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ABSTRACT

Five-year survival rate for pancreatic cancer patients has increased to 12.8%
after the initial diagnosis, still making it one of the deadliest cancer types.
This disease is known as the “silent killer” because early detection is
challenging due to the location of the pancreas in the body and the
nonspecific clinical symptoms. The Bossmann group has developed
ultrasensitive nanobiosensors for protease/arginase detection comprised
of Fe/Fe304 nanoparticles, cyanine 5.5, and designer peptide sequences
linked to TCPP. Initial data obtained from both gene expression analysis
and protease/arginase activity detection in serum indicated the feasibility
of early pancreatic cancer detection. Several matrix metalloproteinases
(MMPs, -1, -3, and -9), cathepsins (CTS) B and E, neutrophil elastase, and
urokinase plaminogen activator (uPA) have been identified as candidates
for proximal biomarkers. In this study, we have confirmed our initial results
from 2018 performing serum sample analysis assays using a larger group
sample size (n=159), which included localized (n=33) and metastatic
pancreatic cancer (n=50), pancreatitis (1=26), and an age-matched healthy
control group (n=50). The data obtained from the eight nanobiosensors
capable of ultrasensitive protease and arginase activity measurements
were analyzed by means of an optimized information fusion-based
hierarchical decision structure. This permits the modeling of early-stage
detection of pancreatic cancer as a multi-class classification problem. The
most striking result is that this methodology permits the detection of

localized pancreatic cancers from serum analyses with around 96% accuracy.

Keywords: Nanomedicine, pancreatic cancer detection, iron/iron oxide
nanoparticle, biophotonics, hierarchical decision structure, liquid biopsy
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Introduction

Pancreatic cancer (PC) is the third deadliest cancer
type for men and women, but it is expected to
become the second leading cause of cancer-related
death in the US by 2030". Five-year survival rate has
increased from 6 to 12.8% within the last 8 years?,
however, PC is one of the few cancer types for which
survival has not improved significantly in the last 40
years®. PC is frequently misdiagnosed, due to the
absence of early warning signs or misleading
symptoms, rapid progression, and resistance to
drug treatments, and for this reason it is known as
the “silent killer”'34, PC is diagnosed after it has
metastasized and is inoperable in approximately
80-85% of patients, and for patients with localized
tumors detected, prognosis remains poor. The 5-
year survival rate for localized PC is 44%, for regional
PC 16% and for distant PC 3%". A feasible and cost-
effective detection method capable of detecting PC
at the localized stage would be of great value to
maximize the time for therapeutic intervention,
preferably a method that works by means of a

simple blood test, better known as liquid biopsy®.

Liquid biopsy or fluid phase biopsy consists of the
sampling and analysis of tumor materials or molecules
found in bodily fluids, such as blood, urine, or saliva.
Compared to a solid tissue biopsy, liquid biopsy is
less invasive and easily repeatable since bodily fluids
are readily accessible’. Currently, two different
methods of liquid biopsy are explored in the clinic,
Circulating Tumor Cells (CTC), composed of singular
units or clusters of cancer cells that split away from
primary tumor, and Cell-free DNA (cfDNA) composed
of nucleic caid fragments released into the
bloodstream®. Although, these liquid biopsies are
able to identify advanced solid tumors, they are less
effective when it comes to early-stage tumors”™'".
With the exception of the protease-activity
technology discussed in this manuscript, none of
the “classic” approaches to liquid biopsies, such as
capture and detection of circulating tumor cell or
circulating tumor DNA, DNA-methylation studies,

or the analysis of the content of extracellular vesicles
are capable of detecting early-stage of PC in a reliable

manner'?14,

Since 2007, established panels of proteases and
arginase activities in serum have been measured
using this technology'#. More specifically, a panel
of seven proteases (caspases B and E, matrix
metalloproteinases (MMPs) 1, 3, and 9, urokinase
plasminogen activator (UpA), neutrophil elastase
and arginase were established by the Bossmann
group for early detection of PDAC in 2018™. This
current manuscript is a continuation study from this
previously developed panel, which was selected
utilizing data from NCBI Gene Expression Omnibus
dataset?®?'. One of the advantages of Fe/Fe;O4-
based nanobiosensor technology for protease/
arginase detection is that the materials cost for a
panel of eight enzymes for early pancreatic cancer
detection from serum is currently less than 15 dollars.
This will abet the world-wide utilization of this

technology.

