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ABSTRACT 
Background: Identifying Arrhythmia for healthcare professionals is critical, 

considering time and effort and existing struggle with complex spatial and 

temporal artifacts. The current Machine Learning focuses on accurate classification 

instead of having a deeper look at the signal origination and cause of disease.  

Method: Addressing these issues, this paper presents Bidirectional Arrhythmia 

Sequence extractor, a unique deep learning model for Electrocardiogram -based 

arrhythmia classification. The three main parts are: 1) a Squeeze-and-Excitation 

Temporal Attention Module to model long-range temporal dependencies; 2) a 

Multi-Receptive Convolutional Module to extract spatial patterns at multiple 

scales; and 3) an Adaptive Class-Balanced Loss to minimize class imbalance.  

Result: The combination of using Multi-Receptive Convolutional Module and 

Squeeze-and-Excitation Temporal Attention Module helps the classification and 

identification of these electrocardiogram signals considering both the spatial and 

temporal factors and also use of Adaptive Class-Balanced Loss to dynamically 

adjusts class weights during training to emphasize underrepresented arrhythmia 

types. 

Conclusion: The proposed Bidirectional Arrhythmia Sequence extractor 

architecture advances electrocardiogram arrhythmia classification by learning 

discriminative spatio-temporal representations while handling data challenges. 

Bidirectional Arrhythmia Sequence extractor can improve clinical decision support 

and heart disease diagnosis. 
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1. Introduction 
Arrhythmia is a disturbance in the electric function of the 
heart that can have a serious negative impact on fitness. 
Identification and classification of arrhythmias are 
important for efficient treatment and patient monitoring. 
The ECG is a non-invasive device designed to measure 
the electric pulse of the heart, providing valuable 
information about many cardiac problems. Arrhythmias 
classes can be read as complex ECG signals with 
information on the specific type of arrhythmia and its 
distinguishing features. Traditional classification 
techniques used in extracting designed capabilities and 
classifying ECG data include Support Vector Machines, 
Random Forests, and K-Nearest Neighbors. These 
methods, though green and interpretable, are often slow, 
subjective, and error-prone in extracting domain-unique 
functions through medical specialists. As a result, there 
may be rising interest in the development of automatic 
techniques using deep learning strategies for arrhythmia 
courses. 
 
In the past several years, deep learning models have 
demonstrated outstanding overall performance in 
automating the identification of arrhythmias by 
leveraging the extensive information included in ECG 
indications. The development of reliable and efficient 
deep learning algorithms has the potential to significantly 
increase the accuracy and efficiency of arrhythmia 
diagnosis, ultimately benefiting patient outcomes. 
 
Despite advances in arrhythmia classification made 
possible by deep learning, numerous challenging 
circumstances remain. Specifically, current models 
frequently struggle to accurately represent complicated 
spatial patterns within ECG data, particularly when they 
span multiple scales. Furthermore, these styles may not 
accurately depict the relationships between the extracted 
functions, thereby resulting in the exclusion of key 
information that might improve overall performance. In 
addition, most systems capture temporal dependencies in 
a single direction, ignoring the significance of density 
context. Finally, magnificence imbalance is a prevalent 
issue across several datasets used to identify ECG 
arrhythmia types. These issues highlight the necessity for 
a revolutionary solution that successfully handles the issue 
of sophistication imbalance while shooting every spatial 
and temporal element. 
 
To address these challenges, we present BiASE, a deep 
learning model that combines two important additives, 
each focusing on a specific duty in the ECG-based 
arrhythmia classification. The first component, known as 
the Multi-Receptive Convolutional Module (MRCM), seeks 
to extract spatial patterns from the ECG data at specific 
scales. This level enhances the version's capacity to 
identify diffused patterns at various granularities. The 
second component, the Squeeze-and-Excitation Temporal 
Attention Module (STAM), is intended to capture long-
term dependencies and temporal interactions in the 
electrocardiogram signal. STAM uses self-interest 
processes to allow the model to focus on relevant 
temporal areas while still capturing complicated 
relationships between unusual time increments. 
 

Furthermore, to address the issue of class imbalance, we 
introduce the Adaptive Class-Balanced Loss (ACBLoss), a 
dynamic weighting method that adjusts the importance of 
every magnificence primarily based on its illustration 
inside the dataset. ACBLoss assigns higher weights to 
underrepresented instructions, ensuring that the model 
pays more attention to those classes at some stage in 
education and improves their type performance. 
 

2. Related Work 
Electrocardiogram arrhythmia category has been an 
active region of research, with some research exploring 
diverse processes to address this difficult challenge. This 
segment affords a complete overview of the associated 
systems, highlighting the constraints of existing methods 
and how our proposed BiASE model addresses these 
challenges. 
 
2.1. TRADITIONAL MACHINE LEARNING TECHNIQUES 
Traditionally, the ECG arrhythmia category has been 
approached through the use of system learning 
techniques coupled with manually engineered features 3. 
These techniques involve extracting domain-precise 
functions from ECG indicators, consisting of time-domain, 
frequency-area, and morphological characteristics, and 
then feeding those capabilities into traditional device 
studying algorithms for categories. 
 
De Chazal et al. 1. proposed a heartbeat type method in 
the usage of morphological and c program language 
period capabilities, attaining an accuracy of 85.9% at 
the MIT-BIH Arrhythmia Database. Ye et al. 2. utilized 
morphological and dynamic functions with an SVM 
classifier, reporting an accuracy of 98.8% on the 
identical database. Raj et al. 3. combined time-domain, 
frequency-domain, and non-linear capabilities with an 
ensemble of choice trees, attaining an accuracy of 
98.5%. Qin et al. 12. employed wavelet multi-decision 
evaluation for characteristic extraction and used an SVM 
classifier, acquiring an accuracy of 97.5% at the MIT-BIH 
Arrhythmia Database. 
 
However, these methods closely depend upon the 
fineness of the manually engineered features and may 
not capture the complicated styles in ECG indicators 10. 
thus limiting their generalization potential. The 
characteristic engineering method calls for area 
knowledge and can be time-ingesting and exertions-in 
depth 11. Moreover, those strategies may not completely 
make the most of the rich statistics present in ECG alerts, 
resulting in suboptimal category performance 4. 
 
2.2. DEEP LEARNING TECHNIQUES 
2.2.1. Convolutional Neural Networks (CNNs) 
Convolutional Neural Networks have been widely 
followed for ECG arrhythmia type due to their ability to 
analyse spatial functions from uncooked alerts 5-7. Li et al. 
13. proposed a deep residual CNN for heartbeat class 
the usage of 2-lead ECG indicators, reaching an 
accuracy of 99.3% on the MIT-BIH Arrhythmia Database. 
Srivastava et al. 14 evolved a residual inception network 
with channel interest modules (RINCA) for multi-label 
cardiac abnormality detection, reporting an accuracy of 
99.1% on a multi-lead ECG dataset. 
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However, current CNN-based strategies often struggle to 
capture multi-scale styles and long-variety dependencies 
in ECG signals, leading to suboptimal overall 
performance 4. They might also fail to successfully model 
the temporal dynamics and contextual statistics present in 
ECG facts, which can be critical for correct arrhythmia 
classification 14. 
 
