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ABSTRACT 
The end of the COVID-19 pandemic allows an analysis in retrospect of the 

spread and early containment scenarios of the disease. Today we can 

weigh the diversity of results imposed by highly heterogeneous urban 

landscapes (both geographical and social). In this research, we address 

scenarios of one or more communities (neighborhoods) formed by small 

structures with strong connectivity among themselves (families). Special 

attention was paid to the early containment of the epidemic. After 

simulating many scenarios, it was observed that early isolation of the 

infected individuals is more efficient than the isolation of their entire family. 

But we also noted that the containment of the disease loses effectiveness if 

the clinical tests for its detection are reported late (from 1 to 4 days). On 

the other hand, the existence of neighborhoods (with high population 

density) complicates the disease containment strategies, since (a) the 

disease spreads faster due to the highly dense environment, and (b) these 

act as “hubs of contagion”, even if the disease itself is of low 

contagiousness. 

Keywords: complex networks, small world, COVID-19. 
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1. Introduction 
Disease spreading along large population groups is a 
complex phenomenon since it depends on how individuals 
interact with each other and on the disease dynamics 
within each person. Both processes can vary from 
community to community1-4 and the type of infectious 
agent5-7. This explains to some extent the wide range of 
observations seen during the COVID-19 pandemic in 
20208-11. 
 
Researchers observed that it's not possible to establish a 
self-consistent pattern of contagion among people unless 
considering their mobility. Mobility can create casual links 
between individuals who are not part of the family (or 
friends) environment2,5. Studies on common mobility 
patterns suggest that these may vary according to the 
spatial scale under analysis12. However, there exists a 
consensus in the literature that people follow a “scale-
free” spatial distribution, within typical urban 
extensions13-16. Qualitatively speaking, this means that 
relatively few amount of individuals are responsible for 
the majority of social contacts, while the rest experience 
a more limited number of contacts17. 
 
The mobility of individuals yields some kind of 
heterogeneity in the linking process of people within a 
network. For instance, some groups of people may exhibit 
higher densities of links than the commonly expected, thus, 
forming social “communities”. As a consequence, the 
epidemiological analysis has to be split into two scales: a 
“global” one concerning the overall evolution of the 
disease, and a “local” one concerning the evolution within 
a community18. This does not necessarily mean spatial 
scales, since the presence of specific “social layers” (which 
can overlap geographically) is also possible17. 
 

Our investigation stands on the above perspective for the 
COVID-19 spreading. We organized the paper as 
follows:  

• Section 2 presents a brief description of the working 
framework and the study design.  

• Section 3 presents the results and discusses the 
investigation considering homogeneous networks, 
heterogeneous ones and mixed networks. 

• Section 4 summarizes the main conclusions of the 
investigation. 

 

2. Methods 
The complexities mentioned in Section 1 motivate a 
microscopic approach to the epidemiological problem. 
This approach considers that each individual is somehow 

immersed in an epidemiological environment similar to a 
“small world” network19. Within this context, each person 
may become infected and the disease evolves according 
to commonly accepted schemes described in the 
literature20. We consider a four-stage (SEIR model) 
scheme for this investigation6,7. 
 
To acquire a precise insight into our microscopic 
approach, we organized this Section as follows: 

• We first detail the framework of the investigation in 
Section 2.1. We introduce there our two major 
environments: the random and the scale-free 
networks (see Section 2.1.1). We also introduce a 
family structure for both environments in Section 
2.1.2. The relevant features concerning these 
structures are detailed in Section 2.1.3. The 
epidemiological model is described in Section 2.1.4.  

• The specific implementation of the above framework 
is detailed in Sections  2.2. This is divided for clarity 
reasons into the network implementation (Section 
2.2.1) and the SEIR implementation (Section 2.2.2).  

 
2.1 THE FRAMEWORK 
2.1.1 Random and scale-free networks 
A random network consists of N nodes connected by L 
links randomly distributed as detailed in 21. On the 
contrary, the scale-free network is built up in a somewhat 
sequential fashion, that is, linking one node at a time22. A 
new node to be linked is chosen randomly from the other 
m nodes already present in the network. The probability 
of connecting to any of these m nodes depends on the 
degree of the nodes23. That is, for a node i of degree ki, 
the connection probability reads as follows.  
 

