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ABSTRACT

The groundbreaking theory of DNA double helix structure has greatly
promoted the development of molecular genetics, shaping and refining
the genetic central dogma, thus enabling researchers to explore
genotype-phenotype regulation at different levels. In particular, with the
continued advancement of third-generation sequencing technology, an
increasing number of highly accurate human genomes have been
assembled, such as T2T-CHM13 and HGO002. These high-quality genome
sequences not only provide a more comprehensive human reference
sequence, but also enable functional genomics studies within a unified
coordinate system. To better explore and resolve the complex genetic
information encompassed within human genome sequences, scientists
have proposed novel research strategies, involving graphical pan-
genome and pre-trained genomic models. The graphical pan-genomes
provide population-level high-quality references, revealing the genomic
diversity within populations and exploring the sequence complexity of
specific regions, such as the KIR immune region. Concurrently, related
studies of pre-trained models within the human genome offer new
perspectives for interpreting sequence functions and delving into the
hidden genetic codes, potentially leading to complete DNA decoding.
Overall, graphical pan-genome and pre-trained genomic models
represent two crucial strategies in genomics research, which will provide
more new insights and make greater breakthroughs in the human
genome. Together, these approaches have deepened our understanding
of the human genome, fostered the development of bioinformatics
ecosystems, and will contribute to the establishment and improvement of
the entire field. Therefore, this review focuses on DNA sequencing,
human genome assembly, high-quality pan-genome and pre-trained
genomic large language models (LLMs), highlighting and summarizing
the latest achievements and progress in human genome research,

discussing existing challenges and providing future perspectives.

© 2024 European Society of Medicine 1


https://doi.org/10.18103/mra.v12i7.5571
https://doi.org/10.18103/mra.v12i7.5571
https://doi.org/10.18103/mra.v12i7.5571
https://doi.org/10.18103/mra.v12i7.5571

Introduction

The rapid advancements in fields such as molecular
biology have significantly contributed to reveal the
complex phenotypic regulation within the cellular.
Miescher's extraction of nucleic acids in 1869
marked the beginning of a deeper understanding
of life's molecular makeup, particularly with the
establishment of the DNA double helix model,
which has unraveled the mystery of nucleic acid as
the primary genetic landscape'?. In eukaryotes, the
genetic blueprint primarily comprises nuclear
genomic DNA, organellar DNA and cytoplasmic
free DNA®. The nuclear genome, which is primarily
located within the cellular, serves as the main
genetic material of the living organisms and is
involved in a variety of complex interactions during
phenotypic regulation®*®. Studies have shown that
genetic factors not only directly influence
individual phenotypes, but also regulate gene
expression through mechanisms such as DNA
methylation, histone modifications and non-coding
RNAs” 8 For this reason, geneticists typically
regard the genome sequences as genotypes, with
their downstream regulatory expressions and
functions are categorized as potential phenotypes.
These can be further classified into intermediate
molecular phenotypes (RNAs, proteins and
metabolites), characteristic phenotypes (influenced
by genetic and environmental factors, such as skin
color) and clinical phenotypes (physiological and
biochemical traits, disease symptoms and
responses). A deeper understanding of the
genotype-phenotype  interplay  reveals  the
complexity of living organisms, offering novel
approaches for disease diagnosis, treatment and
prevention. Consequently, the resolution and
functional interpretation of high-quality genome
sequences are particularly crucial for exploring

their role in phenotypic shaping.

