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ABSTRACT

The lifespans of mammalian species vary across orders of magnitude, with
the shortest on the order of a year and the longest more than one
hundred years. These lifespans are influenced by both genetic and
environmental factors. Here we asked whether we can define a molecular
process that can be used to define the intrinsic molecular lifespan of a
species that is largely independent of environmental factors. To address
this question, we have focused on ‘epigenetic clocks’ - highly accurate
age-predicting biomarkers based on DNA methylation. Our previous
research has demonstrated that the alterations in DNA methylation
related to age are non-linear, changing rapidly early in life and slowing
down with advancing age. We have proposed the use of saturating
exponential functions to represent these changes, which tend to stabilize
at terminal methylation levels towards the end of an organism's lifespan.
Our current study expands upon this by examining the exponential aging
timescales across various mammalian species. We show that the DNA
methylation trajectories of a broad range of species, ranging from mice
to humans, adhere to a saturating exponential function. Furthermore, we
find the timescale of this exponential decay to be about one third of a
species’ lifespan. This striking and novel observation implies that we can
define an intrinsic molecular lifespan of a species that is largely unaffected
by environmental factors. Although the exact mechanisms behind the
variation in species-specific rates remain unclear, we hypothesize that
they may be linked to the distinct metabolic rates found in each species.
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Introduction

The lifespan of a species refers to the typical
duration of time that individuals within a species
can expect to live under natural conditions. For
example, it is not uncommon for a human to have
a projected lifespan of 90 years, whereas a murine
natural lifespan is closer to two years. The lifespan
of a species is influenced by both genetic factors
and environmental conditions, and it is often
difficult to disentangle these two contributors. For
example, cows have an artificially short lifespan
due to their management in agriculture practices.
Wolves tend to have a shorter lifespan than dogs
due to the rigors of life in the wild. Similarly, the
lifespan of humans has increased significantly over
the past centuries due to advances in sanitation
and medicine. Here we ask whether it is possible
to define a molecular lifespan of a species that is
largely independent of environmental effects.

There are many theories that attempt to
characterize the aging process and duration of a
lifespan. For example, the antagonistic pleiotropy
theory proposes that aging is the result of two main
factors: (a) the selection of harmful alleles that have
beneficial effects early in life but become
detrimental with advancing age, and (b) the
inability of natural selection to counteract the
harmful effects of these alleles with aging. As a
consequence of this theory, mutations that extend
lifespan are likely to have negative consequences
or lower fitness during earlier stages of life'. On the
other hand, the disposable soma theory suggests
that aging is a random process caused by the
gradual buildup of molecular damage in somatic
cells. This process is offset by repair mechanisms
that work to preserve cellular health, albeit at an
energy cost. As a result, the rate of aging, varying
greatly among species, is inversely correlated with
the energy allocated to somatic maintenance’. The
information theory of aging, also known as the
informational entropy theory of aging, is a concept
that suggests aging results from the loss of
informational integrity in the biological systems of

an organism. According to this theory, aging is

essentially a process of progressive loss of information
necessary to maintain the organism's structure and
function. One type of information that is lost is
epigenetic, including the loss of DNA methylation

pattern of cells that are specified early in life?.

DNA methylation is an epigenetic regulatory
mechanism that influences phenotype without
altering genotype. As cells age, they accumulate
epigenetic changes through both internal and
external mechanisms. Internal processes, like
epigenetic drift, involve random events over time,
while external processes encompass environmental
and stress-related influences®®. These alterations
gradually disrupt the cell's biological functions,
leading to a subset of changes that exhibit clock-
like patterns over time®.

Consistent with this information theory of aging,
cytosine methylation at specific loci in the genome
has been found to be a consistently reproducible
molecular mark that changes with age. This
observation has enabled the development of
universal aging predictors applicable to all human

tissues®’8.

The subsequent creation of similar
epigenetic clock predictors for mice and other
species indicates a shared aspect in mammals of
the aging process, challenging the idea that aging
is solely driven by random cellular damage
accumulation over time®. While epigenetic clocks
can be subtly influenced by environmental effects,
they primarily reflect an intrinsic aging process that

is occurring at very similar rates across a population.

Previous studies have investigated DNA
methylation changes across species to determine
whether rates of change are species specific and
associated with the duration of lifespans’.To
address this question one study compared the
methylation rates of conserved age-related CpG
sites in blood and skin from 42 mammalian species,
ranging from rats to humans. They found that the
methylation rates scaled tightly with maximum
lifespan in both the DNA sources, namely blood
and skin'®. The study was restricted to samples that
were beyond the age of sexual maturation. Their

approach was based on the assumption of a linear
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relationship between epigenetic changes and
chronological age. However, conclusive evidence
shows that epigenetic changes occur nonlinearly,
with rates of change being faster earlier in life and

slowing with advancing ages'""2.

