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ABSTRACT 
Introduction: This study aims to investigate the effects of a low-protein 
diet supplemented with kefir on protein catabolism and kidney function in 
stable chronic kidney disease patients. By employing advanced machine 
learning techniques, this research will explore the potential impact of kefir 
as a probiotic fermented dairy product on kidney function within the 
recommended intake. The study seeks to understand whether kefir 
supplementation in a low-protein diet can help maintain kidney function 
and identify any potential benefits or limitations. 
Methods: The study employed a dataset comprising kidney health indicators 
and kefir intake records collected from 150 randomly selected patients in 
stage G1 to G5 during one year. Data preprocessing was performed to 
ensure data quality and feature relevance. Subsequently, a range of 
machine learning algorithms, including decision trees, random forests, and 
neural networks, but also and Stochastic Gradient Boosting and XgBoost 
model were implemented to model and predict the impact of kefir on kidney 
function. 
The clinical data:  age, sex, blood pressure (systolic and diastolic), BMI, 
albumin, bacteria, level of blood glucose, hemoglobin, creatinine, urea, 
UNAPCR, protein intake and kefir, GFR, MDRD, proturija, the existence of 
hypertension, diabetes mellitus, coronary artery disease, stage of CKD at 
the beginning and CKD stage after 12 months, binary output (patient stay 
in a same stage or is reduced kidney function). 
Results: The analysis results revealed promising predictive capabilities of 
the machine learning models, demonstrating associations between kefir 
consumption and kidney function. Binary output indicates the patient 
stayed in the same CKD stage using low-protein diet where source of 
protein is kefir. 
Conclusion: This research underscores the value of machine learning 
techniques in modeling and predicting the impact of kefir on kidney 
function. By shedding light on potential associations, this study paves the 
way for further investigations into the role of kefir in kidney health and 
sets a precedent for future studies in this area. 
Keywords: Kefir, low protein diet, chronic kidney disease, machine 
learning technique, Modeling and the Prediction 
 

RESEARCH ARTICLE 

Machine Learning Techniques for Modelling and Predicting the Influence of 
Kefir in a Low-Protein Diet on Kidney Function 
Vesna Knights 1, Elena Damjanovska Gavriloska1 

 
 

THE EUROPEAN SOCIETY OF MEDICINE 
Medical Research Archives, Volume 12 Issue 7 

https://doi.org/10.18103/mra.v12i7.5631
https://doi.org/10.18103/mra.v12i7.5631
https://doi.org/10.18103/mra.v12i7.5631
https://doi.org/10.18103/mra.v12i7.5631


Machine Learning Techniques for Modelling and Predicting the Influence of Kefir in a Low-Protein Diet on Kidney Function 

© 2024 European Society of Medicine 2 

1. Introduction 
Dietary interventions play a crucial role in medical 
nutrition therapy, particularly in the management of 
various diseases. The significance of dietary regimens in 
preventing and treating conditions such as cardiovascular 
diseases, diabetes, cancer, infectious diseases, and 
kidney disorders is increasingly recognized in clinical 
practice1-2. 
 
Among these conditions, chronic kidney disease (CKD) 
stands out due to the profound impact of diet on disease 
progression and patient outcomes. CKD is characterized 
by a gradual decline in kidney function, typically 
progressing through five stages based on glomerular 
filtration rate (GFR). As the disease advances, dietary 
modifications become essential in managing symptoms 
and delaying progression to end-stage renal disease 
(ESRD), where renal replacement therapy like 
hemodialysis or transplantation becomes necessary 3-4. 
 
One of the well-established dietary intervention in CKD 
management is a low-protein diet, which has shown 
promise in slowing disease progression and preserving 
kidney function5-6. Research has demonstrated beneficial 
responses to modified diets in treating CKD patients, 
highlighting the importance of dietary protein restriction 
in preserving kidney function7-9. 
 
Kefir, a probiotic fermented dairy product, has gained 
attention for its potential health benefits, including its 
impact on kidney function.  
 
While a low-protein diet is recommended for CKD 
management, kefir, despite being a source of high-
quality protein, vitamins, minerals, and beneficial 
microorganisms is used in controlled amounts to 
supplement essential nutrients10-11. Studies have 
demonstrated the efficacy of a low-protein diet 
supplemented with kefir in stabilizing kidney function and 
improving patient outcomes12. 
 
To further explore the potential benefits of kefir in CKD 
management, advanced analytical techniques are 
needed13. Machine learning techniques offer a powerful 
tool for modeling and predicting the influence of nutrients 
and body function 14, but also kidney function in CKD 
patients15-16 . By leveraging large-scale multidimensional 
databases and advanced algorithms, machine learning 
enables the development of predictive models that can 

identify patterns and associations between dietary 
interventions and clinical outcomes15-17.  
 