Subsequently, with the development of
sequencing technologies, the Human Genome
Project (HGP) was successfully implemented, such
as hg38 reference, facilitating the decoding of

genetic information and its involvement in the

process of phenotypic regulation within living
organisms’. The genome functional annotations
revealed that its sequence contains both coding
and non-coding regions, with ~50% of the gene
regions and only ~3% consisting of the protein-
coding sequences'. Notably, most published
studies have predominantly focused on protein-
coding sequence functionality. In view of this,
genomics-related studies can reveal the complexity
and regulation of the genetic landscape, including
sequence resolution, sequence diversity, gene
interactions, non-coding DNA regulation, genome
stability and the high-dimensional structure of
chromatin. Ultimately these findings will not only
deepen our understanding of the genetic material,
but also provide novel insights into complex
diseases and  species evolution,  driving
advancements in the biomedical field. In recent
years, the iterative updates of high-quality human
reference genomes have significantly advanced
analysis workflows, with sequence alignment-
based methods serving as the primary strategy.
Although these widely used linear reference
sequences can provide a unified reference
coordinate system for bioinformatics analysis, their
limitations include inadequate representation of

population diversity and limited interpretation’" 2,

The third-generation sequencing technologies
have enabled high-quality genomic sequence
analysis at the population level, giving rise to pan-
genomics as a powerful tool for exploring the
genetic information contained within these
sequences and enhancing the human reference
genome’. This provides base-level resolution among
populations for a deeper understanding of genetic
diversity. Concurrently, the maturation of LLMs
technology in natural language processing (NLP)
has provided innovative methods to further decipher
the genetic information hidden in genomic
sequences, facilitating more efficient identification
and interpretation of the regulatory mechanisms
within genomic regions' '™, Additionally, the
further integration of multi-omics data promises a
more comprehensive understanding of genomic

regulation in organismal phenotypes. Therefore,
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this review will start from the nuclear genome
sequencing and sequence assembly, and then
further summarize the research progress in
graphical pan-genome and pre-trained genomic
LLMs in human genome research. Subsequently, it
will discuss and envision these developments, with
the ultimate goal of strengthening the entire
computational biology ecosystem, and will provide
a solid foundation for the study of personalized

precision medicine and complex diseases.

DNA extraction and sequencing

techniques
The isolation and accurate assembly of DNA from
cellular is crucial in genome research. Over time,
scientists have developed innovative techniques,
bead-based and

membrane-based extraction, which have greatly

such as magnetic silica
improved the efficiency and quality of DNA

extraction'18, Concurrently, advances in
sequencing technologies have facilitated rapid and
accurate reconstruction of DNA sequences from
the microcellular world. The development of
sequencing has progressed from traditional Sanger
third-generation

sequencing  to full-length

sequencing (Table 1), gradually achieving high-
quality long-read sequencing at the whole-
genome level?°. Compared to other sequencing
technologies, the hallmark of third-generation
sequencing is that it can directly obtain continuous
sequences from individual DNA molecules up to
tens of thousands of bases?’. This effectively
addresses the challenge posed by complex
structures and repeated sequences within genomes.
With its reduced cost and improved accuracy,
third-generation sequencing is expected to play an
increasingly significant role in biomedical research.
Moreover, alongside those established sequencing
technologies (yielding HiFi reads up to ~30kb),
high-throughput sequencing has experienced a
surge, particularly in single-cell genome and spatial
genomics sequencing. These advancements have
enhanced our understanding of cellular
heterogeneity and the spatio-temporal specificity
DNA,

By integrating diverse sequencing

of genomic uncovering  cell-specific
diversity?2.
methods, researchers can delve into fundamental
life phenomena at different levels, with the insights
gained playing a key role in genomics, functional

genomics, and cancer genomics.

Table 1: Characterization and comparison of the three main sequencing technologies

first-generation
sequencing

second-generation
sequencing

third-generation sequencing

Other

Sanger sequencing
names

Uses labelled
dideoxynucleotide
Core triphosphates (ddNTPs);
principles selectively terminates
DNA strand extension for
sequencing, etc.

Highly accurate and
reliable; can sequence
specific sequence
fragments

Advantages

Low throughput;
complex and time-
consuming, etc.

Limitations

PCR sequencing
commonly used in
laboratories; Human
Genome Project; genetic
disease diagnostics and
new drug development,
etc.

Applications

NGS sequencing

Parallel sequencing on a
fixed surface; lllumina
Bridge Amplification,
Roche 454 Emulsion PCR
and lon Torrent
Semiconductor
technologies, etc.