To extend linear models of epigenetic aging, the
Epigenetic Pacemaker was previously developed
to model non-linear age-dependent epigenetic
changes'" 3. Rather than predicting an age based
on methylation levels, which is the basis of most
epigenetic clocks, the epigenetic pacemaker attempts
to model time dependent changes in DNA
methylation at specific sites. The underlying model
is described by the following equation (equation 1):
m;j = m° +1;s;
Where, mj is the methylation level of position i
individual j, mo represents the methylation level at
birth,
methylation

ri represents the rate of change of
with

epigenetic state s, Previous studies have shown

respect to an underlying
that the relationship between epigenetic state and
actual age is well described by nonlinear functions
such as a square root function in bovine blood
samples' as well as in dogs'™, while a logarithmic

function was used in humans'2.

Here we seek to extend previous studies that relate
rates of epigenetic changes with the duration of a
lifespan by asking whether the epigenetic
pacemaker can be used to derive a general
formulation of a rate change in DNA methylation
with advancing age across species. The existence
of such a model would facilitate estimation of the

lifespan of a given species from DNA methylation

data alone. This will likely reflect an intrinsic or
biological species-specific rate that is largely

independent of extrinsic environmental factors.

Methods

DNA METHYLATION DATA

The data for our study was obtained from the
Mammalian array consortium®', We selected
blood and skin samples for our current study. From
the complete dataset available we selected blood
samples from 128 cats, 742 dogs, 208 horses, 530
mice, 188 rats, 277 cows, 153 marmots® and 203

humans'” along with skin samples of 183 killer whales®.

CONSTRUCTION OF EPIGENETIC PACEMAKERS
We used the epigenetic pacemaker methodology
to model age associated alterations in DNA
methylation for all the mammalian blood and skin
samples (Figure1, Supplementary Figure 1). The
epigenetic pacemaker models were created using
the EPM algorithm implemented as a python
package'. The methylation data was extracted
along with the metadata for each species. Using
the Spearman’s rank correlation as the metric, we
selected the most strongly age-associated sites in
each species. The correlation threshold used to
select sites was different for each species and was
chosen to optimize the correlation between the
epigenetic state and actual age of sample collection.

Table 1: Threshold to select sites and optimize the correlation between the epigenetic state and actual age

of species.
ORGANISM NO- OF SOURCE | AVG.LS | AGERANGE | EPMLMIT | "o OF | e A B c
SAMPLES SITES

CATS 128 BLOOD 15 0.019-2.72 0.8 566 0.95 | 15.82 | 18.42 | 0.16
DOGS 742 BLOOD 15 0.1-17.5 0.7 739 | 092 | 17.12 [ 19.00 | 0.10
HORSE 208 BLOOD 30 0.005-28 0.7 660 0.92 | 20.39 | 28.64 | 0.13
HUMANS 203 BLOOD 80 11.42-92 0.85 202 | 0.97 | 69.803 | 79.49 | 0.03
MOUSE 530 BLOOD 1.5 0.02-2.72 0.6 226 0.83 | 2.845 3.29 | 0.66
RATS 188 BLOOD 3 0.04-2.42 0.8 92 077 | 233 | 283 | 1.14
COWS 277 BLOOD 20 0.51-14.42 0.7 421 077 ] 972 [ 1479 | 031
MARMOTS 153 BLOOD 15 0.01-12.04 0.8 118 | 0.95 | 11.44 | 1376 | 0.19
KILLER WHALE 183 SKIN 70 0-76 0.7 137 | 0.79 | 47.68 | 59.40 | 0.05

© 2024 European Society of Medicine




Figure 1. Epigenetic Pacemaker modeling age associated alterations in DNA methylation for four

mammalian blood (mouse, horse and humans) and skin samples (killer whale).
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FITTING PARAMETERS OF THE SATURATING
EXPONENTIAL FUNCTIONS

We fit the relationship between the epigenetic
state and the actual age of each species using a
saturating exponential function. The optimal values
of the parameters were determined using the R
package nls. The final plots were generated using
the ggplot package in R studio.

