniques, healthcare professionals
can better understand the complex biological
behaviors of brain tumors and tailor
treatments to individual patient needs. The
journey towards fully realizing the potential of
Al in neuro-oncology will require persistent
collaboration,

innovation, interdisciplinary

and commitment to improving patient care.
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