Function principles for this nanobiosensor technology
are shown in Figure 1. Nanobiosensors consist of a
Fe/Fe304 core/shell nanoparticle (diameter 15 nm)
coated with dopamine, this core nanoparticle is
tethered to an oligopeptide labeled with the tetrakis-
carboxyphenyl-porphyrin (TCPP) fluorophore and
to the FRET acceptor cyanine 5.5 (Cy5.5) by a stable
amide bond. Previous mathematical modeling
demonstrated that 35 TCPP and 50 cyanine 5.5
units are bonded to one Fe/Fe;O4 center in average
assuming a Poisson distribution'?2. Activity of these
protease nanobiosensors consist of the proteolytic
cleavage of the oligopeptide when each specific
protease is present. This cleavage allows TCPP to
escape both FRET and plasmonic quenching’?3, to
trigger an increase in fluorescence signal which is
detected by a standard clinical plate reader. The
arginase nanobiosensor activity is not cleaved. Here,

arginase performs a “post-translational” modification
by converting peptide-bound arginine into omnithine™.

Ornithine changes the dynamic of the peptide
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Protease activity-based nanobiosensors for early detection of pancreatic cancer?

tether, which increases the average distance between
nanoparticle and TCPP and, consequently, TCPP
fluorescence’. In table 1, peptides 1 to 7 have
been optimized to be specifically cleaved by the
protease they were designed for, while peptide 8
is post-translationally modified by arginase. Studies
have demonstrated that the human degradome
consists of at least 641 proteases and homologues

(21 aspartic, 143 cysteine, 186 metallo, 176 serine and

27 threonine proteases)?’, and virtually all proteases
form an interdependent proteolytic network?.
Consequently, numerous active proteases present in
serum could degrade peptides 1-8, with significantly
slower kinetics. Therefore, a comparison between
the selected panel of enzymes in serum of pancreatic
cancer patients and healthy control group is required

to detect cancer at the localized stage.

Figure 1: A: Design of a Fe/Fe;O4-nanoparticle based nanobiosensor for protease detection. Gray: Fe;O;

light gray: dopamine. In the “off-state”, the fluorophore TCPP (tetrakis-carboxyphenyl-porphyrin) is quenched

by Cy 5.5 (cyanine 5.5) by a FRET mechanism? and by the Fe(0) core by means of plasmonic quenching®.

B: Design of a Fe/Fe3Os-nanoparticle based nanobiosensor for arginase detection. Due to posttranslational

enzymatic modification (arginase converts arginine to omithine within the oligopeptide), the tether dynamics

decrease and, consequently, the distance between TCPP and center-nanoparticle increases. This increase leads

to the switch on of TCPP fluorescence; C: HRTEM of dopamine-coated Fe/Fe;O, core/shell nanoparticles.

The inner core (d=13 £ 1.0 nm) consists of disordered Fe(0) crystallites. The inorganic shell (d=2 = 0.5 nm)

is comprised of Fe;Os. Dopamine is tightly bound to the surface of Fe;O4%, thus enhancing the water-

dispersibility of the protected Fe/Fe;O, nanoparticles.
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The statistically significant differences in protease/
arginase activity pattern of the four groups, i.e.,
localized pancreatic cancer (n=33), metastatic
pancreatic cancer (n=50), pancreatitis (=26), and
an age-matched healthy control group (n=50), are
established by harnessing these Fe/Fe;Os-based
nanobiosensors. This is achieved by using elementary
biostatistical tools like performing Welch tests* and
computing p-values between all the data groups®#'.
However, the sample sizes of the examined groups
are very small, thereby insufficient to investigate
the broader feasibility of detecting pancreatic cancer
at early stages. Moreover, it is desirable to extract
maximal discriminatory power by protease/arginase
information fusion rather than relying on basic
statistical analyses. Therefore, we propose two
information fusion-based decision frameworks for
early detection of pancreatic cancer. Specifically, a
hard hierarchical decision structure (HDS) paired
with step-by-step feature engineering approach is
introduced and shown to outperform conventional
multi-class classification techniques. Additionally, a
soft hierarchical decision structure (SDS) that provides
confidence in anticipated decisions via probability
values for each class is introduced. The primary goal
of employing computational approaches for early
pancreatic cancer detection is to detect the onset
of pancreatic cancer in individuals with risk factors,
such as smoking, heavy alcohol use, obesity, long-
standing diabetes, and chronic pancreatitis, allowing
for the maximum amount of time available for
successful treatment with other modalities such as

immunotherapy?.

Methods

Synthesis of Nanobiosensors

The detail procedures used for synthesis of

nanobiosensors and individual components
(dopamine coated Fe/Fe3O4 nanoparticles, peptides,
and both fluorescent dyes, TCPP, and cyanine 5.5)
can be found in previous publications from the
Bossmann research group''?. After synthesizing all

components, each nanobiosensor was assembled.