In this paper several machine learning models were 
trained and evaluated for their performance in 
predicting CKD, employing both techniques, regression18-

21 and classification22-26. 
 
Compared to Ghosh and Khandoker's27, study, which 
focused on developing a machine learning-driven 
nomogram specifically for predicting CKD stages 3–5, 
this study provides a broader evaluation of multiple 
machine learning models for predicting CKD stages, 
including the novel consideration of dietary factors like 
kefir intake. While Ghosh and Khandoker27, emphasize 
prediction accuracy within a specific CKD range, this 
research highlights the comprehensive performance of 
various models and underscores the significance of 
dietary interventions in managing CKD.  
 
Through interdisciplinary collaboration and innovative 
research methodologies, we aim to contribute to the 
growing body of knowledge on personalized nutrition 
and precision medicine in renal health. 
 

2. Material and Methods  
This study explores the application of machine learning 
techniques for modeling and predicting the influence of 
kefir consumption in a low-protein diet on kidney function. 
The database used in this analysis consists of relevant 
information on documents, and relevant information 
about patients, including demographics, medical history, 
lab test results, and the stage of the presence of CKD, 
and intake or not kefir as part of a low-protein diet.  
Patients with CKD stages G1 to G5 were selected 
randomly, and data were collected over a 12-month 
period (from 2021 to 2022) at regular intervals. Protein 
intake was recommended using tables for protein 
composition derived from various products as per 
nutritional recommendations. As part of the study, 
patients were advised to consume kefir three times per 
week within the recommended protein intake. The 
recommended daily permissible protein intake ranged 
from 0.8 g/kg body weight to 1 g/kg body weight of 
protein. Notably, a significant source of protein in the diet 
was kefir, consumed at least three times per week. 
Knowing, the total protein intake (Total protein intake or 
DPI (Daily Protein Intake)) is calculated using the Maroni 
formula [28]: 

 
PCR [g/24h] = 6.25 × (UNU [g/24h] + NUNU 0.03 × body weight [kg])                 [1] 
 
Equation [1] reflects the relationship between the 
nitrogen excreted in urine and the total protein 
catabolized in the body, assuming stable metabolic 
conditions. Where PCR (Protein Catabolic Rate) under 

stable conditions is equals the daily protein intake. The 
constant 6.25 indicates 1 gram of excreted nitrogen 
corresponds to 6.25 g of processed proteins.   
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 Attribute Data Type Description/Unit 

0 id Numeric Identifier (0, 1, 2, ...) 

1 age Numeric Age in years 

2 sex Numeric Gender (0 for female, 1 for male) 

3 blood_pressure_systolic Numeric Systolic blood pressure in mm/Hg 

4 blood_pressure_diastolic Numeric Diastolic blood pressure in mm/Hg 

5 BMI Numeric Body Mass Index in kg/m² 

6 albumin Numeric Albumin level in g/dL 

7 bacteria Categorical Presence of bacteria (values: 'no', 'yes') 

8 blood_glucose Numeric Blood glucose level in mg/dL 

9 Hb Numeric Hemoglobin level in g/dL 

10 Creat Numeric Creatinine level in umol/L 

11 Urea Numeric Urea level in mg/dL 

12 UNU Numeric Urinary Nitrogen as Urea level  in g/24h 

13 Protein Catabolic Rate (PCR) Numeric PCR level g/24h 

14 Daily Protein Intake (DPI) Numeric DPI in grams per kilogram of body weight 

15 GFR Numeric Glomerular Filtration Rate in ml/min/1.73m² 

16 MDRD Numeric Estimated Glomerular Filtration Rate in mL/min 

17 Proteinuria Numeric Proteinuria in g/mmol 

18 Hypertension Categorical Hypertension (values: 'no', 'yes') 

19 
diabetes_mellitus Categorical Diabetes Mellitus (values: 'no', 'yes') 

20 coronary_disease Categorical Coronary Disease (values: 'no', 'yes') 

21 kefir Numeric Consumption of kefir (0 for yes, 1 for no) 

22 CKD_1m (at 1st month) Categorical  ( 'GFR1', 'GFR2', 'GFR3', 'GFR4', 'GFR5') 

23 CKD_12m (after 12 months) Categorical  ( 'GFR1', 'GFR2', 'GFR3', 'GFR4', 'GFR5') 

24 output after 12 months Numeric Outcome (0 for same stage, 1 for different stage) 

Table 1. Medical Attributes Dataset 
 
NUNU It is known as Non-Urinary Nitrogen and amounts 
0.03 g per kg of body weight (70 kg individual resulting 
in 2.1 g NUNU in 24-hour urine). For example, if we have 
received 7 g of nitrogen as urinary urea, then the total 
protein intake will be obtained by multiplying 7 by 6.25, 
i.e., 45 grams for 24 hours. To this value, 13 grams that 
do not belong to the urea cycle (2.1 × 6.25) are added, 
resulting in the total amount of ingested proteins of 58 
grams. This value is then divided by body weight, and it 
amounts to 58/70 kg = 0.8 g/kg body weight. 
 