𝜋(𝑘𝑖) =
𝑘𝑖

∑ 𝑘𝑗
𝑁−1
𝑗=0

     (1) 

 
This type of connectivity is called preferential 
attachment23. It yields a scale-free (or power law) 
probability distribution24,25. Real-life examples for these 
networks are the Internet and human brain models26,27. 
 
Those nodes attaining a large number of links are 
commonly mentioned as hubs in the literature24. The 
presence of hubs is of major relevance when comparing 
random and scale-free networks. Random networks 
achieve regular degrees ki along the network. On the 
contrary, in scale-free networks, a few amount of nodes 
(hubs) are associated to a high degree, while many other 
nodes are associated to a low degree, say, a small 
number of links. Both kinds of networks are schematized 
in Fig. 1. 
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    (a) Scale Free       (b) Random 
 
Figure 1. Examples of random and scale-free networks28. The intensity of the colors indicates the degree of the node 
(the stronger the color, the higher the degree). 
 
2.1.2 The Caveman Model 
We choose the caveman model for representing either 
intra and inter-family interactions29. Our caveman graph 
was built according to the following procedure: we first 
select 4 nodes randomly,  (representing a family) and 
connect them to each other as a cliqué. Secondly, these 

small groups or families are connected in a presumed 
fashion (see Fig. 2). Thus, all members of the same family 
interact with each other, but families may also interact 
with other families through connections resembling some 
kind of social structure. It is worth noting that all 
individuals are engaged in a family. 

 

 
Figure 2. Scheme for a complex network attaining four families. The sub-graphs (families connected by red links) 
connect to the main network (blue links). 
 
2.1.3 Betweenness, Modularity, and the Detection of 
Communities 
The betweenness and modularity are key features in 
networks attaining community or neighborhood structures. 
Both are essential magnitudes in the detection of these 
structures. We now introduce a brief description of both 
magnitudes, and we next explain the procedure for 
detecting communities within the network. 
The betweenness is the measure of how many times a node 
belongs to the shortest path between any two nodes of 
the network25. For instance, in the network G(N,L) built 
with N nodes connected by L links, the betweenness CB(i) 
of the node i is defined as follows: 
 

𝐶𝐵(𝑖) = ∑ 𝑏𝑖𝑗𝑘𝑗≠𝑘∈𝑁 𝑏𝑗𝑘⁄    (2) 

 
where bijk means the number of shortest paths starting at 
node j and ending at k, but passing through node i. 
Accordingly, bjk stands for the shortest path from node j 
to node k. 
 
Fig. 3 displays an example of two communities 
represented in blue (squares) and green (circles) colors, 
respectively30. Notice that node 1 holds the maximum 
betweenness, followed by node 22. Both nodes 
correspond to the most demanded ones along the 
network paths, and thus, its role in the network is 
somewhat crucial. On the contrary, the outermost nodes 
play a minor role in the network structure, and thus, are 
associated with an almost null betweenness. 
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Figure 3. Example of a complex network with two communities  colored in blue (squares) and green (circles), respectively.  
The link 22-1 achieves the highest value for the betweenness, followed by the link 21-4. The outermost links achieve the 
lowest values for the betweenness30. 
 

The modularity features the ease of splitting the network 
into communities (i.e. clusters). Consider, for instance, a 
network set up by N nodes and L links, but also composed 
of communities or clusters labeled as c=1,...,nc. Each 
cluster is supposed to gather Nc nodes connected by 
means of Lc links. If Lc is larger than the expected number 
of links for the current link distribution, then this set of 
nodes (say, Cc) will be part of a potential community 
within the network. The modularity M features this 
belonging as follows. 
 

𝑀 =
1

2𝐿
∑ (𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
)𝑖,𝑗∈𝐶𝑐   (3) 

 

where Aij represents the number of links between nodes i 
and j. ki and kj represent the degree of these nodes, while 
m corresponds to the total number of links in the network. 
 

Any positive value of M means that Cc exceeds the 
expected number of links, and thus, is intended to form a 
community. The null condition M=0 stands for just a 
random connection among the Nc nodes. However, a 
negative value of M suggests that those nodes in Cc do 
not belong to a community25.  
 

Modularity is actually the key to recognizing communities. 
Those nodes achieving high values of M are found to be 
tightly connected to each other but loosely connected to 
the rest of the network. 
 