Briefly, a first solution was prepared by dissolving
64 mg of protease sequence labeled with TCPP, 37
mg of cy5.5, 45 mg of EDC, and 45 mg of DMAP in
30 mL of anhydrous DMF. In a separate vial, a second
solution was prepared by dispersing 450 mg of
dopamine coated Fe/Fe304 nanoparticles in 10 mL
of anhydrous DMF. Each solution vial was mixed and
sonicated for 20 min. Then, both solutions were
combined, sonicated for 10 more minutes, and
incubated in a shaker at room temperature (298K)
overnight. Following overnight incubation, the
nanobiosensor was washed with anhydrous DMF
(25 mL) four times and with cold diethyl ether (25
mL, 263 K) four times for removal of excess dye and
unreacted material, which remained in solution. The
nanobiosensor was collected by means of
centrifugation between washes (5 min. at 10,000
RPM). Finally, the nanobiosensor was collected and
dried using argon gas and kept at 253K under argon.

Serum Samples Information

All serum samples were obtained from the
Biospecimen Repository Facility of the University of
Kansas Cancer Center?. The total sample number
received and tested was n=159, divided into the
following groups: localized pancreatic cancer (LPC)
n=33, metastatic pancreatic cancer (MPC) n=50,
pancreatitis n=26, and apparently healthy volunteers
(control) n=50. This study was funded by American
Cancer Society grant (IRG-16-194-07), awarded to the
University of Kansas Medical Center (Pl: Anup Kasi).

Protease Activity in Serum Sample Measurements
using Fluorescent Plate Reader

The procedure and information used for
measurement of protease in serum sample was
fully described in previous study published in
2018™. Briefly, a 25 pmol HEPES buffer (2-[4-(2-
hydroxyethyl) piperazin-1-yl] ethanesulfonic acid)
solution was enriched with 10 pmol of each cation,
Ca(ll), Mg(ll), and Zn(ll) at 298K and pH adjusted to
7.2 in order to ensure enzymatic activity on MMPs.
Briefly, to maintain enzymatic activity, a first solution

containing 25 pmol/L HEPES buffer was enriched

© 2024 European Society of Medicine 4



with 10 pmol/L of Ca?*, Mg?*, Zn?* with a pH of 7.2 at
298K. A second solution was then prepared for each
nanobiobiosensor analyzed by completely dispersing
0.30 mg of nanobiosensor in 1 mL of HEPES buffer
enriched with cations after sonicating solution for
15 min at room temperature (298K). After these two
solutions were prepared, the following four sample
solutions were prepared for the actual analysis
part: 1-Blank (130 pL HEPES buffer enriched with
cations), 2-Sample Control (125 pL HEPES buffer
enriched with cations + 5 pL serum samples), 3-

Assay Control (125 pL nanobiosensor assay solution

+ 5 pL HEPES buffer enriched with cations), and 4-
Assay (125 pL nanobiosensor assay solution + 5 plL
serum samples). From each sample solution, a volume
of 130 pL was loaded into a 96-well plate (black, flat
bottom), plating three replicates for each assay and
serum samples (sample solution 4). After loading all
samples onto the plate, it was incubated at 37°C
for 60 minutes. After incubation time, fluorescent
intensity was measured using a BioTek Synergy 2
plate reader, where both endpoint (421 nm excitation
& 650 nm emission) and spectra scan (600-700 nm

emission) data was collected.

Table 1: Peptides designed for proteases and arginase used to assemble nanobiosensors'’. Each peptide

was designed to preferentially react with its respective enzyme. However, serum contains multiple proteases

that co-react with each peptide as well. Therefore, the peptide sequences have been optimized in our earlier

work to react significantly faster with their “target enzyme” than with other enzymes that are present in serum'"8.

Peptide # Nanobiosensor Oligopeptide Sequence
1 Cathepsin B GAGSLLKSR-MVPNFNAG
2 Cathepsin E GAGEVAL-VALKAG
3 MMP1 GAGVPMS-MRGGAG
4 MMP3 GAGRPFS-MIMGAG
5 MMP9 GAGVPLS-LYSGAG
6 Neutrophil Elastase GAGGEPV-SGLPAG
7 uPA GAGSGR-SAG
8 Arginase GAGRRRRRRRAG

Statistical Analysis

Equal or unequal variance of raw data was determined
using an F-test. Once variance was determined for
each comparison data set, a t-test with equal or
unequal variance (Welch's t-test) was then performed
to compare data within each group for each
biomarker?. Significant differences between two
groups were reported when the p-value was < 0.05,
and borderline significant differences between two
groups were reported when the p-value was between
0.05 and 0.1. These significant differences were

annotated on each bar graph.