High throughput; low cost;
rapid; low sample
requirements and broad
applicability

Short reads; PCR
amplification bias; GC
preference in sequencing,
etc.

Large-scale genome
sequencing; precision
medicine research, etc.

Long-read sequencing

Real-time single-molecule
sequencing technology;
nanopore sequencing
technology, etc.

Long-read sequencing;
spanning repetitive regions
and improving sequence
assembly accuracy;
identifying DNA epigenetic
modifications

High error rates (HiFi
accuracy is high); higher
costs; high data storage
processing and analysis
requirements, etc.

Repeat sequence and
structural variation analysis;
resolution of low-coverage
regions in second-generation
sequencing; more accurate
gene expression and splicing
variation analysis, etc.

© 2024 European Society of Medicine



Human genome sequence resolution

High-quality resolution of genome sequences in
diploid organisms, like humans, is a crucial basic
step in understanding their genetic properties.
Prior to genome sequence assembly, researchers
need to sequence using different libraries and
various platforms according to the experimental
design, etc. The whole sequencing process
includes?#?: 1) sample preparation, where DNA
is extracted from individuals and quality-tested to
meet the sequencing platform requirements. 2)
library  construction, tailored to platform
requirements, often fragmenting DNA for second-
(adding

adaptors), while third-generation sequencing

generation  sequencing sequencing
libraries filter out shorter fragments. 3) sample
sequencing, which involves sequencing under
specific conditions, such as whole genome or
targeted sequencing, mixed-sample analysis or
not, and whether the initial DNA requires
amplification. 4) data processing, which includes
quality control steps such as removing adapters
and filtering out low-quality sequences to maintain
high quality, as poor quality can significantly affect
assembly results.

Genome sequence assembly is conventionally
classified into three main assembly levels: primary,
pseudo-haplotype and complete haplotype?#,273031,
These different levels of sequence resolution are
closely related to the sequencing platforms used
and the specific research requirements. Briefly,
primary assembly is usually the starting point for
genome assembly, reconstructing a complete
sequence in diploid organisms. However, its
inability to accurately distinguish haplotype
sequences can potentially lead to loss or
misinterpretation of haplotype-specific pathogenic
information. Pseudo-haplotype assembly improves
on primary assembly by incorporating alternative
sequences, aiming to increase resolution and
avoiding sequences loss in complex regions as
much as possible. Lastly, fully haplotype assembly
resolves both parental

genetic  sequence

information with high accuracy, which is crucial for

understanding genetic diversity and regulatory

mechanisms in complex diseases.

Although the genome assemblies of most species
currently remain at the primary and pseudo-
haplotype assembly levels, advances in technology
will eventually enable more species to have
complete haplotype genome sequences®. The
reference genome hg38, derived from the HGP,
provides a critical foundation for understanding
human genetic diseases, advancing personalized
medicine and developing new drugs, as well as
fostering the growth of disciplines such as
bioinformatics. The T2T-CHM13, a high-quality
homozygous cell line reference genome, which is
not only represents an important milestone in
genomics field, but also provides a new direction
for future research®. Meanwhile, fully haplotype-
resolved sequences can be resolved by using
family lineage information or by combining
different long-read sequencing platforms such as
Illumina, PacBio, and Oxford Nanopore combined
via the Verkko process*. Moreover, single platform
PacBio HiFi data assembled by hifiasm can also be
used to cost-effectively generate high-quality local
haplotype sequences®. NextPolish2 can further
improve assembled sequences quality by reducing
overcorrection and haplotype switching errors
using HiFi data®®. However, there is currently no
perfect single process currently, and iterative
validation with multi-platform data is often
required, but there are existing strategies that can
well detect repetitive sequences and structural

variants (SVs) in genomes®?’.

