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ABSTRACT 

Antineutrophil cytoplasmic antibody (ANCA) associated vasculitis (AAV) is 

a debilitating disease with the potential to cause significant morbidity and 

mortality if not treated. The pathogenesis of this disease is not understood, 

though emerging evidence suggests that alternative complement pathway 

system is involved. C5a, mediates several pro-inflammatory effects 

through its receptor C5aR. Avacopan, targets C5a by preventing it from 

binding to its receptor C5aR. Complement dysregulation, imbalance 

between regulatory activity of Factor H and stimulation by Factor H 

related proteins, has been identified as a new mechanism of disease.  
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Introduction 
Antineutrophil cytoplasmic antibody (ANCA) associated 
vasculitis (AAV), is a devastating disease affecting 
multiple organs.1,3,4,7 Disease limited to the kidneys is 
called renal limited vasculitis.1,3,4,7,13,22,24 An 
autoinflammatory disease, untreated, missed or delayed 
diagnosis has critical implications, with patients with renal 
limited disease experience significant morbidity. 
Therefore, prompt diagnosis and treatment are required. 

ANCA vasculitis refers to distinct diseases that typically 
affect small vessels. Granulomatosis with Polyangiitis 
(GPA), Microscopic Polyangiitis (MPA), Eosinophilic 
Granulomatosis with Polyangiitis (EGPA).22 The 
pathogenesis of this disease is complex and is not fully 
understood.1,3,4,7,13 

 

The complement system was previously thought to exhibit 
limited activity in patients with ANCA vasculitis.22  
Histopathology of renal tissue has been described as 
pauci-immune with minimal immunoglobulin and 
complement deposition.22 Recent evidence suggests that 
the complement system plays a role in the development 
of ANCA vasculitis.3 Priming of Neutrophils with cytokines 
and ANCA activates the complement cascade.3 
Moreover, renal tissue analysis revealed C3 deposition in 
the glomerulus.1-57 Recently, it has been shown that C5a 
produced by the alternative complement pathway primes 
neutrophils, which in turn activate the alternative 
pathway, leading to a positive feedback loop. 7,13,18,24,26 

 
 

Avacopan, a C5a receptor antagonist, is a novel 
therapeutic agent that has been shown to be effective in 
the treatment of patients with AAV.21 In this narrative 
review, the pathophysiological mechanisms of the 
complement system, and new targeted therapies for 
ANCA vasculitis are discussed.  
 

The Complement System; Physiology and 
Regulation 
The complement system has multiple components 
comprising plasma proteins, cell membrane receptors, 
and regulatory factors that interact with each other in a 
complex cascade of reactions linking the innate and 
adaptive immune systems.1,3,4,5,6,13 It begins with small 
inactive protein precursors that are synthesised by the 
liver and released into circulation. These protein 
precursors transform into complement proteins in their 
active forms, which function as serine proteases that 
cleave specific proteins to produce cytokines that amplify 
further downstream reactions.1,3,4,5,6,13  
 

The net result is the stimulation of phagocytes to clear 
foreign antigens and promotion of further inflammation 
to attract more phagocytes, culminating in the formation 
of the membrane attack complex (MAC) which can kill 
cells.1,3,4,5,6,13,18,23  

 

Complement activation can occur through three different 
pathways: classical, lectin, and alternative.1,2,13,14,17,24,25-

29  (Figure 1) 
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The activation of each pathway produces C3 convertase, 
an enzyme which is degraded into C3a and C3b 
fragments.1,3,4,13,17,22,23,27 

 

The classical pathway is activated when IgG and IgM 
bind to target antigens, resulting in the formation of 
immune complexes.1-57 The lectin pathway is activated by 
pattern recognition proteins, such as mannose binding 
lectin, which binds to sugar ligands present on the outer 

surface of bacteria and damaged host 
cells.1,3,4,13,17,22,23,27 
 
C3a and C5a act as anaphylatoxins that are released 
into circulation following the degradation of C3 and C5. 
The effects of C3a and C5a occur through their 
interactions with their receptor, a seven G-coupled 
transmembrane protein expressed on parenchymal and 
leucocyte cells. 37 (Figure 2) 

 

 
C3a and C5a have pro-inflammatory effects, but are 
also said to have anti-inflammatory effects, aiding in 
tissue recovery.46 

 
C5a has several key functions, including acting as a 
powerful chemotactic factor for neutrophils, monocytes, 
and macrophages, thus enabling for the migration of 
these inflammatory cells to areas where complement 
activation occurs.30  

 
Moreover, C5a delays apoptosis of neutrophils thereby 
prolonging its survival and promoting the expression of 
adhesion molecules on the surface of neutrophils.25 It also 
causes neutrophils to release Properdin, a positive 
stimulant of the alternative pathway, by stabilising C3 
convertase (C3bBb).54 
Counteracting these proinflammatory responses can also 
produce reactive oxygen species (ROS) in phagocytes 
which can cause degranulation of neutrophils.36  
 
C5aR is a target for Avacopan, preventing C5a 
interacting with C5aR. Supporting evidence for the use of 
Avacopan in clinical studies will be discussed later.  
 