Information Fusion-based Decision Framework

This work models the problem of early-stage
pancreatic cancer detection as a multi-class
classification task. The data generated from the
experiments belongs to one of the four classes,
“Healthy”,

pancreatic cancer and “Metastatic” pancreatic cancer.

namely, “Pancreatitis”, “Localized”
We propose two information fusion-based decision
frameworks: (i) an HDS coupled with stepwise feature
engineering technique for improved performance
classification

in  comparison to traditional

methodologies, and (i) an SDS that conveys
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confidence in predicted labels to improve explanations
and allow clinicians to make informed judgements.

1. Hard Hierarchical Decision Structure

The central idea of the proposed information fusion-
based HDS is that statistically most significant features
are appropriately weighted at each hierarchical level
to conduct an efficient binary classification task.
The proposed HDS is presented in Figure 2. The
following subsections elaborate the components
used to construct the HDS.

Calculating feature weights

The proposed HDS paradigm begins by determining
whether the supplied sample is from the healthy
(null hypothesis) or unhealthy (alternative hypothesis)
group. To generate the corresponding binary
classifier, feature engineering entails a suitable
weighting of all features depending on their relative
significance. The p-values of two-sample t-tests for
all features across the set of measurements gathered
from "healthy" and "non-healthy" groups are used
to calculate these weights. Here, the null hypothesis
is that the measurements in “healthy” and “non-
healthy” groups belong to independent random
samples from normal distributions with equal

means. The corresponding test decision values and
p-values are examined for all the features. The p-
values were observed to be dispersed over a wide
range and have a highly skewed distribution. As a
result, the probability operations associated with
them might generate extremely small values that
are difficult to represent precisely. This leads to
numerical errors like underflow or overflow. In
order to eliminate challenges concerning precision,
the p-values are converted to a logarithmic scale
for easier interpretation and analysis®**®. The
negative values of natural logarithm of p-values,
—log,p is computed for all the features and scaled,
as shown in equation (1), to obtain the corresponding

feature weights as

—logea;

(1)

W = o—————-—
¢ Z%:l_l(’ge am
Here, M is the total number of features, w; depicts
the weight for feature a; and —log, a; represents
the negative value of natural logarithm of p-value
Table 2

demonstrates the p-values and computation of

corresponding to the feature a;.

weights for all the features in the dataset under

consideration.

Table 2: Calculating features weights. A test decision value of 0 indicates a failure to reject the null hypothesis

at 95% confidence level: a value of 1 indicates rejection of the null hypothesis at 95% confidence level; a rank

of 1 indicates that the corresponding feature is most important and that of 8 indicates that the corresponding

feature is least important.

Sr. Feature Test p-value Rank —log.p —value Weight

No. Decision
1 Arginase 0 0.26 6 1.36 0.0104
2 CatB 1 2.49e-10 3 22.12 0.1696
3 CatE 0 0.87 8 0.14 0.0011
4 MMP 1 1.01e-14 2 32.23 0.2471
5 MMP 3 1 1.05e-16 1 36.79 0.2821
6 MMP 9 1 8.75e-10 4 20.86 0.1599
7 Neutrophil Elastase 0 0.27 7 1.31 0.0101
8 uPA 1 1.64e-07 5 15.62 0.1198

© 2024 European Society of Medicine 6



Figure 2: Proposed information fusion based HDS framework.
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Feature selection for individual hierarchical levels

If a given sample is identified as “non-healthy” in the
first hierarchical step, the next two steps are aimed
at determining the type of abnormality involved.
The second hierarchical step evaluates whether the
given sample belongs to a “localized” group. If it
is further recognized as “non-localized”, the last
hierarchical level determines whether the sample
belongs to “pancreatitis” or “metastatic” group.
Unlike the binary classifier in the first hierarchical
step, the ones in the second and third steps use a
subset of features rather than using all the features

obtained from the experiments. This process of
feature engineering uncovers the most crucial
features, simplifies the decision models, and fosters
better interpretability. Further, this allows for shorter
training times and less overfitting. The relevant
features are identified by conducting a series of
two-sample t-tests (as in the first hierarchical step)
for all possible pairs of the class labels. The common
features exhibiting the lowest p-values in all the
relevant pairs of hypothesis tests are selected as
admissible features for the corresponding binary

classifier. For instance, a set of common features

© 2024 European Society of Medicine 7



exhibiting lowest p-values in both the hypothesis
tests, localized vs. pancreatitis, and localized vs.
metastatic are selected as admissible features for
the binary classifier in the second hierarchical step.

For the dataset under consideration, Cat B, MMP 1,
Neutrophil Elastase and UpA are selected as features
for binary classifiers in the second hierarchical step,
and Arginase, MMP 1 and MMP 9 are the selected

features for the third hierarchical step.