High-quality pan-genome reference
The rapid growth of high-quality haplotype

genomes has led to a boom in pan-genomic
research, presenting researchers are confronted
with the challenge of integrating and interpreting
vast amounts of genetic data. As a significant field
in genomics, pan-genome research aims to
comprehensively analyze the genomes of all
individuals within a specific species, overcoming
the limitations of single reference genomes and

providing novel insights into exploring the genetic
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complexity within species™®. In particular, the
human pan-genome project, by constructing a
high-accuracy coordinate system that includes
diverse ethnicities, which greatly increased the
accuracy and completeness of research. This
achievement provides a foundation for disease
research, drug development, and precision
medicine, providing a more nuanced
understanding of population genetics. The high-
accuracy pan-genome sequence enables more
effective personalized medicine, particularly in the
diagnosis and treatment of rare diseases® .
Meanwhile, the advancement of pan-genomic
projects is driving advances in computational
ecology and transforming the omics analysis
workflow, including the quantification of gene
expression,  haplotypic

expression  patterns

analysis, and SVs detection in sequencing data*'*2.

Pan-genome analysis originated from microbial
research and has since been widely applied in plant
and animal fields®®. This has facilitated our
understanding of intraspecific genetic diversity and
sequence evolutionary properties. Scientists have
explored and proposed various pangenome
construction methods, and the most primary
strategies include linear and graphical methods,
each with specific advantages and applicable
scenarios™ % The construction of a linear pan-
genome is similar to the classical genome
structure, whereby newly identified sequences are
appended to an existing reference. Therefore, the
primary task is to identify sample-specific non-
reference sequences”. Typically, each sample
undergoes de novo assembly and is aligned to the
reference genome to extract long fragments of
distinct  sequences.  Subsequently,  these
sequences are then combined with the reference
genome to construct the pan-genome after de-
redundancy®. Meanwhile, to reduce the cost of
large-scale sample assembly, an alternative
approach is to first alignment and identify sample-
specific sequencing data (poorly aligned or
unaligned reads), which are then assembled and
merged with the reference genome after

redundancy removal®. Given the properties of

third-generation sequencing data (Table 1), it is
also feasible to directly use sample-specific
sequence reads to construct a linear pan-genome
after de-redundancy, particularly suitable for
populations  with small genetic differences.
However, the resulting linear pan-genome, which
contains only a few large differential sequences is
not sufficiently accurate. It lacks single-base
resolution, may contain more potential assembly
errors or inconsistencies in coordinate assignments

among samples.

The graphical pan-genome construction represents
a relatively novel strategy for the visualization of
population genetic diversity through a structural
graph containing all possible sequence variants®
>! These methods are more suitable for sequence
alignment and variant resolution at the single-base
genome level in genetically diverse populations.
Minigraph-Cactus, a reference-based method,
efficiently handles complex variants in large
datasets by constructing a sequence variation
graph in which differential bases are represented
as nodes connected by edges, forming paths that
represent complete sequences, clearly demonstrating
genome associations and differences at the single-
base level resolution®?. PGGB is another "all to all"
alignment tool among long sequences, generating
accurate genome graphs representing the genetic
diversity of a population within a single graph®.
Compared to the other methods, Minigraph-
Cactus and PGGB are currently the most mature
process, yet they still face challenges in accurately
representing and constructing sequences in repetitive
regions>. As computational power and sequencing
technologies continue to advance, graphical pan-
genomes will facilitate a deeper understanding of
genomic diversity in large-scale studies, being
expected to play a significant role in interpreting

biodiversity and underlying genetic mechanisms.

