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ABSTRACT 
Calpains are calcium-activated cysteine proteases that activate a vast 
variety of substrates by cleavage. First reported in 1964, calpains are 
found in both prokaryotes and eukaryotes and display disparate 
multidomain architectures. The term calpainopathy was coined in 1995 when 
calpains were first linked to cell cycle control and cancer, and since then 
calpains have been implicated in many additional medical conditions 
including heart disease, multiple sclerosis, diabetes, sickle cell disease, and 
various neurological disorders. The evolution of calpains is under active 
investigation, but the core CysPc cysteine protease domain can be traced 
back to bacteria and the membrane associated MIT domain to Archaea. 
Here we review calpain evolution and suggest that the MIT-CysPc domain 
was present in the first eukaryotic common ancestor, and that this diverged 
into a minimum of four independent last eukaryotic common ancestors 
making up diverse groups from animals to land and marine plants. How 
calpains function at the cellular level is likewise not fully resolved. However, 
they are recognized to play roles in cell division, adhesion, fusion, 
proliferation, migration and signaling in animals and to act on stem cell 
functions via microtubules in land plants. Just recently calpains have also 
been connected to the microtubule organizing center in land plants and 
brown algae. We present a possible basic function of calpain domains, their 
connections to membranes and a possible calcium channel, supported by an 
updated phylogeny. Finally, we provide an overview of human calpains, 
potential functions and medical conditions to which they are linked and 
suggest possible development of calpain transcriptomic diagnostics to 
increase medical precision and treatment. We believe that understanding 
calpains has promising medical spinoffs and look forward to seeing this field 
unfold in the years to come. 
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Introduction 

Calpains are calcium-activated cysteine proteases that 
alter the functions of their numerous substrates by 
cleavage. The name calpain combines ‘cal’ and ‘pain’, 
which are derived from calcium and cysteine proteases 
such as papain and legmain.1 The calpain system is one 
of four cellular proteolytic systems along with the 
proteasome, lysosome and caspase systems and is 
involved in many cellular processes in multicellular 
eukaryotes.2,3 The 15 human calpains are involved in 
many of our most common and serious diseases such as 
cancer and stem cell functions by regulating the cell cycle, 
neural functions linked to dementia, and oxygen transport 
linked to sickle cell disease.4 Most research on calpains 
has been done on animals and within medical science, yet 
our understanding of their biological functions is still only 
rudimentary. 
 
Members of the calpain family are multi-domain proteins 
that share a conserved core cysteine protease (CysPc) 
catalytic domain as well as diverse combinations of 
additional domains. Mammalian calpains are divided 
into classical and non-classical calpains based on their 
domain organization.3 The nine classical calpains, 
represented by calpain-1 and calpain-2, are composed 
of a larger and a smaller subunit (Table 1). The larger 
subunit is comprised of an N-terminal anchor helix, a 
CysPc domain, a calpain-type beta-sandwich (CBSW) 

domain and a penta-EF-hand (PEF) domain. The smaller 
subunit consists of only a PEF domain and a glycine-rich 
(GR) hydrophobic region. Following activation by calcium 
ions, these subunits assemble to form a functional 
heterodimer with catalytic activity.5,6 The six non-classical 
calpains consist of a single large subunit and typically 
function as monomers (Table 1). These calpains lack the 
PEF domain and in some cases the CBSW domain. Other 
domains found in various mammalian calpains include a 
microtubule interacting and transport motif (MIT), a C2 or 
C2-like (C2) domain, and a zinc-finger (Zn) motif.3 
 
The calpain gene superfamily is evolutionarily ancient 
and its members are widely distributed among both 
prokaryotic and eukaryotic lineages (Fig 1; Fig 2). 
Sequences encoding the core CysPc domain are present 
in eubacteria, including cyanobacteria, but have not been 
identified in Archaea.7,8 Genes encoding multiple calpain 
family members have also been cataloged in fungi, 
invertebrates, and mammals,9 in unicellular eukaryotes 
such as Thecamonas trahens and Tetrahymena thermophila, 
and in several macroalgal species.10 In contrast, land 
plants have one unique calpain gene, named DEFECTIVE 
KERNEL1 (DEK1).10,11 Interestingly, the genome of the 
brown macroalga Saccharina latissima contains sequences 
similar both to the land plant DEK1 gene as well as to 
many of the calpain versions found in animals. (Evju et al. 

submitted) 

 

Table 1. Overview of the human nine classical and six non-classical CAPN genes, expression and suggested 
functions. Classical calpains have a Ca2+ mediated conformational switch. 