Data Collection: The dataset utilized in this study was 
obtained from at the University Clinic of Nephrology in 
Skopje. It consisted of 150 entries, each representing an 
individual patient. The dataset (Table 1), included 
demographic information such as age and sex, clinical 
measurements including blood pressure readings (systolic 
and diastolic), body mass index (BMI), and various 
laboratory parameters such as albumin levels, blood 

glucose levels, hemoglobin levels, creatinine levels, urea 
levels, uric acid levels, and protein creatinine ratio.  
 
The details of the process of implementing various 
machine learning models to predict chronic kidney 
disease (CKD) stages based on patient data are 
presented at Figure 1.  
 
Dataset: it is data in a CSV file format.  
Reading the data file: dataset is read with function ‘data 
= pd.read_csv’. 
 
Data Preprocessing: was conducted to ensure the quality 
and reliability of the dataset. This involved:  
-Cleaning the data (‘cleaned_data = 
df.drop_duplicates().reset_index(drop=True)’),  
- Checking for null values (‘null_values = df.isnull().sum()’),  
-Normalization (‘from sklearn.preprocessing import 
StandardScaler’) 
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Figure 1 The Algorithm ML prediction in Python. 
 
The next step is to do categorical features or encoding 
using label encoding.  As all of the categorical columns 
have 2 categories we can use label encoder. In this 
process, the class LabelEncoder from the 
sklearn.preprocessing library is used ‘le = 
LabelEncoder()’to transform categorical data into 
numerical labels. Each unique category within a column is 
assigned a unique integer label, 0 or 1. This encoding 
enables machine learning algorithms to interpret 
categorical data as numerical inputs. Categorical data 
are attributes (bacteria, hypertension, diabetes_mellitus, 
coronary disease, CKD_1m and CKD_12m) 
 

Data splitting: The dataset was divided into two subsets: 
70% for training and 30% for testing subsets. This split 
ensures that the model's performance can be evaluated 
on unseen data, providing a realistic estimate of its 
predictive capabilities. 
 

Model Building: Several machine learning models were 
trained and evaluated for their performance in 
predicting CKD. These models include K-Nearest 
Neighbors (KNN), Decision Tree Classifier, Random Forest 
Classifier, AdaBoost Classifier, Gradient Boosting 
Classifier, Stochastic Gradient Boosting, XGBoost, 
CatBoost, Extra Trees Classifier, and LightGBM Classifier. 
 

Base models: 
Nearest Neighbors (KNN): is a simple and intuitive 
algorithm used for classification and regression tasks. It 
works based on the principle that data points with similar 
features tend to belong to the same class. Given a new 

data point, KNN calculates the distance to all other data 
points in the training set and classifies the new point 
based on the majority class of its k nearest neighbors. 
KNN begins by storing all available data points and their 
corresponding class labels or target values. When a new 
data point is presented for classification or prediction, 
KNN calculates the distance between this point and every 
other point in the training set. Common distance metrics 
include Euclidean distance and Manhattan distance. 
 

If point one is 𝑃 = (𝑥1, 𝑥2, . . . , 𝑥𝑛)      and point two is 

𝑄 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) in n-dimensional space distance 
calculations are: 

Euclidean Distance √∑ (𝑥𝑖 − 𝑦𝑖)2𝑛
𝑖=1                         [2] 

Manhattan Distance    ∑ |𝑥𝑖 −  𝑦𝑖|𝑛
𝑖=1                         [3] 

 

Decision Tree Classifier: is also algorithms for classification 
and regression tasks. They partition the feature space 
into regions and make predictions based on the majority 
class (for classification) or the average value (for 
regression) within each region. Each internal node of the 
tree represents a decision based on a specific feature, 
leading to a split in the data. Decision trees are easy to 
interpret and visualize, making them useful for 
understanding the decision-making process of the model. 
In the context of decision trees, Gini impurity is used as a 
criterion to evaluate the quality of a split. 
 

It quantifies the probability of incorrectly classifying a 
randomly chosen element if it were randomly labeled 
according to the distribution of classes in the set. 



Machine Learning Techniques for Modelling and Predicting the Influence of Kefir in a Low-Protein Diet on Kidney Function 

© 2024 European Society of Medicine 5 

A lower Gini impurity indicates a purer node with more 
homogeneity in class labels. The formula for Gini Impurity 
is  

𝐺 = 1 − ∑ (𝑝𝑖)2𝐶
𝑖=1                                                         [4] 

 

Entropy is another measure of impurity or disorder in a 
set of data points. In the context of decision trees, entropy 
is used as an alternative criterion for evaluating splits. 
 

It measures the average amount of information needed 
to predict the class label of a randomly chosen element 
in the set. 