Training set

In the first hierarchical level, 80% of all instances in
the dataset are selected randomly to train the binary
classifier. The samples from the “healthy” group
are isolated as a result of this step. So, 80% of the
instances from “localized”, “pancreatitis” and
“metastatic” groups are selected at random to form
the training set for the binary classifier in the second
hierarchical level. This step isolates the samples
from “localized” group. Finally, 80% of the instances
from the remaining two groups, i.e., “pancreatitis”
and “metastatic” are randomly selected to train the
binary classifier in the third hierarchical level. Such
a strategy for building training sets for individual
binary classifiers is highly beneficial when sample
size of the dataset is limited.

2. Soft Hierarchical Decision Structure

A four-class classifier offered by HDS does not
incorporate any information pertaining to the
confidence level associated with the decisions at
each step. The proposed SDS framework addresses
this limitation by providing confidences associated
with the predicted labels in the form of probability
values for each class. The proposed SDS is shown
in Figure 3. Itis essentially an extension of the HDS,
where the prediction for each sample is accompanied
with the probability values of that sample being
affiliated to each of the four classes. The differences
between these probability values indicate the degree
of confidence associated with the predictions. For a
given sample, if the probability value corresponding
to one of the classes is significantly higher than
others, the confidence associated with such a
prediction is inferred to be HIGH. On the other hand,
if the difference between the probability values
corresponding to all the classes is not significant, the
confidence in such a prediction would be LOW. This
framework assists clinicians in determining whether

more tests are necessary for correct diagnosis.

Figure 3: Proposed information fusion based SDS framework.
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All steps in the SDS are probabilistic extensions of
the HDS. For example, the first level in SDS results
in two values indicating probabilities of the given
sample being “healthy” or “non-healthy”, represented
by P(H) and P(H) respectively. The second
hierarchical level determines the probabilities of
the given sample being “localized” or “non-localized”,
given the condition that it belongs to “non-healthy”
group, represented by P(L|H) and P(L|H)
respectively. As a result, the probabilities of a sample
being “localized” is calculated based on equation (2).

P(L) = P(LIH) P(H) (2)

The last step in SDS computes the probabilities of
the given sample being “metastatic” or “pancreatitis”,
given the condition that it is “non-healthy” and “non-
localized”, represented by P(M|L, H) and P(M|L, H)
respectively. Finally, the probabilities of a sample
being “metastatic” or “pancreatitis” is evaluated
based on equations (3) and (4) respectively.

P(M) = P(MIL,H) P(L|H) P(H) (3)

P(M) = P(M|L,H) P(LIH) P(H) (4)

Results

Quantified protease activity in serum samples

In our previous pancreatic cancer detection study
published in 2018, Gene Expression Analysis (GEO)
was used to identify and select protease candidates.
There, detailed information for selection criteria
and a summary for gene regulation can be found,
as well as a full description of synthesis, validation,
and calibration for each nanobiosensor used in this
study™. All eight nanobiosensors (arginase, cathepsin
B, cathepsin E, MMP1, MMP3, MMP?, neutrophil
elastase, and uPA) were used to measure enzymatic
activity in serum samples from four different disease
groups: localized pancreatic cancer, metastatic
pancreatic cancer, pancreatitis, and a ‘healthy’

control.

Figure 4 to 11 compare the enzymatic activity for
the disease group for each nanobiosensor tested.
Figure 4 demonstrated that the enzymatic activity
of arginase was significantly upregulated in serum
from the metastatic and control group compared
to both localized and pancreatitis groups.

Figure 4. Bar graphs (showing means and standard deviations on the left) and box plots (showing data range

on the right) for arginase. Group sizes: localized pancreatic cancer (h=33), metastatic pancreatic cancer (n=50),

pancreatitis (n=26), and apparently healthy control volunteers (n=50). Different letters indicate significant

differences found in enzymatic activity between disease groups (p-value < 0.05). *Border line significant

different (p-value < 0.1 and = 0.05).
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Figure 5. Bar graphs (showing means and standard deviations on the left) and box plots (showing data range

on the right) for cathepsin B. Group sizes: localized pancreatic cancer (n=33), metastatic pancreatic cancer (h=50),

pancreatitis (n=26), and apparently healthy control volunteers (n=50). Different letters indicate significant

differences found in enzymatic activity between disease groups (p-value < 0.05).
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Figure 6. Bar graphs (showing means and standard deviations on the left) and box plots (showing data range

on the right) for cathepsin E. Group sizes: localized pancreatic cancer (n=33), metastatic pancreatic cancer

(n=50), pancreatitis (1=26), and apparently healthy control volunteers (n=50). Different letters indicate significant

differences found in enzymatic activity between disease groups (p-value < 0.05). a/b indicates that group had

similar activity with two other groups that were different from each other.
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on the right) for MMP1. Group sizes: localized pancreatic cancer (n=33), metastatic pancreatic cancer (n=50),

pancreatitis (n=26), and apparently healthy control volunteers (n=50). Different letters indicate significant

differences found in enzymatic activity between disease groups (p-value < 0.05).
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Protease activity-based nanobiosensors for early detection of pancreatic cancer?