Calpain Gene Number Suggested Functions References 

CAPN 1&2: Classical 
Expressed: Ubiquitously  
 

Membrane fusion, platelet activation, cell cycle progression, cytoskeletal 
remodeling, cleavage of receptors, neurons functions, cell adhesion, retinal 
apoptosis. Calpain-1 protects while -2 is neurodegenerative, where they 
balance each other’s brain function affecting memory. 

45-47,50 

CAPN 2: Classical 
 

Age added effects of UV-damage, high sugar levels if diabetic, environmental 
toxins and more. Can compromise membrane proteins possibly through 
increased ion permeability in lens fiber cells. Embryo development. 

7,54 

CAPN 3: Classical 
Expressed: 
Skeletal muscle 
 

Expressed in skeletal muscle, muscular dystrophy, nuclear localization. Role in 
Ca2+ release independent of its protease activity. Forms homodimers and 
trimers. 

3,55,56,59 

CAPN 5 & 6: Non-
classical 
Expressed: 
Ubiquitously 

Homologue of C. elegans sex determining gene TRA-3, exp most tissues, but 
especially in the central nervous system. Has 3 extended loops possibly 
explaining the need for higher Ca2+ levels for activation.   

3,61 

CAPN 7: Non-classical 
Expressed: 
Ubiquitously 

Divergent sequence, more related to the fungal calpain Aspergillus nidulans. 62 

CAPN 8&9: Classical 
Expressed: 
Gastrointestinal tract 

Form heterodimers, CAPN8 can also form homodimers, SNPs known to 
inactivate them can be used as diagnostics. CAPN9 forms heterodimer with 
CAPN1. G1 cell cycle arrest and caspase-mediated apoptosis, tumor 
suppressing role by degradation tract-specific oncogenes. 

44,60 

CAPN 10: Non-classical 
Expressed: 
Ubiquitously 

Insulin-mediated glucose turnover, cellular apoptosis, renal cell viability, tubule 
repair in renal cells. Regulator of glucose metabolism, thereby associated with 
development of type 2 diabetes. Requires special intracellular localization or 
interacting partner(s) to acquire proteolytic activity and cleaved by calpain-2. 

36,52,69,70,86,87 

CAPN 11: Classical 
Expressed: 
Testis 

Expressed in testis from 14 days after birth during pachytene spermatocyte 
development, suggested function during meiosis.  

88 

CAPN12-14: Classical 
 

Expressed: Hair follicle cells, ubiq and gastrointestinal Unknown functions.  

CAPN 15 & 16: Non-
classical 
 

Expressed: Ubiquitously, unknown functions.  
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Figure 1. Calpain domain combinations detected across selected species. 
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Figure 2. Schematic illustration of calpain protein domains and domain combinations across species compared to the unique plant 
phytocalpain protein DEK1. 

 
The aim of this article is to review the evolutionary origin 
of calpains, their biological functions in land plants and 
animals, and their association with human medical 
conditions and diseases. We present an overview of 
recent progress in understanding calpain activity from 
previous studies in animals and land plants, as well as 
new discoveries in macroalgae that suggest biological 
similarities to both animal and plant calpains at the 
evolutionary and functional levels.10,12 Based on these 
comparisons we find increased support for a core calpain 
function in orchestrating microtubule orientation within 
cells. Finally we discuss the roles of calpains in human cell 
biology and disease, and suggest that consideration of 
calpain functions in diverse species can add valuable 
understanding to improve medical applications of 
calpain-based therapies.13 
 

Evolutionary origin of calpains 
Four  ancestral  calpains  date  more  than  a billion years 

back.14 Extensive phylogenetic studies of calpains 
seeking their evolutionary origin and possible functional 
implications suggest the cysteine protease domain 
originates from bacteria, and further that the large 
variation in domain architecture between and within 
eukaryotic species descends from four original versions 
early in eukaryotic history.10 These were likely present 
before the split of the eukaryotic supergroups, the 1) 
Apusonomidae, containing Thecamonas, 2) Opistokonta, 
containing fungi and animals, 3) SAR, containing 
Tetrahymena and the brown algae Ectocarpus and 
Saccharina, and 4) Plantae, containing land plants (Fig 
3). The unicellular eukaryotes from which these different 
supergroups evolved underwent a massive expansion of 
the four original calpains into 41 different domain 
combinations.10 This extensive structural variation most 
likely arose from a combination of duplications, domain 
shuffling and secondary domain loss or modification 
during the course of evolutionary selection.10  