The detection of communities, however, requires the 
computation of either the CB and M, as proposed by 
Girvan-Newman (GM)31. The GM algorithm starts with a 
single network and proceeds to compute CB and M. The 
nodes attaining the maximum betweenness are then 
identified. Next, the algorithm proceeds to eliminate the 
connection between these nodes23, and immediately re-
computes M. The procedure continues recursively, while 
the stage of maximum M is kept as the optimal 
identification. 
 

2.1.4 The SEIR epidemiological model 
The SEIR epidemiological model for the evolution of the 
disease is assumed throughout our investigation. This 
model considers that people belonging to a population 
of N individuals may be in any of the following 
compartmental stages: 

• Susceptible S(t): people who can become infected by 
contact with an infected person.  

• Exposed  E(t): persons who carry the disease but can 
not yet infect others.  

• Infected I(t): individuals who carry the disease and 
can infect susceptible people in case they come into 
contact. 

• Recovered or removed R(t): persons who do not have 
the disease and are immune to it. 

 

where S(t)+E(t)+I(t)+R(t)=N. 
 

These basic compartments are a somewhat first 
approximation for the disease evolution. Many complex 
diseases may require more stages for a better 
description. However, we will focus on those cases where 
the SEIR model appears to be quite accurate. 
 

We emphasize that unlike other epidemiological models 
(SIS, SIR, etc.), the SEIR model is well suited to the 
behavior of the COVID-19 Coronavirus epidemic. This is 
because this model includes individuals who carry the 
disease but, being in their incubation period for 5-6 days, 
are not able to infect other individuals7. 
 

2.2 THE IMPLEMENTATION 
In order to analyze the epidemiological dynamics of a 
“city”(i.e. community of a large number of people), two 
different contact networks were implemented: random 
and scale-free (preferential attachment)22. The random 
network is considered in our study as a reference, 
although scale-free networks better represent the social 
links in a city22. 
 

We programmed low-level codes for either building the 
network and for implementing the SEIR temporal 
evolution. Statistics were computed from at least 30 
realization of one million N nodes each. This kind of 
network is suitable for medium to big cities (say, Rosario 
or Mendoza in Argentina). 
 

2.2.1 The Networks Implementation 
Fig. 4 exemplifies the procedure for building a random 
network. In brief, the procedure starts with a set of N 
isolated nodes. The nodes are then linked randomly (with 
fixed probability). This mimics the casual contacts 
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between individuals, occurring with the same probability 
for all the individuals at any time. 
  

 
Figure 4. Procedure for building a random network (with 5 nodes). Node 1 is chosen and linked randomly to any other 
node.  Then, node 2 is chosen and the process is repeated accordingly. 
 
Fig.5 illustrates the procedure for the scale-free network 
(see caption for details). As a first difference with the 
random network, “new” nodes are now incorporated 
sequentially as follows: 
 

1. Select a “new” node randomly. 
2. Link the “new” node to an existing node i with 

associated probability π(ki) (see Eq. (1)). 

3. Repeat the procedure until all the “new” nodes 
become connected. 

 
This procedure ensures that a few nodes will achieve 
very high degree values. These were already mentioned 
as hubs in Section 2.1.1. Recall that hubs are not present 
in random networks.  

 

 
Figure 5. Procedure for building a scale-free network (with 5 nodes). Node 2 is chosen and linked randomly to any 
other node (say, node 1). Node 3 is chosen next and connected with probabilitiesπ(k1) and $π(k2). Node 4 comes next 
and connected with any of i=1,2,3 associated to probabilities π(ki), as expressed in Eq. (1). The process is repeated 
until all nodes become connected. 
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2.2.2 The SEIR model implementation 
We consider, as a first approximation, that the contagion 
probability between susceptible individuals and infected 
ones is p, regardless of whether or not they are relatives. 
This probability is assumed to be proportional to the 
contagion rate po, as follows: 
 

𝑝 = 𝑝𝑜
𝛥𝑡

24ℎ𝑠
     (4) 

 

where Δt=1 hour represents the time-step chosen for 

computing the time evolution of the disease. The time-step 
remains fixed for all the simulations. The values of po are 
those reported in the literature as typical mean values for 
the development of the COVID-19 disease (see, for 
instance, Ref. 32). 
 