Currently, the Human Pangenome Project is
primarily promoted by the Human Pangenome
Reference Consortium (HPRC) and the Chinese
Pangenome Consortium (CPC). The HPRC project
selected diverse samples from different ethnicities,

© 2024 European Society of Medicine 5



geographical locations and populations for multi-
platform sequencing, and ultimately constructed
an initial comprehensive human pan-genome
database, which was then subjected to rigorous
data cleaning and complex assembly processes®.
This resource provides valuable high-quality
sequence for studying human genetic diseases and
developing personalized nucleic acid vaccines. The
CPC focuses on filling the gap in genetic
information for East Asians by pinpointing specific
ethnic and regional genomic data, thereby
deepening our understanding of Chinese population
genetics®. The principal challenges and future
directions of current pan-genome research include®%:
1) Technological innovation to continuously
improve sequencing technologies and analytical
methods to improve the integrity of the genome.
2) Extensive international collaboration and data
sharing. 3) Integration of interdisciplinary domain
knowledge to interpret sequence functions. 4)
Translation of research findings into clinical
practice for disease risk assessment, drug
development and rare disease treatment. 5)
Further refinement of bioinformatics tools to better
understand the genetic basis of genome evolution
and phenotypic diversity in populations.

Pre-trained genomic large language

models

The pre-trained LLMs have revolutionized NLP
research, and their impact has recently extended
to the genomics field, with notable achievements.
These models can be classified into two categories:
Transformer-based models such as DNABERT®,
LOGO%, Nucleotide Transformer®’, GenSLM®?,
GENA-LM® and GenomicLLM®, as well as those
based on other language modeling frameworks
like HyenaDNA?®> and Mamba®, etc. Compared to
other language framework models, Transformer-
based models are currently only able to
understand the context of up to 4k tokens
(~0.0013% of the human genome) due to the
limitation of the secondary scaling using the
attention mechanisms, leading to a limited
understanding of long-range genome interactions.

As for Transformer-based models, DNABERT is the
first BERT-based pre-trained model of DNA
sequences. It outperforms CNN, RNN, and LSTM
networks in modeling DNA language, capturing
global information and transferring it to various
downstream tasks. The optimal 6-mers were
discovered in experiments and adopted by
subsequent researchers. DNABERT2, an improved
version of DNABERT, which overcomes length
limitations by using linear bias attention instead of
learned positional embedding, reducing time and
memory consumption while improving
performance®. In addition, it also employs Byte
Pair Encoding (BPE) strategy for DNA sequence
analysis, overcoming the limitations of K-mers
tokenization, which in turn benefits from the
computational efficiency of non-overlapping
tokenization. LOGO, a lightweight genome
ALBERT model using reference genome hg19,
excels in sequence labeling tasks such as promoter
identification, enhancer-promoter interaction
prediction, and chromatin state prediction, etc.
Nucleotide Transformer, utilizing different nucleic
acid databases and K-mers tokenization for cross-
species representation learning, improves accurate
molecular phenotype prediction even in resource-
constrained scenarios, bridging the gap between
genetic information and observable traits. GENA-
LM, employing BPE tokenization for input lengths
up to 3kb, is pretrained on T2T-CHM13 genome
sequences, demonstrating strong performance in
various genomic downstream tasks. GenSLMs,
trained on 110 million prokaryotic genome
sequences and fine-tuned on 1.5 million SARS-
CoV-2 DNA sequences, which can facilitate
accurately and rapidly variant detection, accelerating
the identification of novel COVID-19 variants.
GenomicLLM, using a nano-LLaMA2 network,
enables better understanding of mixed corpora
containing sequence and non-sequence inputs
(textual information from human gene annotation),
enabling a wider range of applications including

classification, regression and generation tasks.

In terms of other language framework models,

researchers have introduced the HyenaDNA

© 2024 European Society of Medicine 6



genomics model, a modification of the implicit
convolutional large language model Hyena on the
genome task, which rivals attention mechanisms in
its ability to process long contexts and offers lower
time complexity. This model is pre-trained on
sequences up to 1 million tokens at single
nucleotide  resolution,  which  significantly
addressing the limitations of context length and
single nucleotide resolution in existing genomic
models, achieving state-of-the-art performance
across multiple genomic tasks. Building upon this
progress, scientists recently have developed the
Evo foundational model using the StripedHyena
attention

architecture, which integrates

mechanisms  with  data-driven  convolution
operators. This model encompassing DNA, RNA
and protein sequences, effectively simulates the
genetic central dogma and demonstrates
capabilities in both prediction and generation tasks
spanning  molecular  to scales®®.
Additionally, the Mamba model, which is based on

linear time series modeling with selective state

genomic

spaces, exhibits superior pre-training quality and
downstream performance compared to Hyena and
Transformers, and exhibits improved performance
as context length increases. Despite the high
computational costs, pre-trained genomic models,
trained on large amounts of unlabeled DNA
sequences, can be directly fine-tuned for specific
downstream tasks.