 

Ectocarpus II 



Plant and animal calpain functions, association with microtubules and possible medical applications 

© 2024 European Society of Medicine 5 

 
Figure 3. Tree-of-life schematic illustrating the possible evolution of calpain sequences across different supergroups of eukaryotes.  

 
The majority of calpains are cytosolic proteins, including 
all those present in insects and vertebrates. These cysteine 
proteases function in the cytoplasm and are not anchored 
to cell membranes via transmembrane domains, although 
membrane association is linked to the activation of 
cytosolic calpains including the human calpains.15,16 
Similarly, although the Drosophila CALPA does not 
contain a defined membrane anchor domain, it is 
suggested to be anchored to the membrane and to 
depend on autolysis release for activation.17   

 
Four types of membrane-anchored calpains have also 
been suggested, two that display broad distribution 
among unicellular protists and streptophytes and two that 
are present in oomycetes and brown algae. 16 The land 
plant DEK1 calpain contains a 23 transmembrane long 
(TML) motif interrupted by a loop or channel region 
(L/Chn) at its N-terminus, followed by an internal linker 
to the C-terminal cytosolic CysPc and CBSW domains 
shared with mammalian calpains.18 Interestingly both a 
short 3-TM and a long 21-TM domain calpain version is 
found in the freshwater unicellular eukaryote 
Tetrahymena, an organism that has two different nuclei, 
cilia and flagella, the MT motor dynein and ciliary 
membranelles.19 The presence in Tetrahymena of two 
distinct calpains containing TM domains might suggest the 
original evolutionary importance of the TM region to 
nucleic membranes, cilia and flagella functions and 
dynein that have been changed over time in different 
eukaryotic supergroups. 
 

The membrane anchoring activity of the DEK1 calpain 
might have been retained in land plants due to their cell 
walls, a physical barrier not found in animals, possibly 
meaning linking directly to the membranes is not as 
important in organisms without cell walls. It is still striking 
how The camonas and metazoans have MIT suggested 
functioning on the cytoskeleton and possibly also 
connecting the cytosolic calpains to membranes, while the 
Tetrahymena and land plant SAR lack MIT. This might 
possibly explain why TML anchoring to the membranes is 
important in land plants, a function replacing the MIT 
domain in other organisms. Both are consistent with 
central functions by the cytoskeleton for calpain function 
via the MIT or TML. Thecamonas and brown algae are so 
far the only eukaryotes found to have retained both the 
MIT and TML domains, possibly allowing some branches 
to have kept the MIT while plants kept the TML.10 The TML 
anchors the calpain to the cell membranes, such as the 
outer cell membrane and nuclear envelope. Calpain 
membrane activity has only been studied in land plants 
and might give us insight into the possible basic function 
of calpains, including those in animals. 
 

We suggest there existed three phylogenetically distinct 
membrane-bound calpains in the LECAs, now present in 
land plants, brown algae and animals as presented in 
Figure 3.14,16 The membrane-associated land plant 
calpain, DEK1, is activated by Ca2+ in the presence of an 
experimentally added channel.20 The substantial 
membrane part of DEK1 has also been suggested to 
possibly contain a Ca2+ channel region within it, 
potentially explaining why the membrane anchor has 
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been retained in this calpain through evolution.13 DEK1 is 
indicated to be functionally involved in regulating the 
internal, cytosolic portion of its calpain through a Ca2+ 
channel further linked to the organization of MT.13,20 The 
brown macroalga Ectocarpus and Saccharina both contain 
sequences similar to the transmembrane domains of the 
land plant DEK1 calpain as well as to many of the calpain 
versions found in animals (Fig 1; Fig 2),10,Evju et al. submitted) 
suggesting that macroalgal calpain proteins may be 
composites in which both animal- and plant-associated 
domains were retained. 
 