We set the initial condition to a single infected individual, 
chosen at random among the population. The rest of the 
individuals are set to the susceptible condition. Fig. 6 
sketches a few steps after this initial condition. We resume 
this steps as follows: 
1. Identify the infected individuals in the network (see 

red nodes in Fig. 6a). This is done in no specific order. 
2. Any susceptible individual directly linked to an 

infected one is nominated to become “exposed” with 
probability p (see Eq.(4)). Susceptible individuals are 
colored in blue in Fig.6b, and the nominated ones are 
those labeled with an “S” in Fig.6c. 

3. The nominated nodes “S” are then set to the 
“exposed” stage. These will become infected after 
the incubation period (see Section 2.1.4). 

4. Repeat the above steps until the end of the 
simulation. 

 

 
(a) Step 1   (b) Step 2   (c) Step 3      (d) Step 4 

 
Figure 6. Scheme of the contagion process. The red circles correspond to infected individuals. The green circles 
correspond to susceptible individuals. 
 

3. Results and Discussion 
The results of the investigation are separated into three 
parts for convenience. The first part deals with those 
results involving a single community (see Section 3.1). The 
second part moves to a more complex scenario where two 
or more communities exist (Section 3.2). The third part 
compares the single community scenario with the multiple 
communities scenario, although introducing a slight 
modification to these networks (for achieving a fair 
comparison; see Section 3.3). 
 

3.1. RESULTS FOR THE HOMOGENEOUS NETWORK 
In this section we present the results obtained when 
considering a homogeneous network, that is, assuming 
that there are no local communities (i.e. areas of the 
network more densely connected). The results are divided 

into two steps. We first study the more relevant network 
characteristics, and secondly, we focus on the spread of 
the disease on the network with and without the 
implementation of mitigation strategies. 
 
Fig. 7 shows the degree distributions of random and 
scale-free networks. Notice from a first examination that 
the scale-free network achieves very high degree nodes 
(k>100), unlike the random network (kmax~10). Also 
notice that the presence of cliqués (representing families) 
does not change significantly the expected power law 
behavior, although the minimum degree for both networks 
is always four. The scale-free network including 
preferential attachment and cliqués reports a power law 

with exponent γ=-2.82. 
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Figure 7. Degree distribution of random and scale-free networks. The red line corresponds to the fitting of the scale-
free network (see text for details). 
 
Fig. 8 shows the minimum path distribution for the random 
and scale-free networks. Both distributions were 
computed as follows: a node was initially infected and 
the disease was allowed to propagate throughout the 
network. We then recorded the time stamps of the rest of 

the nodes as they became infected. Thus, we associated 
the minimum path between one node to any other as the 
number of “time steps” required for the infection to get 
to any node from the initial node. 

 

 
Figure 8. Minimum path distribution for the scale-free and random networks. 50 networks were sampled for each 
distribution. 
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It is clear from Fig. 8 that the scale-free network attains 
smaller mean minimum paths than the random network. 
Therefore, we can expect that any “infection signal” 
within the scale-free network will propagate much faster 
than within the random network. 
 

The next step in the investigation focuses on the disease 
propagation, but assuming that no containment strategies 

were available (say, the disease is free to spread in the 
network). The simulations started by infecting a node at 
random. We recorded the disease evolution as shown in 
Fig. 9. It can be seen there the evolution for a single 
realization, but for two contagion probabilities (see 
legend for more details). 

 

  
              (a) Infected           (b) Recovered 
 
Figure 9. The disease evolution for a single realization and two different probabilities (po=0.1 y po=0.5, as expressed 
in Eq. (4)). The blue curves correspond to a random network. The red curves correspond to a scale-free network. 
 
From the inspection of Fig. 9, it is clear that  the disease 
spreads much faster in the scale-free network than in the 
random network (for similar values of po). This is the 
consequence of the smaller minimum path attained by the 
scale-free network with respect to the random network. 
However, this does not mean that the final number of 
recovered people will be different. We examined these 
figures and verified that the total number of recovered 
individuals is similar for both types of networks (with 
similar values of po). Thus, the dynamics of the disease 
spreading depends strongly on the kind of network, but 
we may expect similar figures at the end of the epidemic. 
We next proceeded to study the “performance” of 
random and scale-free networks under containment 
actions. These actions, however, do not consider 

pharmacological actions (i.e. application of vaccines). 
Two alternative strategies were analyzed: the family 
isolation and the individual isolation. The main features 
are detailed below: 
 
1. Family isolation: an entire family is isolated from the 

rest of the people (neighbors, friends, etc.) if at least 
one member of the family is infected (see Fig. 10a). 
This stage remains unchanged until no other member 
of the family gets infected. 