The emerging field of pre-trained DNA models
faces several limitations and challenges in their
application to downstream tasks. These problems
stem from the scarcity of high-quality datasets,
specialized model frameworks, and task-specific
biomedical corpora with meaningful significance.
Advances in sequencing technologies, particularly
third-generation  long-read  sequencing, are
increasing the availability of high-quality genomic
data. However, there is a need to incorporate more
sophisticated model frameworks, such as human
feedback reinforcement learning®’, to facilitate
biologists' optimization of models, and lightweight
models that minimize pre-training costs should be

prioritized. There is a need for a biologically

meaningful corpus consisting of a pre-training
phase and model evaluation, with DNA corpora
constructed by researchers using biomedical
knowledge can improve a model's comprehension
of the
development of high-quality datasets linking

human genome. Furthermore, the
genomes to human phenotypic traits is crucial for
assessing the generalization capabilities of pre-
trained DNA models, a field that remains

underdeveloped.

Prospects for pan-genomic large

language models

Artificial intelligence (Al), symbolizing "silicon-
based" life, has made significant progress in LLMs,
accelerating the development of artificial general
intelligence (AGI). Notably, the deployment of Al
generated content (AIGC), such as ChatGPT, is
having a profound impact on our lifestyles (Figure
1A). In contrast, as representatives of "carbon-
based" life, biological intelligent agents interact
with their environment and maintain corresponding
homeostasis over long-term species evolution,
collectively forming intelligent systems of living
organisms. The genomic DNA, located in the cell
nucleus, acts as a central regulatory mechanism,
utilizing sophisticated strategies like the genetic
central dogma to maintain the functioning of the
entire intelligent system (Figure 1B).

Genomic DNA, the fundamental component of
biological intelligence systems, has a complex
sequence, a sophisticated genetic blueprint and a
regulatory network. Over the years, human
scientists have focused primarily on only protein
coding sequences, but the results of these studies
remain limited. Approximately 97% of the genome
sequence may harbors hidden "dark matter," and
the structure and sequence of DNA may exhibit
spatiotemporal specificity within the nucleus. To
accelerate the exploration of this genomic "dark
matter" as well as truly decipher and interpret the
genetic blueprint (the Life 2.0 era, with the
completion of the HGP marking the end of Life
1.0), current Al foundation models (entering the Al

© 2024 European Society of Medicine 7



2.0 era, with Al 1.0 marked by computer
simulations of human intelligence) can be used to
accelerate this process. The organic combination
between human scientists' exploratory mindset
(employing global reasoning from local insights,
etc.) and computational intelligence (utilizing
recursion-based divide-and-conquer strategies,
etc.) will facilitate the deciphering of this genetic
blueprint  through  approaches  such as
reinforcement learning (agents), and ultimately
push human civilization into higher dimensions in a
secure manner, as marked by the synthesis of
independent life forms. Throughout this process,
we should be guided by these questions --"Who
are we? Where do we come from? Where are we
going? How can we survive better?" and explore
the origins and endpoints of life using the 'human

in the loop' strategy.