Like Gini impurity, lower entropy values indicate greater 
homogeneity in class labels.  

 

Entropy    𝐸 = − ∑ 𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)𝐶
𝑖=1                            [5] 

 
Information gain is a concept used to quantify the 
effectiveness of a split in a decision tree. 
It measures the reduction in entropy or Gini impurity 
achieved by splitting the data on a particular feature. 
Information Gain  
 

 

 𝐼𝐺 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑝𝑎𝑟𝑒𝑛𝑡) − ∑ (
𝑁

𝑁𝑖
×  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑐ℎ𝑖𝑙𝑑𝑖))𝑘

𝑖=1                                [6] 

 
 Random Forest Classifier: is ensemble learning methods 
that build multiple decision trees during training and 
output the mode of the classes (for classification) or the 
mean prediction (for regression) of the individual trees. 
 
They are robust against overfitting and tend to produce 
high-quality predictions by aggregating the outputs of 
multiple trees. 
 
For a Random Forest, the final prediction is an aggregate 
of the predictions from individual decision trees. The 
aggregation method differs between classification and 
regression tasks: 
 
Classification: The final prediction is the mode (majority 
vote) of the predictions from all individual trees. 
 

�̂� = 𝑚𝑜𝑑𝑒 {ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝐵(𝑥)}                      [7] 
 

where ℎ𝑖(𝑥) is the prediction from the i-th tree, and B is 
the total number of trees in the forest. 
 
Regression: The final prediction is the average of the 
predictions from all individual trees. 

�̂� =
1

𝐵
∑ ℎ𝑖(𝑥)𝐵

𝑖=1                                                        [8] 

 

where ℎ𝑖(𝑥) is the prediction from the i-th tree, B  is the 
number of trees in the forest. 

�̂� is the final predicted value; 𝑥 represents the input 

feature vector; ℎ𝑖(𝑥) is the prediction of the i-th tree; 𝐵 
is the number of trees in the random forest ensemble. 
 
Optimized Models: 
AdaBoost (Adaptive Boosting) Classifier is an ensemble 
learning method that combines multiple weak learners to 
create a strong classifier. It iteratively trains a sequence 
of weak learners, giving higher weights to the 
misclassified data points at each iteration. The updated 
weight of the i-th data point at the i-th iteration is given 
by: 

𝜔𝑖
(𝑡+1) = 𝜔𝑖

(𝑡)
∙ 𝑒−𝛼𝑡∙𝑦𝑖∙ℎ𝑖(𝑥)                                  [9] 

 

Here, 𝑦𝑖 is the true label of the i-th data point, ℎ𝑖(𝑥)is 

the prediction of the weak learner, and 𝛼𝑡is the weight 
of the weak learner. 
 

Gradient Boosting Classifier: Gradient boosting is another 
ensemble learning technique that builds a strong classifier 
by sequentially adding weak learners, each correcting 

the errors of its predecessor. It minimizes a loss function 
by gradient descent in the function space of weak 
learners. Gradient boosting models are known for their 
predictive power and flexibility but may require careful 
tuning of hyperparameters. Gradient Boosting minimizes 
a loss function L by adding weak learners iteratively. Let 
F(x) be the additive model representing the ensemble of 
weak learners. The objective is to find F(x) that minimizes 
the loss function L over the training data. 
 

𝐹𝑜(𝑥) = arg 𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖 , γ)𝑛
𝑖=1                              [10] 

 

Here, 𝐹𝑜(𝑥) is the initial model (a constant value that 

minimizes the loss function), 𝑦𝑖  are the true values, and n 

is the number of training samples. The parameter γ 
represents the optimal constant value that minimizes the 
loss function over all training data. 
 
XGBoost Extreme Gradient Boosting is an additive model 
in a similar way to traditional gradient boosting, but with 
optimizations for speed and performance. The objective 
function L for XGBoost combines the training loss and a 
regularization term to penalize the complexity of the 
model. 
 

The objective function 𝐿(Θ) that XGBoost aims to 
minimize is defined as: 

𝐿(Θ) = ∑ 𝑙(𝑦𝑖 , �̂�𝑖)𝑛
𝑖=1 + ∑ Ω(𝑓𝑘)𝐾

𝑖=1                        [11] 
 

Where, 𝑙(𝑦𝑖 , �̂�𝑖) is the loss function (e.g., mean squared 

error) measuring the difference between the true label 𝑦𝑖 

and the predicted label �̂�𝑖 . 𝑛 is the number of training 

samples. K is the number of trees in the model. Θ  

represents the parameters of all the trees. Ω(𝑓𝑘) is the 

regularization term for the 𝑘 − 𝑡ℎ tree, which helps to 
control the complexity of the model and prevent 
overfitting. XGBoost employs both L1 (lasso) and L2 
(ridge) regularization techniques to control model 
complexity and prevent overfitting. This combination 
helps XGBoost to handle large-scale datasets effectively 
while maintaining model simplicity and interpretability. 
 