2. Individual isolation: all infected individuals are 
isolated from both their family and the rest of the 
people (neighbors, friends, etc.; see Fig. 10b). This 
stage remains unchanged until the individual 
recovers. 

 

 
 
      (a) Family isolation 
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      (b) Individual isolation 
 
Figure 10. Scheme for two containment actions, as explained in the text. 
 
We stress that our simulations considers real life delays 
due to epidemiological tests (say, the time required for 
processing blood, spittle, etc.). We assumed that any 
action was implemented after D days of getting the 
infection. For instance, a family or an infected person is 
isolated from the rest of the people after D days of 
infected. 
 

Fig. 11 compares both isolation strategies on 
homogeneous networks, implemented just after 5000 
people got infected. Notice that the most effective 
strategy to reduce the number of infected people on both 
networks (random and scale-free) corresponds to the 
isolation of individuals from the rest of the people (even 

the family). However, the delays in the epidemiological 
tests affect both types of strategies in a similar way. 
 
The results in Fig. 11 are a strong warning on the clinical 
tests delays: any delay surpassing 4 days reduces 
significantly the efficiency of the strategy. That is, we may 
expect results almost similar to those without actions at all 
(red curve in Fig. 11). This can be explained by 
comparing the testing delays with the time period of the 
infection (5 days). The isolation action becomes spoiled 
whenever the infected individual remains non-isolated 
during almost the entire infection (while waiting for the 
clinical tests). 

 

 
   (a) Scale-free           (b) Random 
 
Figure 11. Infection curves with containment actions. The “family isolation” strategy is represented in dashed lines for all 
the analyzed delays. The “individual isolation” strategy is represented in solid lines for all the analyzed delays. The 
contagion probability is po=0.1. The vertical line in red corresponds to the beginning of the isolation strategy (see text 
for details). 
 
The main conclusion that comes up from the above results 
is that individual isolation appears as the most effective 
strategy for reducing the spread of the disease, although 
the family isolation also arrives to quite positive results. 
However, the delays in test reports produce a negative 
impact on the mitigation of the disease. An early isolating 
of the infected individual is therefore the most desirable 
situation, no matter if the contagion is random-like or 
scale-free. 

3.2 RESULTS FOR THE HETEROGENEOUS NETWORK 
So far we have analyzed how the epidemic evolves in an 
homogeneous network. Now, we focus on how these results 
change in the presence of communities, that is, when 
groups of individuals are more densely connected among 
them than with respect to the rest of the city. 
 

As mentioned in Section 2.1, we implemented the Girvan-
Newman algorithm for detecting communities within a 



Disease Spreading through Complex Small World Networks 

© 2024 European Society of Medicine 10 

network. Recall that this algorithm starts from a 
homogeneous network and successively eliminates those 
links with greater betweenness until C isolated sub-graphs 
are obtained. 
 
Fig. 12a shows the average modularity as a function of 
the number of links removed in each kind of network. 
Notice that the maximum modularity occurs after 
removing approximately 5% of the total links with the 
highest betweenness. This is the optimum detection of 
communities that we can achieve for either the random 

and the scale-free networks. We will limit our 
investigation to this scenario. 
 
The detection process identified approximately 70 
communities. Fig. 12b shows the size distribution of these 
communities. As can be seen, the largest community 
includes approximately 5% of the total nodes of the 
network, regardless of the explored network. This 
corresponds to approximately 250 individuals in the 
simulated networks. We will refer to this community as 
“the neighborhood” or simply “neighborhood” from now 
on. 

 

 
   (a) Modularity     (b) Size of the communities 
 
Figure 12. (a) Modularity as a function of the fraction of removed links from the original network (expressed in 
percentage; see text for details). The sample corresponds to 25 network realizations of each kind (random and scale-
free). The size of the realization was N=5000. (b) Size distribution of the communities at the optimum detection point 
(see text for details). 
 