Figure 8. Bar graphs (showing means and standard deviations on the left) and box plots (showing data range

on the right) for MMP3. Group sizes: localized pancreatic cancer (n=33), metastatic pancreatic cancer (n=50),

pancreatitis (n=26), and apparently healthy control volunteers (n=50). Different letters indicate significant

differences found in enzymatic activity between disease groups (p-value < 0.05).
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Figure 9. Bar graphs (showing means and standard deviations on the left) and box plots (showing data range

on the right) for MMP9. Group sizes: localized pancreatic cancer (1=33), metastatic pancreatic cancer (n=50),

pancreatitis (n=26), and apparently healthy control volunteers (n=50). Different letters indicate significant

differences found in enzymatic activity between disease groups (p-value < 0.05).
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Figure 10. Bar graphs (showing means and standard deviations on the left) and box plots (showing data range

on the right) for MMP9. Group sizes: localized pancreatic cancer (1=33), metastatic pancreatic cancer (n=50),

pancreatitis (n=26), and apparently healthy control volunteers (n=50). Different letters indicate significant

differences found in enzymatic activity between disease groups (p-value < 0.05).
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Figure 11. Bar graphs (showing means and standard deviations on the left) and box plots (showing data range

on the right) for uPA. Group sizes: localized pancreatic cancer (n=33), metastatic pancreatic cancer (n=50),

pancreatitis (n=26), and apparently healthy control volunteers (n=50). Different letters indicate significant

differences found in enzymatic activity between disease groups (p-value < 0.05). *Border line significant different

(p-value < 0.1 and = 0.05).
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Decision Framework Evaluation

The evaluation of the proposed decision framework
is performed by training a series of decision models
considering several combinations of binary classifiers
at each hierarchical level indicated in Figure 2. The
following classification methods are considered for
individual binary classifiers: (i) Gaussian Naive Bayes
(GNB)®, (ii) Decision Tree (DT)*, (iii) Support Vector
Machine (SVM)®, (iv) k-Nearest Neighbors (kNN) %,
(v) Random Forest Classifier (RFC)**?¢ and (vi) Logistic
Regression (LR)¥. The selected combinations of
classification methods exhibiting an overall accuracy

score of more than 90% are enlisted in Table 3.

uPA
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The training sets were built as elucidated in Methods,
and decision models were evaluated over all instances
in the dataset. It can be observed in Table 3 that the
best performance is obtained using kNN for binary
classification in the first two hierarchical levels and
RFC in the last step. The corresponding accuracy score
is 96.85% and the confusion matrix is provided in
Table 4. On the contrary, the traditional multi-class
classification approaches yield a maximum
classification accuracy of 76.4%, as exhibited in
Table 5. This illustrates that the proposed HDS
standard

multi-class classification approaches for early-stage

framework significantly outperforms

detection of pancreatic cancer.

Table 3: Combinations of classification methods exhibiting an overall accuracy score of more than 90%.

Sr. No. Classification Method Correct Predictions Accuracy Score
Step 1 Step 2 Step 3
1 DT GNB kNN 145/159 91.19%
2 SVM kNN DT 144/159 90.57%
3 kNN GNB kNN 144/159 90.57%
4 kNN DT DT 146/159 91.82%
5 kNN DT GNB 148/159 93.08%
6 kNN DT RFC 150/159 94.34%
7 kNN kNN RFC 154/159 96.85%
8 kNN RFC DT 146/159 91.82%
9 RFC DT kNN 149/159 93.71%
10 RFC DT RFC 146/159 91.82%
11 RFC kNN kNN 150/159 94.34%
12 RFC GNB SVM 144/159 90.57%
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Table 4: Confusion Matrix — HDS (Step 1: kNN; Step 2: kNN; Step 3: RFC).

Predicted Class
Healthy Pancreatitis Localized Metastatic
True Healthy 49 0 0 1
Class Pancreatitis 1 25 0 0
Localized 0 0 31 2
Metastatic 0 0 49

Table 5: Performance obtained using traditional multi-class classification approaches.