In animals the cytosolic calpains, although not bound to 
membranes, are consistently reported to be associated 
with them.15 The animal calpain-1 and calpain-2 proteins 
are bound to Transient Receptor Potential (TRP) channels 
and even activate TRPC5.16,21 The TRP channels make up 
a superfamily of Ca2+ permeable nonselective 
membrane cation channels and contribute to intracellular 
Ca2+ fluxes and cell signaling.22,23 These channels often 
form units of 24 transmembrane pores specific to 
eukaryotes.24,25 TRP channels have not been identified in 
land plants but are present in the closely related green 
algae,22 opposite to DEK1, suggesting that TRP channel 
activity might replace DEK1 function in green algae.  
 

Functions of plant calpains to set 3D cell 
orientation via microtubules 
The unique land plant calpain gene DEK1 was first 
identified from a maize (Zea mays) mutant collection 
having aborted seeds, shown to be due to loss of 
epidermal cells and embryo arrest at the globular 
stage.11,26 We further found the gene to be expressed in 
most cells, with higher expression in actively dividing cells 
and in stem cells in particular.13,27 Arabidopsis dek1 
mutant embryos have defective cell division patterns and 
planes, and in more severely affected embryos, nearly 
all the cell walls are incorrectly positioned.13 These 
defects are associated with disorganized arrangements 
of microtubules (MTs) within the cells, demonstrating that 
DEK1 regulates the arrangement of the cortical MT 
systems during early embryo development, which in turn 
may affect cell wall deposition. Together the data 
suggest that DEK1 sets the 3D cell division orientation for 
plant embryos to progress beyond globular stage by 
positioning cell walls according to their microtubule 
orientation.13,28  
 
DEK1 also affects the cell divisions in the developing 
suspensor. In land plants the upper tier of the dividing 
zygote develops into the embryo proper, while the lower 
tier forms an extra-embryonic suspensor structure 
connecting it to the surrounding endosperm tissues. The 
suspensor divides exclusively through anticlinal cell 
divisions before dying by programmed cell death, 
whereas the embryo proper divides in various planes to 
set the 3D orientation developing the new plant 
generation. In Arabidopsis dek1 mutants, the suspensor 
develops like the embryo proper by dividing in the 
periclinal orientation and expressing genes otherwise 
only present in the apical embryo. This suggest repressive 
signals from the embryo proper are needed to keep the 
suspensor from carrying out its embryogenic 
potential.13,29 Based on the dek1 phenotypes, DEK1 is 
proposed to restrict the basal development of the 

suspensor by preventing periclinal cell divisions and 
regulating the position of embryogenic marker genes.13 
One such marker is WOX2, the expression of which in the 
apical cells depends on a first asymmetric cell division of 
the zygote. dek1 mutants fail to express WOX2, likely 
due to a failure of the microtubule-orientated asymmetric 
first cell division. In addition, expression of the hormone 
transport protein PIN4, which is normally restricted to the 
suspensor, occurs ectopically in the dek1 embryo 
proper.13 The lack of proper PIN4 protein localization 
might be a factor in why dek1 mutants are unable to 
repress proper embryo development.30,31 
 
Medical science can achieve important insights from 
comparing the functions of evolutionary-related genes in 
different species. DEK1 is an ideal candidate to study 
calpain activity, because it occurs as a single copy in 
plants whereas multigene calpain families and the many 
varying sequences in other important eukaryotes 
complicate functional studies. To date the plant studies 
are consistent with a fundamental role for DEK1 in 
directing asymmetric cell divisions, in particular when 
shifting from 2D to 3D orientations, and in activating the 
expression of genes that depend on asymmetric divisions 
for their spatial patterning.13,32,Evju et al. submitted) The 
requirement of DEK1 for correct orientation of cell 
divisions is associated with a function in regulating MT 
organization, indicating a core role for DEK1 in 
cytoskeletal control. We suggest DEK1 acts by organizing 
the MT and argue this could be a core function of calpains 
in animals also. Animals have both centrosomes and 
microtubule organizing centres (MTOC), as do brown 
algae, whereas land plants lack centrosomes and 
therefore depend on the MTOC to organize the 
cytoskeleton throughout the cell cycle and to control cell 
division.  
 