We next explored the distribution of the minimum path 
for “the neighborhood” (i.e. largest community) and the 
rest of the city. Both distributions were computed by first 
isolating one from the other, and then proceeding to 
compute the minimum path separately for each sub-
network (see Fig.13). 

A noticeable feature in the networks shown in Fig. 13 is 
that the distributions for “the neighborhood” are somehow 
wider than the distributions of the city. Thus, the 
neighborhood appears as a more heterogeneous area in 
terms of minimum path compared to the rest of the city. 

 

 
 

Figure 13. Minimum path distribution for “the neighborhood” and the rest of the city (see legend for details).  
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We are actually not interested in a “neighborhood” 
achieving long paths, but those where the disease 
spreads easily. This means that our target corresponds to 
the “neighborhoods” standing on the left-most part of the 
distribution in Fig. 13. These represent very densely 
connected “neighborhoods”, so we decided to bias the 
“neighborhood” by increasing its links. We proceeded as 
follows: we kept unchanged the current links of the 
“neighborhood” (for either the random and the scale-free 
networks), but further linked these nodes with additional 
random links. The number of new links was the same as 

the number of old ones (say, the total number was twice 
the one for the original “neighborhood”). 
 
Fig. 14 shows the minimum path distribution for the 
“crowded neighborhood” (attaining twice the original 
connectivity) and the rest of the city (unchanged). The 
former is now located on the left of the plot, as expected. 
Complementary, Fig. 15 provides a visual impression of 
the “crowded neighborhood” and the rest of the city (see 
caption for details). 

  

                
Figure 14. Minimum path distribution for the “crowded neighborhood'” and the rest of the city (see legend for details). 
 

Two remarkable features appear in Fig. 15: (i) the 
“crowded neighborhood” corresponds to the region with 
the highest degree in the network (for both types of 
networks), and, (ii) the scale-free network presents hubs 

as the one highlighted in the top-center picture. In turn, 
the random network presents a more homogeneous 
degree compared to the scale-free one. 

 

Scale-free 

 
Random 

Figure 15. Visual representation of the “crowded neighborhood” and the rest of the city. Column on the left: nodes and 
links of the “crowded neighborhood” (blue) and the rest of the city (yellow). Column at the center: degree of the nodes 
(greenish tones associated with low degree and reddish tones associated with high degree). Column on the right: 
communities within the city, identified by colors. Top raw: scale-free network. Bottom raw: random network. 
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The next step of the investigation moves to the analysis of 
the disease spreading in the presence of communities. We 
followed the same procedure as in Section 3.1: a node 
belonging to the city, but outside the “crowded 
neighborhood”, gets infected and the disease 
propagates freely throughout the network. The time 
evolution of the infection is shown in Fig. 16 (see caption 
for details). Notice that the disease spreads faster in the 
“crowded neighborhood” than in the rest of the city. This 
is quite a drawback for this community since once the 
disease reaches the community, it soon gets infected due 
to the short paths among people. 

In order to avoid a massive contagion in the “crowded 
neighborhood”, our first intention might be to isolate this 
community from the rest of the city. We proceed this way 
in our simulations. We cut-off the links connecting the 
community to the rest of the city after some time from the 
beginning of the contagion (not shown). We observed 
that this isolation action only prevents the entry of the 
disease to the “crowded neighborhood”, but once it 
enters, the dynamic of the contagion follows a similar 
pattern as the one depicted in Fig. 16. 

 

 
Figure 16. The disease evolution in the random and scale-free networks (see legend). The number of infected people is 
normalized by the total population N=5000 individuals. The contagion probability is po=0.1. 50 networks of each kind 
were sampled. 
 
We conclude from this Section that the detection of 
crowded communities is a major issue in the planning 
containment actions. These may increase significantly the 
spreading speed of the disease. A safe strategy should 
allow quick actions on the links connecting crowded 
neighborhoods to the rest of the city. 
 
3.3 RESULTS FOR THE MIXED NETWORK 
Recall that in the previous Section, we added links to the 
“crowded neighborhood” to simulate a crowded 
community. This means the city with a crowded community 
has n extra (random) links with respect to the 
homogeneous network. Thus, the comparison of the 

epidemic “performance” between both networks is not 
straightforward. A fair comparison requires the same 
number of links in both networks. This Section deals with 
this matter. 
 