Sr. No. Classification Method Accuracy Score
1 GNB 74.8%
2 DT 70.9%
3 SVM 76.4%
4 kNN 72.4%
5 RFC 74.8%
6 LR 71.2%

Results from the use of the SDS framework are
shown in Figures 12 and 13. Specifically, Figure 12
illustrates an example scenario with confidence
values associated with the four classes showing the
basis for a correct prediction. The sample presented
in Figure 12 is correctly classified as “Healthy”. It can
be observed that there is a significant difference
between the probability of this sample belonging
to “Healthy” class and that of the other three classes.
This depicts a HIGH confidence situation. In such a
case, the clinician can safely assume sufficient
confidence on the prediction of the decision model

and need not prescribe any further diagnostic tests.

Figure 13 highlights an example wherein the class
probabilities do not show a clear favorite, thereby
leading to an incorrect prediction. Here, the sample
belongs to the “Healthy” class but is misclassified as
"Metastatic”. Moreover, it can be observed that
the difference in probabilities of “Healthy” and
“Metastatic” classes is not that significant as in the
previous case, and hence, thisis a LOW confidence
situation. The presentation of both the decision and
class probabilities help clinicians recognize instances
where there is a lack of confidence in predictions

of the decision model and nudge them to possibly

prescribe further tests for better diagnosis. In this
manner, the SDS frames the output of the decision
model to make it more “interpretable” to the clinicians
and possibly use it as a decision support tool while

performing diagnosis.
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Figure 12: Example of correct prediction by soft hierarchical decision structure.
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Figure 13: Example of incorrect prediction by soft hierarchical decision structure.
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Discussion serum, because it has been established that the

The main hypothesis of our approach to cancer
detection is that the quantitative activities of selected
biomarkers (e.g. a panel of pancreatic cancer-
sensitive proteases) permit early detection. They
can be obtained by a Liquid Biopsy. We have selected

© 2024 European Society of Medicine

activity of proteases is highest in serum, followed by
plasma, and lowest in whole blood?. The detection
of early tumors by means of protease activity
measurements is taking advantage of the biology
of human proteases: virtually all proteases, except
for caspases, form a proteolytic network and require

14



activation by other proteases or undergo slow
autocatalytic activation®?¢. In cancer, proteases
can be either mutated or misfolded, resulting in
decreased proteolytic activity, or overexpressed,
resulting in increased activity?”-#. Activity changes of
a few proteases are then amplified by the proteolytic
network, leading to cancer-specific protease
signatures®>32. Our research is based on the central
paradigm that unique protease signatures exist for
numerous diseases, such as for virtually all solid

tumors®.

This research with a larger sample size validates our
earlier smaller study in 2018 where we had principally
demonstrated that pancreatic cancer has a
significant protease/arginase signature'™. These
earlier results were confirmed by this study: six out
of the eight nanobiosensors tested demonstrated
significant differences between both pancreatic
cancer groups and the healthy control group, which
indicated that these are promising candidates for
pancreatic cancer detection (cathepsin B, MMP1, -3,
-9, neutrophil elastase, and uPA)™. When comparing
the pancreatitis against the healthy control group,
arginase, cathepsin B, MMP1, -3, -9, and neutrophil,
elastase demonstrated to have significant differences

in measured fluorescence signal.

Enzymatic activity for cathepsin B was significantly
downregulated for all 3 disease groups (localized,
metastatic, and pancreatitis) compared to the healthy
control group, which indicated that cathepsin B can
successfully detect both pancreatic cancer and
pancreatitis. While cathepsin B was able to
significantly distinguish between localized and
metastatic pancreatic cancer as well as localized
pancreatic cancer and pancreatitis, it was not able
to distinguish between metastatic pancreatic cancer
and pancreatitis. Cathepsin B has a strong potential
to be used as biomarker for an early detection of

pancreatic cancer.

Cathepsin E activity levels remained similar for all
disease groups, except for localized pancreatic cancer

and pancreatitis. This study indicated that cathepsin

E nanobiosensoris not a suitable biomarker in serum

for either pancreatic cancer or pancreatitis detection.

MMP1 activity was significantly different for all 4
groups tested, which indicated MMP1 to be a
promising candidate for both pancreatic cancer
and pancreatitis detection as well as pancreatic
cancer staging. Enzymatic activity of MMP1 was
downregulated for the healthy control group and
increased steadily for pancreatitis, metastatic
pancreatic cancer, and localized pancreatic cancer,

respectively.

Enzymatic activity decreased steadily from the healthy
control group to pancreatitis, metastatic pancreatic
cancer, and localized pancreatic cancer, respectively.
Even though MMP3 was able to detect both
pancreatic cancer and pancreatitis and significantly
distinguish between both localized and metastatic
pancreatic cancer against pancreatitis, it failed to
find a significant difference between localized and
metastatic pancreatic cancer groups. Therefore,
MMP3 is a good candidate for pancreatic cancer

detection but not for pancreatic cancer staging.