The regularization term   Ω(𝑓𝑘) is typically defined as: 

Ω(𝑓𝑘) = γ T +
1

2
λ ∑ 𝜔𝑗

2 + 𝛼𝑇
𝑗=1 ∑ |𝜔𝑗|𝑇

𝑗=1              [12] 

 

Where: γ controls the complexity cost by penalizing the 

number of leaves T in the three;  λ is the L2 regularization 

term (ridge regularization) that penalizes the sum of the 
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squared leaf weights 𝜔𝑗; 𝛼 is the L1 regularization term 

(lasso regularization) that penalizes the sum of the 

absolute values of the leaf weights 𝜔𝑗. 𝑇 is the number 

of leaves in the tree; 𝜔𝑗 is the weight of the 𝑗 − 𝑡ℎ  leaf. 

 
Uses a combination of L1 and L2 regularization to control 
model complexity, which helps in both feature selection 
(L1 regularization) and weight shrinkage (L2 
regularization), thus providing a more flexible approach 
to prevent overfitting. 
 
CatBoost Classifier: is a gradient boosting library 
developed by Yandex that is designed to handle 
categorical features efficiently. It automatically converts 
categorical features into numerical values and uses a 
specialized algorithm to deal with categorical data 

during training. The objective function 𝐿(Θ) that CatBoost 
t aims to minimize is defined as: 

𝐿(Θ) = ∑ 𝑙(𝑦𝑖 , �̂�𝑖)𝑛
𝑖=1 + ∑ Ω(𝑓𝑘)𝐾

𝑖=1                       [13] 

 

Where, 𝑙(𝑦𝑖 , �̂�𝑖) is the loss function (e.g., mean squared 

error) measuring the difference between the true label 𝑦𝑖 

and the predicted label �̂�𝑖 . 𝑛 is the number of training 

samples. K is the number of trees in the model. Θ  

represents the parameters of all the trees. Ω(𝑓𝑘) is the 

regularization term for the 𝑘 − 𝑡ℎ tree, which helps to 
control the complexity of the model and prevent 
overfitting. 
 
CatBoost primarily uses L2 regularization (ridge 
regularization) to control the complexity of the model. 

The regularization term Ω(𝑓𝑘) for CatBoost is defined as: 

Ω(𝑓𝑘) = γ T +
1

2
λ ∑ 𝜔𝑗

2𝑇
𝑗=1                                   [14] 

 

Where: γ controls the complexity cost by penalizing the 

number of leaves T.  λ is the L2 regularization term on 

leaf weights 𝜔𝑗. 

 

Focuses on controlling model complexity using L2 
regularization, which tends to shrink weights and reduce 
variance, making the model more robust to overfitting. 

 
Extra Trees Classifier: (Extremely Randomized Trees) is an 
ensemble learning method similar to random forests. It 
builds multiple decision trees using random subsets of 
features and random thresholds for each feature, leading 
to faster training times and potentially higher predictive 
accuracy. 
 
The final prediction for an input sample x is made by 
aggregating the predictions from all the individual trees 
in the ensemble, as mode (majority vote) of the 
predictions from all the individual trees.Both Random 
Forest and Extra Trees Classifier use ensemble methods 
that build multiple decision trees, but they differ primarily 
in how they select splits for these trees.  
 
Stochastic Gradient Boosting is a variant of gradient 
boosting that introduces randomness into the training 
process. This randomness can improve the model's 
generalization ability and reduce overfitting by making 
the model less sensitive to individual training examples. 
 
Model evaluation Models were evaluated using various 
metrics such as accuracy, precision, recall, and F1-score. 
This comprehensive evaluation ensured the selection of 
the most effective model for predicting CKD stages 
based on the given dataset.  
 
Model comparison and prediction Choose an appropriate 
machine learning algorithm or model for CKD prediction 
based on the nature of the data and the problem at 
hand. 
 

3. Results  
3.1. DESCRIPTIVE STATISTICS 
The average age of patients in the dataset is 
approximately 54.75 years, with a gender distribution 
of 79 men and 71 women, making about 52.7% of the 
patients male (Figure 2). The average systolic blood 
pressure is approximately 138.3 mmHg, with a standard 
deviation of 16.75 mmHg, while the average diastolic 
blood pressure is approximately 86.72 mmHg, with a 
standard deviation of 9.60 mmHg. 
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Figure 2 Numerical values of dataset 

 
At the beginning the mean Body Mass Index (BMI) for 
patients in the study is calculated to be approximately 
27.52, with a standard deviation of 4.99 (Table 2). The 
minimum BMI recorded is 20.1, while the maximum BMI is 
38.5, indicating a diverse range of body weight among 
the patients. The BMI distribution shows that 25% of 
patients have a BMI below 24.1, 50% fall below 26.1, 
and 75% fall below 29.4. After 12 months average BMI 
for patients is lest then beginning (27.46), but is not 
statistical significant (Table 2). Values of variables at the 

beginning are marked with I, the average values level 
after 12 months is marked with II. It was found average 
lower values for albumin, Urea, UNU, PCR and 
Proteinuria but not statistical significant difference. 
Statistical significant differences are found for creatinine 
(Creat), GFR and MDRD (Table 2).  
 