Calpain association with medical 
conditions - utility in diagnostics and 
therapy 
In animals calpains have been linked to a wide spectrum 
of functions including calcium regulation, signal 
transduction, cytoskeleton dynamics, cell mobility, cell 
cycle progression, long-term potentiation in neurons, 
muscle protein break-down, cell adhesion, cell fusion and 
apoptosis.33-36 Calpains are known to be involved in 
pathophysiological mechanisms and specifically in human 
medical conditions such as cancer,37 Alzheimer’s 
disease,38,39 multiple sclerosis, Parkinson’s disease,40 
Huntington’s disease,41 Type2 diabetes, estrogen-
mediated cancer metastasis, aging related syndromes, 
sickle cell disease, asthma,42,43 cardiac dysfunction and 
blindness,36 and even alcoholism and malaria.44 These 
pathological functions are associated with either reduced 
or elevated calpain activity, leading to decreased or 
excessive substrate cleavage, respectively. 
 
The classical calpains are numbered calpain-1, 2, 3, 8, 9, 
11, 12, 13 and 14 (Table 1). Calpain-1 and calpain-2 
function in membrane fusion, platelet activation and cell 
cycle progression,45,46 cytoskeletal remodeling, and 
cleavage of receptors such as epidermal growth factor 
(EGF) in neurons and the eye especially.47 Calpains have 
been shown to reduce function in retinal apoptosis, by 
downregulating proapoptotic proteins and NF-kappaB 
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and thereby neuroprotecting retinal ganglion cells.48 
Together with caspase-3 they can cleave cytoskeletal, 
cytosolic and nuclear substrates.49 Calpain-1, calpain-2 
and caspase-3 further have synergistic effects on acute 
neuronal cell death, while surprisingly Calpain 1 and 2 
have opposite effects. Calpain-1 is neuroprotective while 
calpain 2 is degenerative, suggesting downregulation of 
calpain-2 may be a target for neural degenerations 
including traumatic brain injury and repeated 
concussions.50 Calpain inhibition has further been shown 
to slow down cataract formation by protecting 
cytoskeletal proteins from calpain proteolysis.51  
 

Calpain-1 and -2 are linked to neurological disorders – 
stroke and Alzheimer’s disease (AD) – as well as several 
types of cancer.52 They are found to be upregulated in 
breast cancer cells and to suppress cancer treatment 
effects, but this differs between cancer types and 
calpains (Table 2 and see below). Knockout of CAPN1 
also leads to neurological disorder spastic paraplegia 
76.47 In addition, Calpain-1 and -2 have been shown to 
cause disassociation of tau from MT, thereby leading to 
neuronal death, making them targets for treatment of 
Alzheimer’s disease.53 Calpain-2 is reported to cause 

added effects of UV-damage, high sugar levels if 
diabetic, environmental toxins and to compromise 
membrane proteins possibly through increased ion 
permeability in lens fiber cells.54 In mice, calpain-2 is also 
needed for embryo development.7 
 
CAPN3 is expressed in skeletal muscle (Table 1), and the 
nuclear-localized protein is linked to muscular 
dystrophy.55,56 Calpain-3 is linked to Limb-girdle 
muscular dystrophy (LGMD) – named calpainopathy and 
is also the first calpain linked to cancer. CAPN3 is highly 
expressed in melanoma cell lines and bovine bladder 
tumors, and induces increased stabilization of p53 and 
increased reactive oxygen species production leading to 
reduced cell proliferation and increased cell death.57 This 
led the authors to suggest that reduced CAPN3 
expression contributes to melanoma progression, with 
both diagnostic and therapeutic options. Conversely, 
upregulation of CAPN3 is proposed to lead to 
overexpression of E2F3, in turn causing urothelial tumor 
cell proliferation.58 Interestingly calpain-3 has been 
found to have a role in Ca2+ release independent of its 
protease activity.59  

 
Table 2. Overview of human calpain medical associations. 

Calpain Number Medical Association References 

Calpain-1 Neurological disorders such as stroke, Alzheimer’s disease (AD), spastic paraplegia 
76. 

47,52 

Calpain-2 Transcript marker of sudden cardiac death and a potential therapeutic target in 
various forms of neurodegeneration, including traumatic brain injury and repeated 
concussions. 