The complement system is regulated by plasma and cell 
surface proteins that prevent complement activation. 
These regulatory proteins act at various levels in the 
complement cascade. C3 and C5 convertases which play 
central roles in complement activation, serve as the 
targets of these regulatory proteins.2,31,57  
 
Factor H, a key regulator of the alternative pathway, is 

a soluble glycoprotein produced by the liver. It binds to 
C3 activation fragments causing accelerated decay and 
reduced cofactor activity.29 Factor H dysfunction has 
been suggested to have a pathogenic role in the 
development of C3 glomerulopathy and atypical 
haemolytic uraemic syndrome. Moreover, it has been 
suggested that it is a prognostic marker of worsening 
disease in these patients 31,44 

 
The regulatory activity of Factor H can be countered by 
Factor H related proteins (FHR1-5), another member of 
the Factor H family.29 

 
Structurally, FHRs share surface recognition domains like 
those of Factor H. They differ in that FHRs lack the 
complementary regulatory domains of Factor H.29 Factor 
H functions in an alternative pathway by inactivating the 
surface bound C3b. This action prevents further 
generation and deposition of C3b, which has a negative 
effect on downstream complement reactions.5,6,9,12 It has 
been postulated that an imbalance between Factor H 
and FHRs can lead to the development of complement 
mediated diseases. This pathogenic mechanism has been 
proposed in glomerular diseases such as Ig A 
Nephropathy and C3 Glomerulopathy.32  
 
This mechanism has been supported by Lucientes-
Continente et al. who speculated a potential genetic 
association.29 They showed that genetic variants in 
components of the alternative complement pathway 
correlated with disease susceptibility (CFB32Q/W) or 
the severity of kidney damage (CFH-H1, CFH-H2 Delta 
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CFHR3/1) in a Spanish cohort of 100 patients with 
AAV.29 High basal FHR-1 levels and low FH/FHR-1 ratios 
were determinants of kidney disease severity.29 
Moreover, the plasma levels of complement components 
were different in active disease compared to those in 
remission.29 In patients with active disease, the plasma 
levels of C3, Factor H, Factor B and Properdin were lower 
than those in patients in remission.29 Conversely, soluble 
C5b-9 (sC5b-9) levels were high in patients with active 
diseases.29 This study reported that a high degree of 
alternative complement activation is associated with 
worse disease outcomes, although the underlying 
molecular mechanisms are not understood.29 It has been 
proposed that FHR-1 can induce inflammation, by 
activating the inflammasome, Nucleotide binding, 
oligomerisation domain, leucine rich receptor and pyrin-
domain containing 3 (NLRP3) expressed on monocytes 
and cause tissue damage by releasing interleukin 1 b (IL-
1B).17,45 The NLRP3 inflammasome is a multiprotein 
complex expressed on a variety of immune cells, such as 
neutrophils and macrophages, that regulates the innate 
immune system and inflammatory signalling.17,45 
High FHR-1 levels are linked with increased IL-1B levels 
in patients with AAV.17,45 Similarly, as described earlier 
surface-bound FHR-1 promotes alternative complement 
pathway activity which can compromise the regulatory 
activity of Factor H.29 Whether the deleterious effects of 
FHR-1 are due to its direct action on the NLRP3 
inflammasome, activation of the alternative pathway, or 
both is yet to be determined.29  
 

The Alternative Complement pathway in 
ANCA vasculitis 
Murine mouse models were the first to suggest the 
involvement of an alternate pathway.15,55 Xiao et al. 
injected cobra venom factor into mice with experimental 
anti-MPO glomerulonephritis. This causes the depletion of 
C3, resulting in reduced neutrophil and macrophage 
infiltration within the glomeruli.15 Furthermore, in mice 
with anti-MPO glomerulonephritis with knockout of C5 
and factor B, no necrosis and no crescents were evident 
within the glomeruli.15 However, this was not observed in 
mice with knockout of C4.15 

 
Huugen et al. observed similar findings in mice with anti-
MPO glomerulonephritis treated with a monoclonal 
antibody targeting C5a; reduced neutrophil glomerular 
infiltration and absence of necrotic and crescentic 
changes were observed.55 

 
In the 1980s, C3 glomerular deposits were reported in 
patients with AAV.35 Importantly, patients diagnosed with 
AAV who have C3d and immunoglobulin deposits on 
renal biopsy have been observed to have higher urine 
proteinuria and a higher percentage of crescents than 
AAV patients without C3 and immunoglobulin deposition, 
indicating a worse prognosis.10,13 Similarly, low serum C3 
levels have been reported to correlate with low survival 
rates as opposed to serum C4 levels.1,4,8 

 

In their meta-analysis of AAV patient studies, Moiseev et 
al. demonstrated high levels of C3a, C5a, Factor B and 
C5b-9.35 Notably, patients who achieved clinical 
remission had lower C3a, C5a and Factor B levels. The 
C5b-9 levels did not change.35 