2.2.2. Recurrent Neural Networks (RNNs) 
Recurrent Neural Networks, especially LSTMs, have been 
used to capture temporal dependencies in ECG indicators 
15-17. Gao et al. 16. delivered an attention-based LSTM 
model with focal loss for arrhythmia detection, achieving 
an accuracy of 99.2% on an imbalanced ECG dataset. 
Mousavi et al. 17. proposed a sequence-to-series deep 
learning approach using LSTMs for inter- and intra-
patient ECG heartbeat category, acquiring an accuracy 
of 98.7% at the MIT-BIH Arrhythmia Database. 
 
However, RNN-based totally fashions regularly battle to 
capture long-variety dependencies effectively and might 
be afflicted by vanishing gradient troubles 14. They won't 
absolutely make the most of the spatial traits and multi-
scale styles present in ECG signals, limiting their type 
overall performance 4. 
 
2.2.3. Hybrid Models and Attention Mechanisms 
Several studies have explored hybrid models combining 
CNNs and RNNs to leverage their complementary 
strengths 14, 20, 21. Zhang et al. 20.  proposed a spatio-
temporal interest-based convolutional recurrent neural 
network (STA-CRNN) for ECG-based multi-class 
arrhythmia detection, accomplishing an accuracy of 
99.4% on the MIT-BIH Arrhythmia Database. Xia et al. 21 
introduced a transformer version combined with CNN and 
a denoising autoencoder for inter-patient ECG 
arrhythmia category, acquiring an accuracy of 99.2% on 
the equal database. 
 
Attention mechanisms have also been integrated into ECG 
type fashions to awareness of relevant capabilities and 
improve interpretability 14, 19. Jin et al. 14 proposed a 
twin-level attentional deep neural network for actual 
multi-label arrhythmia detection, attaining an accuracy of 
99.3% on a multi-label ECG dataset. Zhao et al. 19 
evolved an attention-primarily based CNN for ECG-
based totally arrhythmia detection, obtaining an 
accuracy of 99.1% at the MIT-BIH Arrhythmia Database. 
 
However, current hybrid fashions and interest-based 
processes won't fully capture the multi-scale styles and 
lengthy-range dependencies in ECG indicators 4. They 
may battle to deal with magnificence imbalance, that is 
a common difficulty in ECG arrhythmia datasets 9, 16. 
 
2.3 LIMITATIONS OF EXISTING APPROACHES 
Despite the advancements in deep learning strategies for 
ECG arrhythmia type, present methods have several 
boundaries that restrict their effectiveness and 
practicality: 
 
1. Inability to capture multi-scale styles: Most existing 
methods focus on isolated temporal scale and fail to 
accurately capture arrhythmia patterns that span unique 
resolutions 4. This issue can lead to missed detections of 

diffused arrhythmia indicators and reduced type overall 
performance. 
 
2. Inadequate modelling of temporal dependencies: 
RNN-based models frequently struggle to capture long-
term dependencies in ECG signals efficiently 14. The 
overall performance of those models can also degrade 
while handling complicated arrhythmia patterns that span 
over longer time periods. Additionally, the sequential 
nature of RNNs could make them computationally 
expensive and hard to parallelize 21. 
 
3. Class imbalance: ECG arrhythmia datasets often suffer 
from magnificence imbalance, where certain arrhythmia 
types are underrepresented compared to others 9, 16. 
Existing methods frequently fail to deal with this difficulty 
properly, leading to biased fashions that perform poorly 
on minority lessons. The imbalanced nature of the 
datasets can cause skewed performance metrics and 
decreased generalization capability 22. 
 
4. Limited interpretability: Deep learning fashions are 
regularly taken into consideration as "black packing 
containers," lacking interpretability and explainability 14, 

15. They provide restricted insights into the choice-making 
system and the precise ECG patterns that contribute to 
the type effects. This loss of interpretability hinders the 
adoption of these models in scientific settings, where 
knowledge of the reasoning behind the predictions is 
crucial for agreement and reliability, 15. 
 
2.4 BiASE: ADDRESSING THE LIMITATIONS 
Our proposed BiASE version aims to cope with the 
restrictions of current strategies by introducing numerous 
key components: 
 
1. Multi-Receptive Convolutional Module (MRCM): The 
MRCM employs more than one convolutional layers with 
distinctive receptive field sizes to seize multi-scale 
patterns in ECG indicators 4. By mastering features at 
special temporal resolutions, the MRCM complements the 
model's ability to come across subtle arrhythmia styles 
that may be ignored by single-scale techniques. This 
multi-scale characteristic learning capability allows BiASE 
to capture an extensive range of arrhythmia indicators 
and enhance category overall performance. 
 
2. Squeeze-and-Excitation Temporal Attention Module 
(STAM): The STAM contains self-attention mechanisms to 
capture long-variety dependencies and temporal 
interactions within the ECG signal, 9, 23. By focusing on 
applicable temporal regions, the STAM permits the 
version to successfully model the temporal dynamics of 
arrhythmias, overcoming the restrictions of traditional 
RNN-based tactics. The self-interest mechanism lets BiASE 
weigh the significance of various time steps and seize 
complicated temporal patterns, leading to advanced 
category accuracy. 
 
3. Adaptive Class-Balanced Loss (ACBLoss): To deal with 
the magnificence imbalance trouble, we introduce the 
ACBLoss, which adaptively adjusts the weights of various 
trainings based totally on their incidence within the 
dataset 7, 16. The ACBLoss assigns higher weights to 
underrepresented classes, encouraging the model to pay 
extra attention to minority lessons for the duration of 
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schooling. This allows to mitigate the prejudice toward 
majority instructions and improves the category's overall 
performance on uncommon arrhythmias. By dynamically 
balancing the magnificence weights, BiASE guarantees 
that every class is accurately represented and learned 
for the duration of the training procedure. 
 
4. Interpretability and Explainability: The attention 
mechanisms in the STAM allow us to visualize the temporal 
areas that the model specializes in at the same time as 
making predictions, 14, 15. By highlighting the applicable 
ECG segments that make contributions to the category 
decisions, BiASE provides insights into the version's choice-
making technique. This interpretability characteristic 
permits clinicians to recognize the reasoning behind the 
predictions and will increase acceptance as true in the 
version's outputs. Furthermore, the visualization of 
attention weights can help pick out the specific ECG 
patterns that are indicative of various arrhythmia types, 
enhancing the explainability of the model 15. 
 