50,75 

Calpain-1&2 Upregulated in breast cancer cells and suppresses cancer treatment effects. Cause 
disassociation of tau from MT – neuronal death therefore targets for AD treatment. 
Calpain inhibition has been shown to slow down cataract formation in humans. 
 

 

Calpain-3 Limb-girdle muscular dystrophy (LGMD). Highly expressed in melanoma cell lines 
and bovine bladder tumors. 

55,89,90 

Calpain-5 ADNIV. 91 

Calpain-9 Gastric cancer, suppression of tumorigenesis. 60 

Calpain-10 Type 2 diabetes (T2D). 52,68,88,92 

Calpain-11 
 
 
Calpain-12 

Functions during meiosis for sperm function. 
Developmental eye disorders caused by disruption of the optic fissure disclosure. 

93 

Calpain-14 Eosinophilic esophagitis. 94 
 

CAPN8 and CAPN9 are expressed in the gastrointestinal 
(GI) tract (Table 1), can be inactivated by specific SNPs, 
form dimers with each other and can be used as 
diagnostics for gastric cancer.44 Calpain-9 is linked to G1 
cell cycle arrest and caspase-mediated apoptosis60 and 
is suggested to have a tumor suppressing role by 
degrading GI tract-specific oncogenes. CAPN11 is 
expressed in testis, whereas CAPN12 is expressed in hair 
follicles (Table 1).44  
 
Among the non-classical calpains, human CAPN5 is 
homologous to the C. elegans sex determining gene TRA-
3 and expressed in most tissues, but especially in the 
central nervous system.44 CAPN6 is highly homologous to 
CAPN5, is located on the X chromosome and is also 
suggested to be involved in sex determination.61 CAPN7 
has a more divergent calpain sequence making it easier 
to design a calpain specific antigene to this member, and 
the divergence includes the MIT-MIT, and this calpain 
sequence is more similar to the fungal calpain Aspergillus 

nidulans.62 It regulates timing and completion of 
abscission by both the tandem MIT distinct motifs to 
complete cytokinesis, secure checkpoint maintenance and 
separate dividing cells.63 Calpain-7 function on the 
Endosomal Sorting Complexes Required for Transport 
(ESCRT) is thereby required for the membrane fission step 
to complete cytokinesis and separation of cells. The 
human CAPN10 gene is most highly expressed in the 
heart, followed by the pancreas, brain, liver and kidney 
(Table 1).52 
 
A subset of the non-canonical calpains are associated 
with various types of diseases and cancers (Table 2). 
Calpain-5 can cause the rare ocular autoimmune disorder 
Autosomal Dominant Neovascular Inflammatory 
Vitreoretinopathy (ADNIV). CAPN6 has increased 
expression in uterine cancers, whereas CAPN9 has 
reduced expression in gastric cancer and is suggested to 
cause gastric cancer and suppression of 
tumorigenesis.64,65 Calpain-10 is linked to colorectal 
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cancer,66 pancreatic cancer67 and type 2 diabetes.36,52,68-

70 Mutated CAPN10 gene versions elicit a reduced rate 
of insulin-mediated glucose turnover, explaining how loss 
of calpain-10 function leads to type 2 diabetes.71 
Increased numbers of free fatty acids in obese people 
leads to increased Ca2+ activation of calpain, leading to 
induces major endoplasmic reticulum stress markers 
causing cellular apoptosis.36 Calpain-10 is also needed 
for renal cell viability and decreases with age. It is further 
important for tubule repair in renal cells, a cleavage of 
cytoskeleton proteins that may lead to increased 
membrane permeability causing renal cell death.69,70 
 
Multiple calpains are linked to neuronal death, apoptosis, 
deficits of synaptic transmission, lens cytoskeletal protein 
cleavage and cleavage of oncogene products (Table 
1).72 Calpains are reported to be markers of melanoma 
progression such as colorectal adenocarcinomas, breast 
and prostate cancer (Table 2),73 of tuberculosis,74 and of 
sudden cardiac death,75 and are highly expressed in 
melanoma cell lines and bovine bladder tumors. 
 