However, the pathogenic mechanisms involved in this 
alternative pathway are not fully understood. It has been 
proposed that priming of neutrophils is the first step, 
triggered by respiratory infection and C5a, causing the 
translocation of PR-3 and MPO antigens to be expressed 
on the cell surface of neutrophils. This is followed by 
binding of ANCA to these antigens, causing activation of 
the neutrophils.24,25 

 
Adhesion molecules bound to the endothelial surface bind 
to activated neutrophils, causing the release of ROS, 
degradative enzymes, and neutrophil extracellular traps 
which can activate complement and create an 
amplification loop.24,25 
 

Clinical Studies of Complement Inhibition: 
Avacopan 
The CLEAR trial was a phase 2 clinical trial involving 67 
patients with newly diagnosed or relapsing ANCA 
vasculitis (MPA and GPA) who received Avacopan, an 
oral C5aR inhibitor.20 Key inclusion criteria included 
patients with a glomerular filtration rate (GFR) of greater 
than 20 mls/min/1.73 m2, treated with either Rituximab 
or Cyclophosphamide as induction therapy.20 The 
exclusion criteria were patients with rapidly progressive 
glomerulonephritis or diffuse alveolar haemorrhage; 
patients recently treated with cyclophosphamide; 
patients treated with a high dose of corticosteroids, 
cumulative dose of intravenous methylprednisolone of 
more than 3 g in the last 3 months; or patients treated 
with oral prednisolone at a dose of more than 10 mg or 
its equivalent for more than 6 weeks.20 

 
The patients were randomised into three groups: a 
placebo group receiving 60 mg prednisolone, patients 
receiving 30 mg bd of Avacopan, 20 mg of prednisolone, 
and patients receiving 30 mg bd of Avacopan. Notably, 
the median GFR of patients in the study was 50 
mls/min/1.73 m2, indicative of mild to moderate kidney 
disease. The patients involved in the study were followed-
up for 12 weeks.20 

 
Results showed that patients who received Avacopan had 
decreased disease activity, as assessed by the 
Birmingham vasculitis activity score (BVAS), and lower 
albuminuria.20 Importantly, patients who received 
Avacopan without steroids did not experience any 
adverse effects related to corticosteroid therapy.20 

 
The CLASSIC trial was another phase 2 clinical trial that 
evaluated the safety of Avacopan.33 In this study, 42 
patients newly diagnosed with AAV were treated with 
therapy comprising of steroids with either 
Cyclophosphamide or Rituximab as standard care of 
therapy (SOC), plus Avacopan with SOC.33 These 
patients were randomised to receive SOC or Avacopan, 
10 mg or 30 mg bd with SOC.33 The study revealed no 
difference in the rate of serious adverse events between 
patients who received SOC and those who received 
Avacopan plus SOC. Patients who received a higher dose 
of Avacopan (30 mg bd) had better outcomes, including 
earlier time to remission, improved GFR, and better 
quality of life.33 

 
The phase 3 study, ADVOCATE, involved 331 patients 
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with new or relapsing AAV (GPA and MPA; PR3 and 
MPO positive).21 Patients in this trial had a GFR greater 
than 15 mls/min/1.73 m2 and received induction therapy 
with steroids plus either cyclophosphamide or 
rituximab.21 In this study, patients were randomised to 
receive high dose steroids, as in the CLEAR trial, with 
tapering and discontinuation by week 21 or Avacopan 
30 mg twice daily. The primary outcome of the study was 
remission, defined as a BVAS score of 0 at week 26, and 
sustained remission at week 52.21 Secondary outcomes 
included the adverse effects of therapy, glucocorticoid 
toxicity, timing of glucocorticoid toxicity, and quality of 
life.21 The study revealed that 72.3% of patients in the 
Avacopan cohort achieved remission at week 26, as 
opposed to 70.1% in the Prednisolone arm, suggesting 
the non-inferiority of Avacopan to Prednisolone.21 
Furthermore, sustained remission at week 52 was 
achieved in 65.7% of the patients in the Avacopan arm 
compared with 54.9% in the Prednisolone cohort. 
Avacopan was superior to Prednisolone and increased 
GFR.21 Statistically, no significant difference was 
observed when comparing the adverse effects between 
the two groups.21 Lower rate of glucocorticoid toxicity 

was observed in the Avacopan group.21 The positive 
findings of this study led the US food and drug 
administration to approve Avacopan as an adjunctive 
therapy in October 2021.50 Subsequently, it received 
approval from The European Medicines Agency in 
2022.50 

 

Conclusion 
The Complement pathway, particularly the alternative 
pathway, plays a critical role in the development of 
ANCA vasculitis. Clinical trial data have shown improved 
clinical outcomes and reduced adverse drug effects with 
Avacopan, an oral C5aR inhibitor, compared to 
glucocorticoids, thus increasing the therapeutic 
armamentarium. New complement targets are awaited, 
and further research using these drugs in ANCA vasculitis 
is needed. 
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