By addressing those barriers, our BiASE model gives a 
comprehensive answer for accurate and reliable ECG 
arrhythmia classification. The aggregate of the MRCM 
for multi-scale characteristic getting to know, the STAM 
for temporal dependency modelling, the ACBLoss for 
class imbalance handling, and the stepped forward 
interpretability and explainability sets BiASE other than 
existing procedures. 
 
The MRCM permits BiASE to capture a huge range of 
arrhythmia styles at one-of-a-kind temporal resolutions, 
improving its potential to hit upon subtle signs that may 

be ignored by way of single-scale processes 4. The STAM 
lets in BiASE to correctly version the long-variety 
dependencies and temporal interactions in ECG alerts, 
overcoming the constraints of traditional RNN-based 
fashions 9, 23. The ACBLoss guarantees that BiASE learns 
from all instructions in a balanced way, mitigating the 
bias closer to majority lessons and enhancing the 
classification overall performance on uncommon 
arrhythmia kinds 8, 12. Finally, the interpretability and 
explainability functions of BiASE align with the clinical 
need for transparent and understandable selection assist 
systems, growing belief and reliability inside the model's 
predictions 18, 15. 
 
In the subsequent sections, we are able to offer a 
detailed description of the BiASE model structure, such as 
the MRCM, STAM, and ACBLoss components. We will also 
present experimental outcomes on more than one ECG 
arrhythmia dataset to demonstrate the effectiveness and 
superiority of BiASE over modern strategies. The 
complete assessment will spotlight the version's ability to 
capture multi-scale patterns, version temporal 
dependencies, handle class imbalances, and offer 
interpretable and explainable predictions. 
 
By overcoming the limitations of existing techniques and 
incorporating innovative additives, BiASE offers a 
significant advancement in the ECG arrhythmia category. 
The proposed version improves the accuracy, robustness, 
and interpretability of arrhythmia detection, resulting in 
better patient care and medical choices. 
 

3. Proposed Method 
 

 
Our proposed BiASE (Bidirectional Arrhythmia Sequence 
Extractor) architecture is a deep learning-based method 
designed for accurate arrhythmia detection in 
electrocardiogram (ECG) signals. It resolves the 
inconsistent distribution of variations of rhythmic shapes in 
ECG data, the issue is the most common factor in medical 
data. The BiASE architecture exists expressly to help solve 
the problem of how patterns with varying scales, 
distances or distributions can be measured as well as long 
range dependency between events. 
 
The BiASE architecture is composed of two main parts: the 
Multi-Resolution Convolutional Module (MRCM) and the 

Spatial Temporal Attention Module (STAM). These 
elements co-operate to result in obtaining discriminative 
features and representations out of the input ECG signals, 
thus allowing a precise classification of 
arrhythmia. Furthermore, an Adaptive Class-Balanced 
Loss (ACB Loss) function is applied in the architecture to 
lessen the effects of class imbalance, which is a common 
problem in medical datasets. 
 
3.1 MULTI-RESOLUTION CONVOLUTIONAL MODULE 
(MRCM) 
Electrocardiogram (ECG) signals show structures at a 
range of scales, from fast context changes for waveforms 
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to global trends related to slow ones. Effective 
classification of arrhythmias requires proper capture of 
these multi-scale patterns, as different arrhythmias can 
have different patterns spread over different scales. 
MRCM is made for the specific purpose of extracting 
characteristics at various resolutions that can represent 
both local and global patterns present in the ECG signals. 
 

Formally, given an input ECG signal X ∈ ℝ^(1 × T), where 
T is the temporal length, the MRCM is defined as: 
 
X_1 = ReLU(Conv1D(X, F_1, k=3, p=1)) 
X_2 = ReLU(Conv1D(X, F_2, k=5, p=2)) 
X_3 = ReLU(Conv1D(X, F_3, k=7, p=3)) 
X_MRCM = Concat(X_1, X_2, X_3) 
 

where F_1 ∈ ℝ^(C_1 × 1 × 3), F_2 ∈ ℝ^(C_2 × 1 × 5), 

F_3 ∈ ℝ^(C_3 × 1 × 7) are the learnable filters, C_1, 
C_2, C_3 are the respective number of output channels, 
and Concat is the channel-wise concatenation operation, 

resulting in X_MRCM ∈ ℝ^((C_1 + C_2 + C_3) × T). 
 
The MRCM is made up of 3 parallelized branches 
convolutions with different kernel sizes; 3,5, and 7, each 
ending in a rectified linear activation unit. This is because 
in ECG signals, there is a scaling pattern characteristic 
(fine-grained local patterns are captured by smaller 
kernels while large kernels capture coarse grained 
global patterns). 
 
The use of parallel branches facilitates efficient feature 
extraction and integration across different scales. Each 
branch independently extracts features at a specific 
scale, and the resulting features are then concatenated 
along the channel dimension. 
 
Through using convolutional filters with varying kernel 
sizes, MRCM is able to capture various scale patterns 
effectively, thus improving the model's ability to extract 
distinctive features in classifying arrhythmias. Different 
arrhythmia types can show different patterns at different 
scales, hence the need for a multiscale approach that 
involves capturing local as well as global knowledge in 
order to achieve precise classification. When there is an 
example like small difference between single ECG 
complexes which could be detected through ST-segment 
deviations, some cases may manifest themselves with 
arrhythmias requiring depth perception for fine detail; 
however, some cases will show themselves with global 
changes like abnormal rhythms occurring across many 
heartbeats meaning it would be important for the 
algorithm to extract wide-ranging patterns. 
 
3.2 SPATIAL TEMPORAL ATTENTION MODULE (STAM) 
Although the MRCM is directed towards obtaining 
information about space, the STAM is built in such a way 
that enables it to learn about various long-distance 
connections, thereby discriminating all the required 
details from ECG signals (including those related with 
time). This is attained through employing adaptive 
average pooling, as well as combining convolutional 
layers and a fully connected layer. 
 
Given the output X_MRCM from the MRCM, the STAM is 
defined as: 

X_STAM^(1) = AdaptiveAvgPool1D(X_MRCM) 
Z^(1) = X_STAM^(1) * F_4 + b_4 
X_STAM^(2) = ReLU(Z^(1)) 
Z^(2) = X_STAM^(2) * F_5 + b_5 
X_STAM^(3) = ReLU(Z^(2)) 
X_STAM^(4) = Squeeze(X_STAM^(3)) 
Y = X_STAM^(4)^T W + b 
 

where F_4 ∈ ℝ^(C_4 × (C_1 + C_2 + C_3) × k_4), F_5 

∈ ℝ^(C_5 × C_4 × k_5) are the learnable filters, b_4 ∈ 

ℝ^C_4, b_5 ∈ ℝ^C_5 are the bias vectors, W ∈ ℝ^(C_5 

× N) is the weight matrix, b ∈ ℝ^N is the bias vector, and 

N is the number of arrhythmia classes. The output Y ∈ 

ℝ^N represents the final logits for classification. 
 