Results
Our aim was to identify a universal model of
methylation changes with age across species. To
this end we analyzed nine species that span a large
range of lifespans: mouse (1.5 years), rat (3 years),
cat (15 years), dog (15 years), marmot (15 years),
cow (20 years), horse (30 years), killer whale (70
years) and human (80 years). We obtained the
methylation data of all these species from
published DNA

datasets'". We limited the source of the samples

previously methylation
to blood for all the species except the killer whale,
where the source was skin, since blood was
unavailable. The non-human data was collected
using the lllumina Mammalian DNA methylation

microarray which measures 37,554 CpG sites

Epigenstic Age (years)

Epigenetic Age (years)

Exponential Regression in Killer Whale

Actual Age (years)

Exponential Regression In Humans

Actual Age (years)

across the genome'®, whereas the human data was
collected using the Illumina HumanMethylation450
(450k) microarray that measures CpG methylation
across>485,000 probes'’.

To model age associated changes in DNA
methylation we used the Epigenetic Pacemaker'.
The Epigenetic Pacemaker or EPM does not
the

epigenetic age and actual chronological age. The

assume a linear relationship between
EPM approach uses a fast conditional expectation
maximization algorithm to minimize the residual
sum of squares between the observed and
estimated DNA methylation across age associated
sites’. The selected methylation sites for each
species were chosen using the Spearman rank
correlation, with a species-specific minimum
correlation threshold. We selected a sufficient
number of sites to obtain an optimal correlation
between the epigenetic age and the actual age
(see Methods). Table 1 shows the number of sites
along with the correlation threshold used for each
individual species. We observed in all the species
that the association between methylation and age
is non-linear, and could be well fit by a three-

parameter saturating exponential function (Figure

© 2024 European Society of Medicine 4



1 and Supplementary Figure 1) as shown in
equation 2:
eA(t) = a— be

We asked whether the ¢ parameter, which is the
time scale of the exponential function, is related to
lifespan. We found that there was a linear
relationship between the logarithm of lifespan and
the logarithm of ¢ (Figure 2a), which implies a
power law relationship between the two variables.

The exponent of this power law-like relationship is

close to negative one, suggesting that the lifespan
is proportional to 1/c (Figure 2b). Moreover, we
found that the constant of proportionality between
1/c and lifespan was 0.36 which we approximated
as ¥ (Figure 2b).

We next examined the relationship between the a
and b parameters of equation 2 and lifespan. We
find that both a and b are linearly related to
lifespan, and that the ratio between aand b is close
to 0.9 (Figure 2c, 2d).

Figure 2. (a). Linear relationship between the logarithm of lifespan and the logarithm of ¢ implying a power

relation between the two variables. (b). Plot showing that the lifespan is proportional to 1/c. (c). Linear

relationship between lifespan and the variable a. (d). Linear relationship between lifespan and variable b.

LogiActual Lifespan(years)) vs Logic): y = ~0.81x + 0.20, A-squared = 0.83

Logic)

w
a Log{Actual Lifespaniyears))

Actual Lif 1y = 0.78% + 0.41,

C Actual Lifespaniyears)

These observations lead us to propose a general
relationship between epigenetic age and the
duration of the lifespan of a species as shown in

equation 3:

-3t

eA(t) = LS*(1 — 0.8eLs")

Where, eA is the epigenetic age and LS* is the

inferred lifespan.

We applied this model to our DNA methylation
data and computed the values of lifespan from the

DNA methylation trajectories generated using the

d gt

Actust Lifespaniyssrs) va 1/c: y = 0.36% - 0.15, R-squared = 0.90

woibins

EPM. The one parameter equation showed a very
similar fit with the predicted epigenetic age versus
actual age with R squared values of 0.95, 0.92,
0.92,0.97,0.83,0.77,0.77, 0.95 and 0.79 for cats,
dogs, horse, humans, mouse, rats, cows, marmots
and killer whale respectively (Figure 3 and
Supplementary Figure 3). Finally, we compared the
estimated life span of each species based on this
model to the reported lifespan and found a
significant association between the two (Figure 4)
with an R squared of 0.96 and slope of 0.85. The
predicted lifespans of each species are reported in
Table 2.

© 2024 European Society of Medicine 5



Table 2: Predicted lifespan for each species.

NO. OF AVG. NO. OF PREDICTED
ORGANISM SOURCE AGE RANGE EPM LIMIT R?
SAMPLES LS SITES LIFESPAN
CATS 128 BLOOD 15 0.019-2.72 0.8 566 0.95 19.48
DOGS 742 BLOOD 15 0.1-17.5 0.7 739 0.92 16.53
HORSE 208 BLOOD 30 0.005-28 0.7 660 0.92 27.59
HUMANS 203 BLOOD 80 11.42-92 0.85 202 0.97 78.88
MOUSE 530 BLOOD 1.5 0.02-2.72 0.6 226 0.83 2.91
RATS 188 BLOOD 3 0.04-2.42 0.8 92 0.77 2.99
COWS 277 BLOOD 20 0.51-14.42 0.7 421 0.77 13.95
MARMOTS 153 BLOOD 15 0.01-12.04 0.8 118 0.95 13.19
KILLER
183 SKIN 70 0-76 0.7 137 0.79 58.08
WHALE