At the same time, the intelligence of Al is often
being assessed by human standards, but this
typically distant
associations derived from the extensive instant

assessment reflects the

storage capacity, model parameters, and
associated databases, rather than the essence of
Although

compare neurons to neural networks, the inherent

intelligence. scientists commonly
limitations and biases in the understanding of the
human brain make it an imperfect reference for Al
development. Furthermore, most real-world data is
artificial and carries a human subjective bias.
Conversely, genomic DNA, as the fundamental
genetic material of living organisms (the code left
behind by the 'gods'?), plays an objective role in
shaping the phenotype of life. High-quality
genome sequence data, which is both clean and
informative, provides fertile ground for Al
innovation. By directly simulating or generating
these "godlike" codes, we may uncover a novel
approach to Al, potentially mitigating human bias
in scientific inquiry. Directly simulating and
generating codes left by "god" with Al itself is a
method of generating intelligence. While the
natural cognition of human scientists may be lost
due to the subjective bias, the codes left by "god"
will persist with the continuation of "carbon-based"

life. In future research, we will build on the concept
that fully decoding the DNA genetic blueprint
could be a way to accelerate the realization of AGI,
with the aim of contributing to Al 2.0 and ultimately

paving the way towards genuine Al.

Overall, the accumulated human pan-genome
DNA datasets represent an excellent application
scenario for Al 2.0, which play a central role in
unravelling the essence of biological intelligence
advancements in

and driving genuine Al

technologies.  Meanwhile,  improving  the
understanding of genomic DNA data (spatio-
temporal specificity) and enabling models to learn
this knowledge is crucial for the whole process,
which requires the collaboration of experts from
various fields including health data scientists, Al
specialists, bioinformaticians, evolutionary
biologists, physicists, mathematicians, and natural
philosophers. This field is currently booming with
recent advancements. For instance, the Evo model
can generate multimodal life language sequences
(DNA, RNA, and proteins) within genomes.
Recently, a novel "Embed-Search-Align" framework
for DNA sequence alignment has been developed
that is comparable in performance to traditional
algorithms such as Bowtie and BWA-Mem’'.
Besides, DNA sequence language models have also
been used to predict genome-wide variant effects,
cis-regulatory regions, DNA-protein interaction,

DNA methylation and splice sites, etc’2
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Limitations

As the core content of bioinformatics analysis,
human genome sequence research has always
attracted much attention. In order to construct a
this

review primarily focuses on two aspects: human

comprehensive omics analysis workflow,
pan-genomes and the fine-tuning of pre-trained
genomics LLMs. It focuses primarily on the analysis
and interpretation at the genome sequence level,
but there is a notable absence of discussion on
phenotype-related topics. Furthermore, given the
current limited availability of haplotype genome
datasets, there is a lack of discussion of potential
biases in downstream analysis related to human
population genetics, e.g., the pre-trained of
existing linear genomes may have bias and thus
affect the downstream analysis task. In addition,
the pan-genomic studies' content did not include
a comparative analysis of their findings against
human reference sequences, and the fine-tuning
component of the pre-trained genomic models
lacked a systematic comparison with other deep
learning models. In short, this paper provides a
preliminary overview of the human pan-genome
and the fine-tuning of pre-trained genomic LLMs,

with many details still to be discussed.

Conclusion

The resolution and functional interpretation of the

human genome sequence is central to biomedical

research, so this study reviews the relevant aspects
from the following three aspects: 1) Sequencing
technologies and human genome assembly, we
provide an overview of sequencing technology
development and its comparison, comparing
different levels of human genome sequence
resolution methods at the present stage, and
summarized the different strategies and their
sequence resolution effects. 2) For pan-genome
construction, we outline the pan-genome construction
methods, particularly focusing on the mainstream
graphical pan-genome construction strategies and
the current progress of this project. 3) For human
genome sequence pre-training, we classify them
according to whether they follow the Transformer
framework or not, and summarize the latest
progress and advantages in the corresponding
domains. In conclusion, this review provides a
detailed discussion and outlook for the above
researches, with the expectation that these
methods will be more effective in mining and
deciphering the genetic blueprint of the genome.
Meanwhile, we also point out the direction of
genome-NLP or genome-LLM using pan-genome,
which will further explore new research paradigms.
In particular, the adoption of a multi-species pre-
training strategy aims to exploit evolutionarily
conserved genomic information, thereby improving
the modelling of its underlying grammar”® and

ultimately contribute to the realization of AGI.
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