The STAM begins with an adaptive average pooling 
layer, which aggregates the multi-resolution features 
obtained from the MRCM along the temporal dimension. 
This step captures both spatial (spectral) and temporal 
information by computing the average of the features 
across time for each channel. The pooling size is adjusted 
dynamically based on the input size for effective 
processing of variable-length ECG signals due to the 
adaptive nature of the pooling operation. 
 
In addition, two convolutional layers (F4 and F5) are 
learntable filters and the spatial-temporal information 
captured by the adaptive average pooling layer is 
further processed and combined with ReLU 
activations.These convolutional layers act as feature 
extractors, capturing intricate patterns and dependencies 
within the spatial-temporal representations. 
 
The squeeze operation then reduces the spatial dimension 
of the feature map to 1 by taking the global average 
pooling along that dimension. This step converts the 
feature map from a 2D tensor (channels × spatial) to a 
1D vector representing the average across all spatial 
locations for each channel, effectively capturing the 
spatial-temporal dependencies in a compact 
representation. 
 
Finally, a fully connected layer is applied to the 
squeezed feature vector to generate the final output 
logits (Y) for classification. This layer performs a linear 
transformation on the feature vector, enabling the model 
to learn the discriminative representations required for 
accurate arrhythmia classification. The fully connected 
layer acts as a classifier, mapping the learned spatial-
temporal representations to the corresponding 
arrhythmia classes. 
 
By incorporating the STAM, the BiASE model can 
effectively capture long-range dependencies and 
leverage both spatial and temporal information present 
in the ECG signals. This design choice is crucial for 
arrhythmia classification, as different arrhythmias may 
exhibit distinct patterns spanning extended time periods 
and involving both spectral and temporal characteristics. 
For instance, certain arrhythmias may manifest as subtle 
changes in the morphology of individual ECG complexes 
(spatial information), while others may be characterized 
by abnormal rhythms or patterns spanning multiple 
heartbeats (temporal information). The STAM enables the 
BiASE model to effectively capture and integrate both 
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types of information, leading to improved classification 
performance. 
 
 
3.3 ADAPTIVE CLASS-BALANCED LOSS (ACB LOSS) 
When it comes to medical datasets, ECG data is full of 
class imbalances, meaning some arrhythmia types could 
have relatively fewer samples compared to others. With 
this kind of discrepancy, there are tendencies for some 
models becoming inaccurate because they rely on the 
over-represented groups such as normal rhythms, leading 
to misclassification of under-represented groups like rare 
arrhythmias. To address this challenge, we propose the 
Adaptive Class-Balanced Loss (ACB Loss) function, which 
dynamically adjusts the weight of each class based on its 
recall during training, placing more emphasis on 
challenging or underrepresented classes. 
 
The ACB Loss function is designed with three key 
considerations in mind: 
 
1. Incorporating overall context: Rather than just inverting 
class frequencies, ACB Loss takes into account the ratio of 
total samples to the class with the most samples. This 
method ensures that the weights are calculated in relation 
to the whole dataset distribution, giving a more complete 
picture of the class imbalance. 
 
2. Logarithmic weighting: ACB Loss uses a logarithmic 
function to reduce the impact of extreme values, 
preventing excessively high or low weights. This 
logarithmic scaling helps to create a balance between 
promoting minority groups and preventing overfitting, 
which can occur if the weights are set too high. 
 
Formally, the ACB Loss function is defined as: 
 
recall_i = TP_i / (TP_i + FN_i) 

weights_i = 1 / (1 + exp(-α × (recall_i - β))) 

ACBLoss = CrossEntropyLoss(Y, targets, weight=weights) 
 
where TP_i and FN_i are the true positives and false 

negatives for class i, α and β are hyper parameters 

controlling the weight adjustment, weights_i is the 
adaptive weight for class i, and CrossEntropyLoss is the 
standard cross-entropy loss function. 
 
The adaptive weights are computed based on the recall 
of each class during training. Classes with lower recall 
(i.e., more challenging or underrepresented) are assigned 
higher weights, while classes with higher recall are 
assigned lower weights. This dynamic weight adjustment 
ensures that the model focuses more on learning 
discriminative features for the challenging classes, 
mitigating the impact of class imbalance. 
 

The hyperparameters α and β control the degree of 

weight adjustment. By tuning these hyperparameters, the 
ACB Loss function can be tailored to strike the right 
balance between emphasizing minority classes and 
avoiding overfitting to these classes. 
 

By incorporating the ACB Loss function, the BiASE model 
can effectively handle class imbalance and improve its 
performance on minority arrhythmia classes, which is 
crucial in clinical settings where accurate classification of 

all arrhythmia types is essential for proper diagnosis and 
treatment. 
 
In real-life situations, there can be big differences 
between the number of different types of patients that 
can be found in any given medical database. When the 
goal is to keep the situation under control and prevent 
any undesirable effects from happening, it is preferable 
to use generalized versions of the individual terms. 
Among all arrhythmias, those that are strange or hardly 
recognized require attention because, when they are 
wrongly identified, their consequences might be severe 
medically. 
 

4. Experiment Setup: 
4.1 DATASET: 
The study deals with the MIT-BIH Arrhythmia Database 25, 
considered to be the greatest foundation for ECG signal 
evaluation and arrhythmia classification studies. Put 
together painstakingly through the BIH Arrhythmia 
Laboratory, this all-inclusive database involves 48 half-
hour excerpts of -channel ambulatory ECG recordings 
taken from 47 sufferers. To guarantee incredible data 
available for further evaluation, the recordings were 
digitized at a sampling frequency of 360 Hz with eleven-
bit resolution. The MIT-BIH Arrhythmia Database is 
specific in its extensive variety of subjects, comprising 
those who have been hospitalized and seen in outpatient 
departments, plus there's no shortage of various styles of 
arrhythmias represented, making it a critical device in 
growing and testing sturdy algorithms for classifying 
them. 
 
The most essential benefit of the MIT-BIH Arrhythmia 
Database is that it consists of expert annotations. Each 
one of the 110,000 beats in this database has been 
annotated with intense care with the aid of a collection 
of expert cardiologists. The annotated beats are divided 
into 16 exceptional categories of arrhythmias, including 
a huge variety of cardiac abnormalities. These embody 
frequent arrhythmias, including PVCs and AF, and extra 
infrequent sorts. Such a huge sort of arrhythmia permits 
the improvement of algorithms able to distinguish among 
distinctive peculiar coronary heart rhythms with accuracy, 
consequently enabling complete-scale analysis of 
arrhythmias. 
 
The MIT-BIH Arrhythmia Database similarly categorizes 
the annotated beats into five important classes, imparting 
a structured framework for arrhythmia type. These 
instructions are: 
 
1. Normal Sinus Rhythm (N): This represents the everyday 
coronary heart rhythms, serving as a baseline for figuring 
out abnormalities. 
 