The parameters and their respective thresholds used in 
this study can be further understood by referring to the 
sources 29-34. 

 
Attribute Mean (I) Sta. Dev (I) Mean (II) Sta. Dev (II) Pearson 

Correlation 
t-Stat P(T<=t) 

two-tail 
Signif. 
(p<0.05) 

BMI 27.52 4.99 27.46 5.03 0.998 0.996 0.328 No 

Albumin 43.66 3.18 43.64 2.63 0.746 0.044 0.965 No 

Hb 135.26 17.79 135.97 16.58 0.968 -0.848 0.403 No 

Creat 156.48 94.59 147.10 83.56 0.963 1.892 0.034 Yes 

Urea 11.70 7.56 10.81 6.01 0.858 1.230 0.229 No 

UNU 8.52 6.90 8.22 4.80 0.909 0.503 0.619 No 

PCR 92.00 67.30 87.78 42.79 0.889 0.646 0.523 No 

DPI 1.18 0.67 1.10 0.56 0.913 1.309 0.201 No 

GFR 62.07 33.57 63.63 34.45 0.990 -1.733 0.047 Yes 

MDRD 57.40 33.71 59.97 32.84 0.983 -2.059 0.024 Yes 

Proteinuria 813.11 904.70 668.82 609.96 0.801 1.379 0.179 No 

Table 2. Statistical Analysis of Attributes Changes Over 12 Months 
 

The average creatinine levels observed in this study were 
consistent with known ranges for different stages of CKD. 
For example, the average creatinine levels for patients 
in Stage 1 CKD (GFR > 90 mL/min) typically range from 
0.6 to 1.2 mg/dL, which aligns with our findings 
(American Kidney Fund, 2022). Similarly, the proteinuria 
levels across CKD stages also corresponded with 
established medical data. For instance, Stage 1 CKD 

patients generally exhibit normal to mildly increased 
protein levels, typically less than 30 mg/g creatinine 
(ACR < 30 mg/g) (National Kidney Foundation, 2022), 
while patients in Stage 4 CKD (GFR = 15-29 mL/min) 
usually have severe proteinuria, often greater than 2000 
mg/g creatinine (ACR > 2000 mg/g) (Kidney Research 
UK, 2022). 
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Figure 3 Categorical variables of data set 

 
Figure 3, presents the categorical variables, including the 
50% presence of hypertension (76 yes, 74 no), 30% 
presence of diabetes mellitus (105 no, 45 yes), 32% 
presence of coronary artery disease (102 no, 48 yes), 
and 68% consumption of kefir (98 yes, 52 no). 
Furthermore, the dataset contains information on the 
staging of Chronic Kidney Disease (CKD from stage 1 to 
stage 5) taken at the 1st month and after 12 months, as 
well as the outcome variable indicating whether the 
patient remained in the same CKD stage (output 0) or 
progressed to a different stage within a 12-month period 
(output 1). 
 

The provided table (Table 2), displays the mean and 
standard deviation values for DPI and GFR across 

different stages of CKD. The table provides insights into 
how the mean and variability of GFR values change 
across different stages of CKD after 12 months regulated 
DPI and dietary modifications and kefir intake as a 
source of proteins. The data of DPI and GFR at the 
beginning is marked with I, and after 12 months marked 
with II, when DPI is < =1 grams per kilogram of body 
weight, across different stages of CKD. The GFR values 
show a declining trend with advancing CKD stages, which 
aligns with the typical progression of the disease. Intake 
values (DPI) appear to be relatively stable across stages 
but show slight variations, possibly indicating changes in 
dietary habits or compliance with medical advice over 
the 12 months. 

 

CKD Stage DPI _I (Mean ± SD) DPI _II  
(Mean ± SD) 

GFR_I (Mean ± SD) GFR_II (Mean ± SD) 

GFR > 90 1.32 ± 1.14 1.00 ± 0.38 116.75 ± 28.44 120.95 ± 32.46 

GFR 60-90 1.00 ± 0.30 0.94 ± 0.31 70.35 ± 10.12 73.75 ± 8.50 

GFR 45-59 1.05 ± 0.53 0.92 ± 0.34 47.80 ± 5.32 50.50 ± 4.65 

GFR 30-44 1.47 ± 0.64 0.95 ± 0.37 33.70 ± 6.95 35.40 ± 6.30 

GFR 15-29 1.44 ± 0.90 1.00 ± 0.42 21.20 ± 4.19 22.80 ± 4.52 

GFR < 15 1.32 ± 1.14 1.00 ± 0.50 11.15 ± 2.50 12.45 ± 2.85 

Table Average and Standard Deviation of DPI and GFR by CKD Stage 
 

 
Figure 4 Average MDRD at beginning (first month –CKD 1m) and after 12 months (CKD 12m) by CKD Stage 
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At Figure 4 is presented graphically the statistical 
significant changes in MDRD value between the beginning 
and after 12 months. These changes reflect to the CKD 
stage and the impact of interventions such as dietary 
modifications of controlled DPI and kefir intake. 