Like the land plant calpain DEK1, some animal calpains 
are connected with Ca2+ channel activity, the 
cytoskeleton, and/or microtubule organization (Table 1). 
Calpain-1 and -2 bind to TRPC6 in mice and regulate the 
cytoskeleton76 and the human calpain-1 and -2 proteins 
cleave and activate TRPC5 associated with neuronal 
growth.21 CAPN1, CAPN2 and CAPN6 are all reported 
to be involved in cytoskeletal organization and CAPN5, 
6, 7 and 10 are found to stabilize MT. This is all consistent 
with our suggested role for calpains in regulating MTOC 
activity in animals as in land plants. We have linked the 
DEK1 calpain to controlling plants MTs through the 
MTOC,13 and in animals this is further associated with 
immunology and T-cell receptors (TCR) reorganizing of 
the MTOC linked to dynein, GTPases, integrins and 
actin.77 
 

Multiple human calpains are involved in cytoskeletal 
remodeling (Table 1). Cytoskeletal connections between 
calpains and cancer include calpain-mediated cleavage 
product MYC-nick (MYC proto-oncoprotein) that 
promotes cytoskeletal remodeling, which is upregulated 
in cancer cells.44 Myc oncoproteins are widely involved in 
oncogenesis, and calpain-3 cleavage generates myc-nick 
that induces alpha-tubulin altered cell morphology by 
recruiting histone GCN5 to MT, and that drives 
cytoplasmic reorganization and differentiation.78 
Accelerated calpain cleavage of the human epidermal 
growth factor receptor (HER2) has been found to repress 
the targeting of such cancers, since they contribute to 
resistance to anticancer therapies.44,73 Further reduction 
of antitumor therapy effectiveness is caused by calpain-
1 and -2 modifications, since they regulate the cellular 
efflux machineries for drug efflux.73  
 

Calpains have similarly been suggested to cause cancer 
by reduced cell adhesion leading to cell release from the 
cellular matrix, including cell transformation, migration 
and invasion.79 Since calpains are recognized as key 
regulators of cell adhesion, they could promote either 
epithelial cell clearance or migration through adherens 
junctions (AJ) and focal adhesion (FA) complexes.80 

Interestingly AJs are found crucial to epithelia identity 
and are further linked to the actin cytoskeleton, the 
establishment of polarity and cell-cell communication 
needed for cell proliferation and movement. RhoA and 
Piezo are downstream targets of FA, and are regulated 
by the DEK1 calpain.81 Both calpain-1and calpain-2 are 
known to target actin binding proteins, and can 
proteolyze E-cadherin and other adhesion proteins 
during mammary gland development.82 These data show 
the important role of calpains in cell adhesion disruption 
and actin dynamics, further suggesting roles not yet 
discovered.80 
 
Interestingly the function of calpains in tumor cell 
migration and invasion is better understood than their 
role in apoptosis and cancer survival, related to cell 
adhesion and actin dynamics.64 Stress is further linked to 
increased Ca2+ levels and overactive calpains causing 
endothelial cell dysfunction, increased cytoskeleton 
degradation and organ dysfunction implicated in cardiac 
dysfunction.36 Downregulation of several calpains are 
therefore suggested as therapeutic interventions in cancer 
treatments83,84  
 
Emerging calpain-targeted therapeutic strategies are 
being developed to reduce calpain activities through 
alternatives to calpastatin regulation, including peptidyl 
epoxide, aldehyde and ketoamide. However, the limiting 
factor is the lack of calpain specificity, pointing to 
selecting locations outside of the shared domain 
sequences.85  Many more therapeutic options are 
expected as we understand calpain functions better to 
predict the right balance to maintain healthy cells and 
prevent diseases linked to calpain disfunction.37,44 
 

Conclusion 
Members of the calpain family of cysteine proteases are 
associated with a variety of severe human diseases, 
including cancer, multiple sclerosis and various 
neurological disorders. The canonical calpain cysteine 
protease domain arose in bacteria, followed by a 
massive expansion of domain structures such that extant 
calpain proteins consist of multiple domains in 
combinations that vary across the evolutionary spectrum. 
Correspondingly, calpains have been linked to a wide 
range of biological functions in plants and animals; many 
of these are associated with cell membranes and 
cytoskeletal remodeling. Such functions point to a 
potential core role for calpains in organizing microtubules 
within cells, as shown for the land plant calpain DEK1. 
With therapeutic strategies emerging to alter calpain 
activity and thus reduce cellular dysfunction, further 
investigation of calpain cellular and biochemical functions 
in animals, plants and algae can provide new directions 
for therapeutic intervention. 
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