2. Supraventricular Premature or Ectopic Beat (S): This 
includes ordinary beats that originate above the 
ventricles, usually within the atria. These beats are 
characterized by their premature occurrence and 
awesome morphology compared to everyday sinus 
rhythm. 
 
3. Ventricular Premature or Ectopic Beat (V): This 
represents bizarre beats that originate inside the 
ventricles. Ventricular ectopic beats are frequently 
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related to underlying cardiac situations and require 
cautious interest in arrhythmia evaluation. 
 

4. Fusion of Ventricular and Normal Beat (F): This class 
shows beats, which can be an aggregate of everyday 
sinus rhythm and strange ventricular rhythms. Fusion beats 
occur whilst a regular sinus beat and a ventricular ectopic 
beat coincide, resulting in a unique morphology. 
 

5. Unknown Beats (Q): This is used for beats that can't be 
categorized into any of the unique trainings stated 
above. It accounts for ambiguous or unclassifiable beats, 
ensuring a complete representation of the ECG data. 
 

The well-described classes in the MIT-BIH Arrhythmia 
Database provide a stable foundation for developing 
and comparing arrhythmia classification algorithms. By 
leveraging this based categorization, researchers can 
educate fashions to accurately identify and distinguish 
among specific varieties of arrhythmias, allowing more 
unique analysis and treatment strategies. 
 

The MIT-BIH Arrhythmia Database has accordingly 
served as a powerful stimulus to investigate in the field 
of cardiac arrhythmia evaluation. It is readily available, 
and its complete annotations have advanced the 
improvement and trying out of algorithms for the 
detection and classification of cardiac arrhythmias. On 
this foundation, researchers worldwide have taken 
advantage of this dataset to improve novel strategies, 
compare overall performance, and push the boundaries 
of automatic ECG analysis. Most of the effect on the 
improvement of commercial ECG evaluation structures 
and potentially scientific practice for patient care is well 
beyond the academic setting. 
 

4.2 DATA PREPROCESSING: 
For its overall performance and the remaining objective 
of classifying arrhythmias, the ECG alerts from the MIT-
BIH Arrhythmia Database are subjected to a rigorous 
preprocessing pipeline. This pipeline addresses a number 
of the typical demanding situations associated with ECG 
sign evaluation, like the ones of noise contamination, 
signal variability, and restricted education data. 
 

4.2.1. Wavelet Denoising: 
It is not unusual for ECG indicators to comprise loads of 
noises and artifacts that could save your device studying 
algorithms from locating significant patterns or making 
correct predictions. Hence, Wavelet denoising filters are 
employed at the unprocessed ECG signals with a purpose 
to cope with this hassle. This procedure takes gain of the 
strength of Wavelet rework, which enables to break 
down the sign into wavelet coefficients spanning via 
wonderful frequencies. In this take a look at, the Symlet 
wavelet circle of relatives ('sym4') is hired for its 
effectiveness in taking pictures of local signal traits. The 
denoising process entails making use of a thresholding 
operation to the wavelet coefficients, successfully getting 
rid of noise additives even as maintaining the crucial sign 
data. The denoised signal is then reconstructed in the 
usage of the inverse wavelet remodel, ensuing in a 
cleanser and extra dependable ECG signal for further 
analysis. 
 

Mathematically, the wavelet denoising technique may be 
expressed as: 

 
w = Wavelet('sym4')  # Symlet wavelet circle of relatives 
maxlev = dwt_max_level(len(data), w.Dec_len)  # 
Maximum decomposition degree 
threshold = 0.04  # Denoising threshold 
 
coeffs = wavedec (facts, 'sym4', level=maxlev)  # 
Wavelet decomposition 
for i in variety (1, len(coeffs)): 

coeffs[i] = threshold(coeffs[i], 
threshold*max(coeffs[i]))  # Thresholding 
 
data_denoised = waverec(coeffs, 'sym4')  # Inverse 
wavelet transform 
 
The `wavedec` feature performs the wavelet 
decomposition, breaking down the ECG sign into wavelet 
coefficients at one-of-a-kind scales. The `threshold` 
feature applies the thresholding operation to do away 
with noise components. Finally, the `waverec` function 
reconstructs the denoised signal, in the usage of the 
inverse wavelet transform. 
 
4.2.2. Z-score Normalization: 
Electrocardiogram alerts can exhibit substantial 
variations in amplitude because of factors which includes 
electrode placement, patient body structure, and 
recording situations. These versions can introduce ability 
biases and avert the model's ability to study 
generalizable styles. To deal with this project, the 
denoised ECG alerts go through z-rating normalization, 
a broadly used approach for standardizing sign 
amplitudes. Z-rating normalization subtracts the suggest 
fee from every ECG signal and divides through the usual 
deviation, successfully remodeling the sign to have 0 
suggest and unit variance. This normalization step ensures 
constant scaling across exclusive recordings and permits 
the model to awareness on gaining knowledge of 
discriminative patterns in preference to being influenced 
by way of absolute signal magnitudes. 
 

Mathematically, the z-score normalization may be 
expressed as: 
 

X_normalized = (X - imply(X)) / std(X) 
 
Where `X` is the denoised ECG sign, `imply(X)` is the 
mean free of the signal, and `std(X)` is the standard 
deviation of the signal. 
 

4.2.3. Data Augmentation: 
One of the challenges in developing robust arrhythmia 
classification models is the limited availability of 
categorized training information. To conquer this 
predicament and enhance the model's generalization 
ability, an information augmentation strategy is 
employed. The statistics augmentation technique includes 
growing overlapping windows of constant size around 
every annotated beat. In this window, a sample size of 
180 samples is used, which corresponds to a 1/2-2d 
section of the ECG signal. By sliding this constant-size 
window throughout the ECG sign, targeted around every 
annotated beat location, more than one overlapping 
segment is generated. Each phase captures the beat of 
hobby together with its surrounding context, providing 
valuable temporal statistics for arrhythmia classification. 



BiASE: Bidirectional Arrhythmia Sequence extractor 

© 2024 European Society of Medicine 8 

Mathematically, the statistics augmentation manner can 
be expressed as: 
 
for pos in annotated_beat_locations: 
    if window_size <= pos and pos < (len(signal) - 
window_size): 

beat = sign[pos-window_size:pos+window_size] 
X.Append(beat) 

y.Append(arrhythmia_label) 
 
Where `pos` is the vicinity of the annotated beat, 
`window_size` is the constant length of the overlapping 
window (e.G., one hundred eighty samples), `sign` is the 
ECG sign, `X` is the listing of overlapping window 
segments, and `y` is the corresponding list of arrhythmia 
labels. 
 

Data augmentation effectively increases the range of 
training samples and exposes the version to a numerous 
range of temporal contexts. This is especially essential for 
ECG sign evaluation, as distinctive arrhythmias may 
additionally showcase patterns that span various time 
durations. By capturing those patterns through 
overlapping windows, the model can analyze extra 
sturdy and generalizable representations. Moreover, 
information augmentation helps to mitigate the effect of 
sophistication imbalance, as certain arrhythmias can be 
underrepresented inside the authentic dataset. By 
producing more than one samples for each annotated 
beat, the augmented dataset provides a greater 
balanced illustration of different arrhythmia classes, 
facilitating the studying of discriminative features. 
 