The dataset includes additional clinical attributes such as 
the presence of proteinuria, kefir intake, and an output 
parameter, which may be relevant for further analysis 
and correlation with other clinical outcomes. 

 

 
Figure 5 Heatmap of data 

 
The positive correlation between regulated daily protein 
intake and kefir intake and improved clinical outcomes 
(0.7) underscores the potential of kefir as a dietary 
intervention in CKD management. By providing a 
fermented high-quality protein source, kefir supports an 
optimal protein catabolic rate, which is crucial for 
maintaining kidney function in CKD patients. The 
integration of kefir into dietary plans for CKD patients 
could enhance nutritional status and slow disease 
progression, contributing to better patient outcomes. 
 
The relatively weak negative correlation between kefir 
and GFR (-0.09) and MDRD (-0.29) is in the context of 
protein, which likely represents the progression of CKD, 
where a higher value indicates more advanced disease 
stages. 
 
These findings suggest that kefir as a fermented dairy 
product, may have a beneficial nutritional effect on 
kidney function, helping to manage CKD progression 
more effectively. Further studies could explore the 
specific mechanisms through which kefir exerts its positive 
effects, as well as its potential role in personalized 
dietary interventions for CKD patients. 
 

3.2. MODEL PERFORMANCE  
The models were trained using the training dataset and 
evaluated on the test dataset. The performance metrics 
used include accuracy score, confusion matrix, and 
classification report. These metrics provide insights into 
the models' ability to correctly classify CKD stages and 
handle class imbalances. The models were evaluated 
using metrics such as accuracy, precision, recall, and F1-
score to determine their performance and suitability for 
predicting CKD stages. The metrics are defined as 
follows: 

• Accuracy: The proportion of correctly classified 
instances among the total instances. 

• Precision: The proportion of true positive results 
in relation to the total predicted positives. 

• Recall: The proportion of true positive results in 
relation to the actual positives. 

• F1-Score: The harmonic mean of precision and 
recall, providing a single metric that balances 
both concerns. 

 
The performances of the machine learning models in 
predicting CKD stages, evaluated using the above-
mentioned metrics, are summarized in Table 4. 
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Model Accuracy Precision Recall F1-Score 

Random Forest Classifier 0.96 0.97 0.96 0.96 

AdaBoost Classifier 0.96 0.97 0.96 0.96 

CatBoost 0.96 0.97 0.96 0.96 

Extra Trees Classifier 0.96 0.97 0.96 0.96 

Gradient Boosting Classifier 0.93 0.94 0.93 0.93 

Stochastic Gradient Boosting   0.93 0.94 0.93 0.93 

XGBoost 0.93 0.94 0.93 0.93 

Decision Tree Classifier 0.91 0.94 0.93 0.93 

K-Nearest Neighbors (KNN) 0.88 0.90 0.89 0.89 

Table 4. Performance Metrics for Machine Learning Models 
 

Figure 6 provides a graphical representation of the accuracy scores for each model, making it easy to compare their 
performance visually.  

 

 
Figure 6 Models comparison score 

 
The ensemble methods, particularly Random Forest, 
AdaBoost, CatBoost, and Extra Trees all achieved the 
accuracy of 96%, indicating their strong performance in 
predicting CKD stages, exhibited the highest accuracy 
scores, indicating their robustness and ability to 
generalize well to new data. These models effectively 
handle the complexities and nuances of the CKD dataset, 
providing reliable predictions for patient outcomes. The 
success of these models in predicting CKD stages 
demonstrates the potential of machine learning in 
transforming clinical practice and advancing 
personalized medicine.  
 
3.3. MODEL PREDICTIONS 
The ensemble models, particularly Random Forest 
Classifier, AdaBoost Classifier, CatBoost, and Extra Trees 
Classifier, exhibited the highest accuracy scores, 
indicating their robustness and ability to generalize well 
to new data. These models effectively handle the 
complexities and nuances of the CKD dataset, providing 
reliable predictions for patient outcomes. 
Further analysis of clinical attributes, such as the presence 
of proteinuria and kefir intake, revealed significant 
correlations with CKD progression, highlighting the 
importance of dietary interventions in managing kidney 
health. 
 