While MMP?9 activity performed opposite to MMP3
activity (increased in activity level from the healthy
control to pancreatitis, metastatic cancer, and
localized pancreatic cancer, respectively), the
significant differences between groups tested was
similar. MMP9 detected both localized and metastatic
pancreatic cancer as well as pancreatitis, but it was
not able to significantly distinguish between localized

metastatic pancreatic cancer.

Enzymatic activity of neutrophil elastase decreased
steadily for localized pancreatic cancer, metastatic
pancreatic cancer, and pancreatitis, respectively.
The differences in neutrophil elastase activity
behaved similarly to MMP1 activity, where enzymatic
activity was significantly different for all four groups
tested. These results indicated that MMP1 and
neutrophil elastase biomarkers are ideal candidates
for both pancreatic cancer and pancreatitis detection

and distinction, as well as pancreatic cancer staging.
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In comparison to MMP1 activity, uPA activity increased
steadily for pancreatitis, metastatic pancreatic cancer,
and localized pancreatic cancer, respectively. uPA

is showing the lowest activity in the healthy control
group. However, unlike MMP1, uPA activity levels were

not significantly different for all four groups tested.

Table 6. Significance table between each nanobiosensor and disease group tested

Localized Metastatic Pancreatitis| Localized Localized Metastatic
P-values Vs Vs Vs Vs Vs
Control Control Control | Metastatic Pancreatitis Pancreatitis
Arginase | 005082 042605  0.00852 | 0.00034 _ 023682 _ 0.00006
CathepsinB | 1.33E-10 7.06E-06 1.44E-05 0.00584 0.00662 0.97528
Cathepsin E 0.27327 0.80162 0.22787 0.38752 0.02143 0.13966
MMP1 6.66E-21  3.08E-12  1.09€-05 | 2.03E-13  4.31E-17 0.00170
MMP3 1.39-13  2.51E-14  0.00021 | 0.98700  0.03863
MMP9 2.77E-08 1.73E-08 0.01780 0.66200 0.00035 0.00019
Neutrophil | 6 05015 001430 842606 | 229E-10  844E14  0.00701
Elastase
uPA 2.55E-11 0.00024 0.07370 6.58E-07 8.05E-06 0.30435

Table 6 summarizes the p-values obtained after
comparing activity between each group tested.
Columns are not highlighted in gray. It can say:
“Columns represent each disease group compared
against the healthy control group or between each
disease studied.” Gray highlighted areas indicate
significant differences in fluorescence signal measures
(p-value < 0.05). Underlined values indicate borderline
significant differences in measured fluorescence
signal (0.05 < p-value = 1).

An ideal panel of biomarkers not only should be
able to detect and stage pancreatic cancer, but it
should also distinguish between pancreatic cancer
and pancreatitis to avoid misleading diagnosis. To
optimize the detection probability of especially early
(ductal) pancreatic cancer, we have performed in
depth data analysis using hierarchical decision
structure. The results of this study clearly indicate
that early (ductal) pancreatic cancer detection is
possible by means of a Liquid Biopsy. Serum samples
can be either frozen for several years at -80 °C prior
to analysis or used immediately after blood clotting
and centrifugation. The quantitative activity
measurements can be performed using clinical plate
readers. Note that a recent comparative study on

early detection of lung cancers utilizing a panel of

proteases has indicated that for optimal performance
the production of serum should be standardized™.

Conclusion

One of the major drawbacks of the conventional
statistical learning-based or Al-based decision-
making algorithms is that they try to enforce a strict
decision as an output by selecting the best possible
option among the available alternatives. The trust
and reliability of the corresponding decisions remain
questionable, especially in critical applications like
medical diagnosis. The proposed SDS framework
provides feedback to clinicians in terms of confidence
levels corresponding to each of the possible
decisions. The corresponding accuracy score of
96.85%, underscores that a new standard of care in
early pancreatic cancer diagnosis by means of
Liquid Biopsies is within reach. On the contrary, the
traditional multi-class classification approaches yield
only a maximum classification accuracy of 76.4%.
This illustrates that the proposed HDS framework
significantly outperforms standard multi-class
classification approaches for early-stage detection
of pancreatic cancer. Such feedback is more
“interpretable” for the clinicians and therefore, the
proposed framework can be potentially deployed

as a decision support tool for early-stage detection
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of pancreatic cancers. It should also be noted that
protease/arginase sensing in serum for early
pancreatic cancer detection currently not only
outperforms genetic tests, but it is also significantly
less expensive and relies on clinical plate readers

that are already installed in virtually every hospital.
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