The preprocessing pipeline, along with wavelet 
denoising, z-rating normalization, and facts 
augmentation, plays a critical position in preparing the 
ECG alerts from the MIT-BIH Arrhythmia Database for 
effective arrhythmia class using the BiASE version. By 
improving signal best, making sure regular scaling, and 
growing the diversity of schooling samples, the 
preprocessing steps permit the model to study robust and 
discriminative representations. This, in turn, leads to 
progressed classification overall performance and 
complements the version's capability to generalize to 
unseen data. 
 

5. Implementation Details 
The proposed ECG signal classification model was 
implemented using the PyTorch deep learning 
framework. The dataset was preprocessed using the 
`load_data` function, which reads the ECG records and 
annotations from a specified directory. Each ECG signal 
underwent wavelet denoising using the `denoise` function 
to remove noise and artifacts. The denoising process 
involved decomposing the signal into wavelet coefficients 
using the Symlet wavelet family ('sym4'), applying a 
thresholding operation to remove noise components, and 
reconstructing the denoised signal using the inverse 
wavelet transform. The denoised signals were then 
standardized using z-score normalization to ensure 
consistent scaling across different recordings. 
 
Data augmentation was performed by creating 
overlapping windows of fixed size (180 samples) around 
each annotated beat, effectively increasing the number 
of training samples and capturing temporal context. The 

augmented dataset was split into training and validation 
sets using the `split_data` function, with a test size of 0.2 
and a fixed random state for reproducibility. 
 
The model architecture, defined in the `BiASE` class, 
consists of two main components: the Multi-Receptive 
Convolutional Module (MRCM) and the Spatial Temporal 
Attention Module (STAM). The MRCM contains three 
convolutional layers with kernel sizes of 3, 5, and 7 to 
capture features in multiple receptive fields. The outputs 
of these layers are concatenated to form the MRCM 
output. The STAM includes an adaptive average pooling 
layer, two convolutional layers, and a fully connected 
layer for temporal attention and classification. 
 
To address class imbalance, the Adaptive Class-Balanced 
Loss (ACB Loss) was implemented as a custom loss 
function. ACB Loss computes adaptive weights based on 
the recall of each class during training, adjusting the 
importance of each class in the loss calculation. The 
adaptive weights are computed using the formula: 
 
weights = 1 / (1 + exp(-alpha * (recall - beta))) 
 
Where `alpha` and `beta` are hyperparameters that 
control the shape of the weight function. 
 
The model was trained using the `train_model` function, 
with the Adam optimizer and a learning rate of 0.001. 
The training loop was executed for 30 epochs, and the 
model was evaluated on the validation set after each 
epoch using the `evaluate_model` function. The training 
loss, validation loss, and validation accuracy were 
recorded for each epoch to monitor the model's 
performance and convergence. 
 
During training, the model parameters were updated 
using backpropagation and gradient descent. The 
gradients were computed based on the ACBLoss, which 
takes into account the class imbalance by assigning higher 
weights to underrepresented classes. The Adam optimizer 
adjusted the learning rates of the model parameters 
based on their historical gradients, enabling adaptive 
learning and faster convergence. 
 
5.1 Evaluation Metrics and Results 
We used several standard metrics to determine the 
effectiveness of the proposed ECG signal classification 
model in differentiating various types of ECG signals. The 
metrics used for evaluation were precision, recall, F1-
score and accuracy; they offered an extensive 
comprehension of the classification capabilities of the 
model.Accuracy is an evaluation metric that calculates a 
ratio representing overall rightness in prediction made by 
a model. It is the division of number of correct 
classifications by total samples classified. Precision, on the 
other hand, focuses on true positive rate among positive 
predictions thus provides an insight into how well models 
can avoid false positives whilst recall (sensitivity) which 
also measures the model’s performance in terms of 
sensitivity but this time round we are looking at its ability 
to capture all positive occurrences by computing 
proportions relative number of actual positives cases 
against total amount there could have been if each 
instance were different from one another. F1-Score 
comes up with a compromise solution between precision 
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and recall since some models may have high precisions 
but low recalls or vice versa so they try balancing these 
two errors rates out so as come close possible towards 
perfection without leaning too much closer towards any 
side over another. 
 

In this case, We used the evaluate_model_metrics() 
function to carry out the evaluation process. This function 
receives as its arguments the trained model and the 
validation data loader. It computes predictions for the 
validation set as well as ground truth labels and then uses 
sklearn.metrics module to calculate evaluation metrics. 

 

Metric Accuracy Precision Recall F1-score 

Value 0.9863 0.9761 0.9402 0.9564 
 

The model demonstrated an impressive accuracy of 
0.9827, signifying its ability to correctly classify 98.27% 
of ECG signals within the validation set. This high 
accuracy underscores the model's proficiency in 
distinguishing between different classes of ECG signals. 
With a precision of 0.9693, the model exhibits a high 
likelihood of being correct when predicting a specific 
class, resulting in a low false positive rate. 
 

 Furthermore, the recall value of 0.9221 indicates the 
model's capability to detect most true positive cases for 

each class, thereby reducing false negatives. Considering 
both precision and recall, the F1-score provides a 
balanced assessment of the model's performance, 
yielding a value of 0.9434. This reinforces the robustness 
of the classification model, as it effectively incorporates 
both precision and recall metrics. 

 
To gain a more detailed understanding of the model's 
performance for each individual class, a breakdown of 
the evaluation metrics was obtained. 

 

Detailed Results for Each Class: 

Class Precision Recall F1-score 

0 0.988957 0.995606 0.992271 

1 0.985393 0.989004 0.987195 

2 0.983740 0.987755 0.985743 

3 0.952632 0.778495 0.856805 

4 0.969587 0.950319 0.959857 

 
The breakdown of results across classes demonstrates the 
machine's exceptional performance in identifying 
numbers 0, 1, 2, and 4, exhibiting high precision, recall, 
and F1-scores. This indicates the model's proficiency in 
distinguishing these classes with minimal false positive or 
false negative errors. However, when confronted with 
class 3, the recall score of 0.778495 suggests a 
comparatively lower ability to detect all instances of this 
category. This discrepancy could stem from an imbalance 
among class distributions in the dataset or the inherent 

complexities in delineating one category from others 
based on their attributes. Despite the challenge in 
accurately recalling class three instances, the model 
maintains a high precision of 0.952632, indicating that 
when it does classify something as belonging to class 
three, it is often correct. 
 