4. Discussion 
The machine learning models exhibited strong predictive 
capabilities in CKD Risk Prediction based on patient 
data18. The comprehensive evaluation and comparison of 

these models underscore the potential of machine 
learning techniques in enhancing CKD management 
through precise and early detection19. 
 
In this study, the ensemble methods, particularly Random 
Forest Classifier, AdaBoost Classifier, CatBoost, and 
Extra Trees Classifier, demonstrated the highest accuracy 
scores of 96%. These models showed robustness and 
excellent generalization capabilities, which are crucial 
for clinical applications where patient data variability is 
high. The effectiveness of these models in handling the 
complexities of CKD data highlights their potential in 
providing reliable predictions for patient outcomes. 
Similar to our findings, Saha et al.23, found that ensemble 
methods, particularly Random Forest, XGBoost, and 
CATBoost, performed exceptionally well. In the mention 
study 23, the dataset included 25 features, and the 
random forest algorithm achieved the highest accuracy 
of 99.08% This reinforces the effectiveness of these 
algorithms in CKD prediction. However, our accuracy 
rates (96%) are slightly lower, which could be attributed 
to differences in datasets and feature selection.  
 
In the comparative study by Maria Youse25, it was 
demonstrated that the number of features significantly 
impacts the accuracy of CKD predictions. The study 
showed that as the number of attributes decreases, the 
accuracy varies, with 6 attributes yielding an average 
accuracy of 97.4%, while using 23 attributes resulted in 
80.5% accuracy. This reinforces the importance of 
feature selection in machine learning models for CKD 
prediction. Our findings align with this observation, as the 
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high accuracy of our ensemble models underscores their 
effectiveness in utilizing selected features to predict CKD 
stages accurately.  
 
In "Comparative Study of Classifier for Chronic Kidney 
Disease prediction using Naive Bayes, KNN and Random 
Forest"22, evaluated K-nearest neighbor, had the similar 
performance as our study. In the study by Saha et al.23, 
K-NN performed with an accuracy of 0.7875, precision 
of 0.8571, and F-measure of 0.8090. Unlike this study, 
“Improving Prediction of Chronic Kidney Disease Using 
KNN Imputed SMOTE Features and TrioNet Model” 
proposed improvement of KNN, model performing with 
98,98% accuracy. Our results showed KNN had the 
lowest performance (88% accuracy) among the models 
tested. This discrepancy might be due to sensitivity to 
noisy data (KNN) and overfitting (Decision Tree). 
However, these models still performed reasonably well, 
highlighting their utility as base models in the ensemble 
approaches. 

 
Overall, the ensemble methods, with their ability to 
combine the strengths of multiple weak learners, proved 
to be the most effective for predicting CKD stages. These 
findings underscore the importance of using advanced 
machine learning techniques in healthcare decision-
making, paving the way for personalized dietary 
interventions to improve kidney health. 

 
By leveraging the predictive power of these models, 
healthcare practitioners can better understand the impact 
of dietary factors, such as kefir consumption, on kidney 
function and make informed decisions to enhance patient 
outcomes. The success of these models in predicting CKD 
stages demonstrates the potential of machine learning in 
transforming clinical practice and advancing 
personalized medicine. 
 
 
 

Conclusion  
NOVEL CONTRIBUTIONS OF THIS STUDY INCLUDE: 
Comprehensive Model Evaluation: This study provides a 
detailed comparison of various machine learning models, 
highlighting the strengths and weaknesses of each in the 
context of CKD prediction. 
 

Incorporation of Dietary Factors: Including dietary 
factors, especially kefir intake, and demonstrating its 
positive impact on kidney function, adds significant value 
to the research. 
 

Robust Performance Metrics: The extensive use of multiple 
performance metrics ensures a thorough evaluation of 
model performance, enhancing the reliability and 
applicability of the findings in clinical settings. 
 

Impact on Personalized Medicine: The findings 
underscore the potential of machine learning in 
advancing personalized dietary interventions, paving the 
way for tailored treatment plans based on individual 
dietary habits and clinical profiles. 
 

Further longitudinal studies are needed to establish the 
long-term benefits of kefir consumption on kidney function 
and CKD progression. Investigating the specific bioactive 
components in kefir that contribute to its beneficial effects 
on kidney health could provide deeper insights into its 
role in CKD management. 
 

In summary, these findings underscore the significance of 
advanced machine learning techniques in healthcare 
decision-making, paving the way for personalized 
dietary interventions to enhance kidney health. By 
leveraging the predictive power of these models, 
healthcare practitioners can better understand the impact 
of dietary factors, such as kefir consumption, on kidney 
function and make informed decisions to improve patient 
outcomes. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://link.springer.com/chapter/10.1007/978-981-16-5689-7_38
https://link.springer.com/chapter/10.1007/978-981-16-5689-7_38
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