Figure 3. One parameter equation plot fit with the predicted epigenetic age versus actual age for mammals

- mouse, killer whale, horse and humans.
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Figure 4. Comparison between the estimated life span of each species based to the reported lifespan.
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Supplementary Figure 1. Epigenetic Pacemaker
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Supplementary Figure 2. One parameter equation plot fit with the predicted epigenetic age versus actual

age for the remaining mammals - Cats, Rats, Marmots, Cows and Dogs.
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Discussion

Our study suggests that saturating exponential
functions can be used to model DNA methylation
dynamics over a lifespan. This suggests that the
epigenetic age of a species converges to stable
methylation levels as an organism approaches the
end of its lifespan. We have previously shown that
a simple model of DNA methylation as a chemical
reaction with on and off rates will lead to these
types of saturating exponential dynamics. This is
true even if we average the properties of multiple

CpG sites with different underlying kinetics®.

Building on this view, our present investigation
delves into the exponential aging dynamics across

diverse species. Our analysis reveals that the

© 2024 European Society of Medicine
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patterns of DNA methylation follow saturating
exponential dynamics across a wide array of
species, spanning from mice to humans. We find
that these dynamics can be well approximated by
a universal saturating exponential function with a
single species-specific parameter. We observe that
the timescale parameter of the exponential
dynamics is approximately one third of a species'
lifespan. We hypothesize that the lifespan derived
from these trajectories represents an intrinsic
molecular lifespan of a species that is largely
independent of environmental effects, and should
not be significantly affected even when lifespans
are curtailed by unanticipated accidents, predation
or disease. Therefore, we would predict that this

should largely

7

molecular  lifespan remain



unchanged when genetically similar domesticated
and wild species are compared (such as dogs and
wolves) even though their actual average lifespan
may be quite different due to risks associated with
life in the wild for the latter. We find that under this
model, the molecular lifespan of humans is
approximately 80 years, which is remarkably close
to the current global lifespan that has emerged
over the past few decades as disease risks have
been minimized across the globe?'. Moreover, we
find that our predicted molecular lifespan is quite
close to the typical lifespan of many captive

animals, such as that of dogs and cats.

This simple formulation of the dynamics of
epigenetic changes across species leads us to ask
what factors may be regulating the species-specific
timescales (and hence lifespans). To date it is still
not clear what molecular processes determine the
lifespan of a species. Many prior studies have
demonstrated that lifespan is associated with
metabolic rates, with longer living species having
slower metabolic rates than shorter living species®.
Under this model, the timescales of the exponential
functions we observe may be a manifestation of the
underlying metabolic rates of species.

This hypothesis generated from our present study,
leads us to speculate about the factors that serve
as regulators of species-specific metabolic rates.
One explanation that has emerged in recent years
is based on investigations related to the rate of
development, rate of biochemical reactions, and
the dynamics of epigenetic changes across
species®. This hypothesis is that the mitochondria,
the powerhouse of the energy metabolism, may
also act as a chronometer of metabolism. Under
this model the mitochondria may regulate the
various

cadence  of developmental  and

biochemical processes that are essential for the

t3. One could therefore

kinetics of developmen
speculate that the species-specific timescales of
epigenetic aging may be a manifestation of cellular

metabolic rates regulated by the mitochondria.

In the future we may use these models to

understand whether these species-specific timescales

can be altered by environmental or pharmaceutical
interventions. The same could also be conducted
on organisms other than mammals to examine
whether similar trends hold. It is well established
that caloric restriction can alter metabolic rates and
lifespans in short lived mammals?. Therefore, there
may also be interventions that slow the intrinsic
epigenetic aging in longer-living mammals as well,

although these are largely yet to be discovered.

Conclusion

Our study demonstrates that DNA methylation
dynamics can be universally modeled using
saturating exponential functions, revealing that the
timescale parameter is approximately one-third of
a species' lifespan. This suggests an intrinsic

largely
environmental factors. Our findings indicate that

molecular  lifespan unaffected by
the molecular lifespan of humans is around 80
years, aligning with current global averages and
reinforcing the accuracy of our model across
diverse species, including domesticated and wild
animals. We speculate that metabolic rates,
possibly regulated by mitochondrial activity, may
influence these timescales, opening avenues for
interventions that could extend lifespans by

modifying intrinsic epigenetic aging processes.
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