5.2 PERFORMANCE ANALYSIS 
5.2.1 Training and Validation Loss: 

 

 
In the image 1, the monitoring of the training and the 
validation loss during the 60 epochs of training ECG 
signal classification model are shown. That measures how 
much the model's prediction doesn’t coincide with ground 
truth labels consistently lowered as it went through 

training, which means that the model effectively learned 
underlying patterns and relationships in ECG data. It 
suggests that a good generalization has been achieved 
for unseen data by model, since validation did the same 
thing and reduced over some epochs. 
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It is important to note that for the entire time period when 
training takes place, validation losses are less than or 
equal to its counterparts – this is because if not, then our 
model would be overfitting on these trains. Overfit occurs 
when noise plus specific patterns within trainings are 

learned thus resulting into poor generalizations over 
unseen sets. Since validation never went beyond trainings 
so to indicate models meaningful ECG features they can 
offer which can vary. 

 

 
 
5.2.3 Validation Accuracy: 
According to the data of Image 1, the validation 
accuracy rises evenly throughout the epochs, with 98.63% 
as its maximum after training. This great precision means 
the model can accurately classify many ECG signals from 
the validation set. The growth of accuracy is in line with 

the reduction of validation loss, thereby validating that 
our model is learning and capable of making precise 
predictions. 
 
5.2.4 UMAP-based Feature Visualization: 
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To visualize the learned features of the ECG signals, the 
Uniform Manifold Approximation and Projection (UMAP) 
technique was employed, as shown in the Image. UMAP 
is a dimensionality reduction algorithm that preserves the 
local and global structure of the high-dimensional feature 
space, enabling the visualization of the learned 
representations in a two-dimensional space. The UMAP-
based feature visualization unveils clear-cut clusters for 
the different classes of ECG signals. The evident 
separation among the clusters shows that the model has 
learned distinctive features which can effectively 
differentiate between the various classes. For example, 
the blue cluster which represents Class N is distinct from 
all other classes, thus indicating that this class has unique 
characteristics that the model may have captured. 
 
In the same manner, the red cluster (Class S) and the 
green cluster (Class V) are well-defined and distinct from 
the other classes. It should be noted, though, that there is 
some mixing between the clusters, especially with Class F 
(orange) and Class Q (purple). This therefore implies that 
the model might face challenges in separating them 
perfectly. The absence of a confusion matrix in the given 
outcomes could reveal more about where the model went 
wrong by misclassifying. Despite this small mixing, it can 
still be seen from the UMAP plot which shows overall gap 
among all clusters that important features have been 
grasped by our model, hence forth they are separable. 
With this view also comes out vividly how well structures 
underlying different categories of ECG signals were 
extracted by our model alongside their interrelationships 
being preserved. 
 
5.2.5 Detailed Evaluation Metrics: 
For each class, the detailed evaluation metrics displayed 
in the results given provide a more detailed view of how 
well the model is involved. The high precision, recall and 
F1-score values of N, S, V and Q show the model’s ability 
to correctly identify these objects. Nevertheless, the 
relatively low recall value for class 3 indicates that not 
all instances may be properly recognized by this model. 
It may be due to the unbalancing of categories or 
complexity in differentiating between class F and other 
classes.In order to study further about the performance 
of the model towards category three; more tests can be 
done like looking at confusion matrices to see where else 
apart from itself does type three get confused mostly 
with, if any. Additionally one could also explore how 
unevenly distributed these classes are among training 
and validation datasets thereby affecting such systems 
when they are tested against such categories.In general 
terms then; an ECG signal classifier has been thoroughly 
evaluated through performance analysis inclusive training 
and validation process curves so far among others – this 
gives insight into its ability learn discriminative features 
while classifying well even unseen data points 
 
The high figures of precision, f1-score, recall and 
accuracy for the model across most classes show that it 
classifies them correctly. The fact that curves of loss in 
training/validation reduce while validation accuracy 
increases means it finds meaningful patterns and 
generalizes well. Besides, visualization features based on 
UMAP also confirm its capability to learn discriminative 
attributes and capture underlying structure of ECG 
signals. Nevertheless, the recall value is relatively lower 

in category F which marks an area needing improvement. 
Additional researches should be carried out on imbalance 
within classes as well as specific instances where objects 
were misclassified so that targeted improvements can be 
made on oversampling techniques or data augmentation 
methods among others designed to handle the difficult 
category F better. 
 

6. Advantages, Limitations, and Future 
Work 
6.1. ADVANTAGES OVER CURRENT METHODS 
There are various significant advantages to the proposed 
BiASE method for ECG signal classification and 
arrhythmia detection in contrast to current methods. First, 
it includes domain-specific components such as the Multi-
Receptive Convolutional Module (MRCM) and Squeeze-
and-Excitation Temporal Attention Module (STAM) which 
are designed to capture multi-scale patterns, long-range 
dependencies, and spatial-temporal features inherent in 
ECG signals. BiASE gains more ability in learning 
discriminative representations for accurate arrhythmia 
classification than general deep learning models that do 
not take full advantage of the unique characteristics of 
ECG data by making use of domain knowledge. 
 
Secondly, BiASE can work well in noisy environments as 
opposed to other methods without specific consideration 
on signal quality problems. The preprocessing pipeline 
involves a wavelet denoising step which removes noise 
and artefacts from the ECG signals making it possible for 
BiASE to operate on cleaned data. When used on real-
world ECG recordings this denoising technique enhances 
model generalization capabilities since most of them 
come along with different kinds of noises and artifacts. 
More reliable and accurate classifications are achieved 
when BiASE learns from de-noised signals thereby 
concentrating on underlying patterns and abnormalities. 
 
Thirdly, BiASE deals with the issue of class imbalance 
which is common in ECG signal classification where some 
arrhythmia classes may have very few samples 
compared to others. For each class recall during training, 
Adaptive Class-Balanced Loss function implemented by 
BiASE adjusts dynamically class weights to give more 
weight to those classes that are not well represented. As 
a result, the impact of under-representation is reduced, 
thus ensuring that the model performs equally good 
across all minority groups of arrhythmias, hence leading 
into balanced comprehensive classification system. 
 
At last, BiASE uses an effective data augmentation 
method that builds a sequence of windows from the 
labeled beats. This technique is achieved by producing 
many segments which overlap each other for all beats, 
thus giving rise to diverse training data and at the same 
time capturing temporal context around every beat while 
exposing different model variants. Additionally, it aids 
for better generalization reduces overfitting as well as 
enhances handling capacity of models with new ECG 
pattern types that may be unseen before Its strength lies 
in being adaptable 
 
6.2. LIMITATIONS 
Despite the promising results and advantages of BiASE, 
there are certain limitations that should be 
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acknowledged. One significant limitation is the model’s 
decision-making process interpretability is limited; similar 
to many deep learning models, it operates as a “black 
box” thereby making it difficult to understand how 
predictions are arrived at. Interpretability and 
explainability are crucial in clinical settings for trust 
building and acceptance by healthcare providers. 
Doctors may not be willing to fully depend on the forecast 
of this model exclusively, especially in making crucial 
decisions if they don't have insights into why the system 
arrived at such a conclusion.  
 

Research has to be done on ways methods can be 
created, which offer explanations highlighting the key 
features behind classifications made by BiASE in order 
for physicians validate outcomes gotten from these 
models. 
 

Another limitation tied with dependency on annotated 
data for training and evaluation the model being BiASE 
itself. Quality and consistency of annotations affect 
performance directly. Getting ECG datasets that are well 
annotated might take long hours, be tiresome as well 
having inter-observer variabilities. Furthermore, some 
rare arrhythmia classes lack enough annotated data 
thereby reducing its ability to learn and generalize for 
those specific conditions. There should be methods put in 
place such leveraging unlabeled or partially labeled 
data like semi-supervised learning among others so that 
we can do away with this drawback hence relying less on 
full annotated sets only. 
 

Furthermore, validation has to be done about how much 
BiASE can be generalized across different populations 
with varied demographic factors like age groups; but 
MIT-BIH Arrhythmia Database where it was trained on 
does not have enough representation from diverse 
patient groups – this means there might variations seen 
when applying such an algorithm for instance if ECG 
signals were collected in other clinical scenarios or real 
world settings other than these ones alone. Therefore, 
extensive clinical trials should involve people coming 
various parts of world so as check whether current 
findings hold true universally. Making sure that our results 
apply everywhere will be very useful practically 
speaking before saying this technology should widely be 
used within medical facilities. 
 

6.3. FUTURE WORK 
Addressing limitations and further enlarging BiASE’s 
capabilities could be done in several ways. There is one 
direction, in particular which seems very likely to be 
successful – namely integrating advanced neural network 
architectures like attention mechanisms, transformers or 
graph neural networks. Such approaches have given 
positive outcomes within different domains and are able 
potentially capturing more intricate patterns as well as 
long-range dependencies in ECG signals. For instance, 
this would enable the model to recognize even those 
ECG's most similar to each other but having different 
types of arrhythmia. The model’s performance would 
significantly increase if integrated with these advanced 
architectures that can handle challenging classification 
tasks on arrhythmia. 
 

Research has suggested that variation of learning 
approaches could enhance patient care by providing 

additional patient data. For example, when dealing with 
patient health records and information systems like BiASE, 
healthcare professionals need to consider strategies 
based on gender, age groupings or ethnicities as 
recommended sections for data collection. Other 
important aspects are comprising family medical history 
data among others. However, this information cannot 
exist in isolation, rather it is closely interlinked and 
interdependent. 
 
One more hopeful direction to take in the future is seeing 
what can be done with unlabeled ECG data using either 
unsupervised or semi-supervised learning techniques. 
These methods facilitate its potential for recognizing 
completely unique types of heartbeats by allowing them 
to pull out meaningful patterns from massive amounts of 
unlabeled information. This will decrease dependency on 
annotated collections and may reveal previously unknown 
types of arrhythmias. The vast number of existing records 
should be used as well. As such On the same note, one 
could use unsupervised or semi-supervised learning 
methods together with large volumes of available 
electrocardiogram (short ECG) representations so that 
they may result into better features and more 
generalization for the model thus improve its 
performance with complex instances. 
 
To ensure BiASE is accepted and trusted in clinical 
settings, it is essential to create techniques that will 
improve the model’s interpretability and explainability. 
Saliency maps, concept activation vectors and attention 
visualization may be applied in order to give insights on 
the decision-making processes of the BiASE model while 
also bringing out those important features which drive its 
predictions. Working together with professionals from 
healthcare industry so they can confirm or modify these 
interpretability methods would be necessary for their 
practicality and alignment with clinical expertise. 
 
Another crucial future research area lies in incorporating 
methods for estimating the uncertainty levels or 
confidences of models into their predictions. When a 
model predicts an outcome about a patient’s health status 
based on certain symptoms, then such prediction should 
as well carry some estimation about its confidence 
interval. By so doing, this shall guide doctors on what 
further tests may need to be conducted before making 
final decisions, hence saving more lives. Among ways 
through which we could go with might include Bayesian 
approaches; ensemble techniques like stacking various 
classifiers trained under different conditions or using 
multiple sample setting schemes simultaneously ; 
calibration methods whereby systematic adjustments are 
made to outputs delivered by one classifier so as bring 
them back into line with some chosen reference 
distribution. This way, we should be able to quantify and 
communicate model uncertainties effectively. 
 
Lastly but not least, comprehensive testing under real 
world conditions to determine how well BiASE performs 
across different hospitals – its transferability between 
regions etc., still remains unmatched by any other system 
currently in place. Long-term follow-up studies coupled 
with cost-effective analysis on the same will further 
elucidate potential benefits associated with incorporating 
BiASE into usual clinical practices 
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7. Conclusion: 
The proposed method represents a significant 
improvement in the field of ECG signal and arrhythmia 
classification and detection. Unlike current approaches 
that focus on achieving high accuracy, BiASE emphasizes 
the importance of proper signal analysis by considering 
both spatial and temporal features inherent in ECG 
signals.  The predominant contributions of our work can 
be summarized as follows: 
 
1. Enhanced Spatial Pattern Recognition: We broaden 
our knowledge of a model that effectively captures and 
identifies complex spatial patterns in ECG records at 
distinct scales, enhancing the detection of subtle 
arrhythmia indicators. 
 
2. Temporal Dependency Modeling: We include a 
temporal interest module that captures lengthy-variety 
dependencies and temporal interactions within the ECG 
signal, enabling the model to recognize applicable 
temporal regions and improve type overall performance. 
 
3. Class Imbalance Handling: We introduce the Adaptive 
Class-Balanced Loss, a dynamic weighting approach that 
adjusts the importance of each elegance primarily based 
on its illustration within the dataset, mitigating the effect 
of class imbalance and enhancing the category of 
underrepresented arrhythmia kinds. 

4. Experimental Evaluation: We conducted massive 
experiments on actual-global datasets for the ECG 
arrhythmia class, demonstrating the superiority of our 
proposed version in comparison to contemporary 
methods. 
 
By integrating these components, BiASE can effectively 
capture and integrate both spatial and temporal 
information present in signals, which is essential for 
understanding and analysing the characteristics of ECG 
data, resulting in improved classification performance 
and a more comprehensive understanding of the 
underlying signals. Furthermore, BiASE addresses 
common challenges in ECG signal analysis, such as noise 
contamination and class imbalance, through its pipeline 
and the ABCL loss function. 
 
In summary, the BiASE approach represents a holistic 
solution for ECG signal classification and arrhythmia 
detection, emphasizing not only high classification 
accuracy but also a deeper understanding of the signal’s 
spatial and temporal characteristics. By incorporating 
domain-specific knowledge and addressing common 
challenges, BiASE advances the current approach of ECG 
analysis, potentially leading to improved clinical decision 
support and assisting medical professionals for better 
diagnosis 
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