Our aim is to increase the number of links of any of the 
networks presented in Section 3.1 for the comparison to 
networks in Section 3.2. The simplest way to do this is to 
randomly add the necessary links, no matter if the 
network is random or scale-free. That is, links are added 
among all the nodes in the homogeneous network. We will 
call this new network a “mixed” or “hybrid” network and 
a scheme is shown in Fig. 17. 

 

 
Figure 17. Schematic representation of a heterogeneous network (Section 3.2) and a hybrid network (see text for 
details). The black lines on the right correspond to the new (random) links added to homogeneous networks (Section 
3.1). 
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Fig. 18 shows the time evolution of the epidemic for 
networks attaining a “crowded neighborhood” and mixed 
networks. Two contagion probabilities are explored in 
there, po=0.1 and po=0.3, respectively. Notice that no 

significant differences between homogeneous and 
heterogeneous (with a crowded community) can be 
observed for po=0.3. Thus, this case is not relevant from 
the point of view of the mixed network.  

 
 
    (a)   po=0.1       (b)   po=0.3 
Figure 18. The disease evolution for the heterogeneous networks and the mixed networks (see text for details). 50 
networks of each kind were sampled. 
 
The situation for po=0.1 is the most interesting case. Two 
behaviors can be distinguished: (i) in the random network 
environment, the presence of a crowded neighborhood 
speeds-up the disease propagation with respect to the 
mixed network, as expected. (ii) in the scale-free 
environment, the disease propagation is similar, although 
the presence of a crowded neighborhood. 
 

The behavior (ii) is somehow puzzling. A closer inspection 
of the propagation dynamic shows that the presence of 
hubs is of major relevance. These provide the means for 
speeding-up the disease propagation, not only in the 
crowded neighborhood but in all the city.  

Notice that the above dynamics are relevant at po=0.1. 
But, at po=0.3 the disease evolution appears quite 
independent of whether there exist hubs or crowded 
communities. 
 
Fig. 19 exhibits the fraction of recovered people for 
heterogeneous and mixed networks. The plots confirm 
that the kind of network (heterogeneous or mixed) only 
affects the speed of the propagation of the disease, but 
not the final number of infected people. 
 

 

 
    (a)   po=0.1       (b)  po=0.3 
Figure 19. Fraction of recovered people as a function of time for the heterogeneous networks and the mixed networks 
(see text for details). 50 networks of each kind were sampled. 
 

4. Conclusions 
The investigation studies the spatial-temporal evolution of 
an infection (COVID-19) from a microscopic point of view. 
Individuals are represented as nodes linked to each other 
in a complex network. Links may occur with a fixed 
probability for all the nodes, or, with varying probability 

from one node to another. The former constitutes a 
random network and the latter a scale-free network. 
 
We explored homogeneous networks (single community) 
and heterogeneous ones (many communities). In any case, 
we included the family structure in the description. 
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Besides, the epidemiological model within the network 
was always assumed to be a SEIR-like model. 
 

We arrived to the following conclusions: 
(a) In the homogeneous context, the scale-free network 

speeds-up the disease propagation with respect to 
the random network. This occurs because of the 
smaller minimum path in the scale-free network. Also, 
the infection lasts longer in the random network than 
in the scale-free network. The containment actions 
consisted of isolating the infected individual, or, 
her/his complete family from the rest of the 
population. We concluded that it is more effective to 
isolate the individual since an early detection of the 
disease prevents the rest of the family from becoming 
infected, and likewise, prevents further spreading. 
However, clinical tests delays reduce significantly the 
efficiency of the strategy. This is a strong warning for 
the implementation of containment actions. 

(b) In the heterogeneous context, the investigation 
showed that a crowded neighborhood speeds-up the 

disease propagation from the time the infection 
enters this neighborhood. Actions on the links between 
the crowded neighborhood and the rest of the city 
should be taken as quick as possible. 

 

We ended the investigation by comparing the 
homogeneous and heterogeneous contexts. Care was 
taken to make a fair comparison by means of modified 
networks with a similar number of links. We arrived to the 
conclusion that crowded neighborhoods or hubs are 
relevant if the contagion probability is low (po≈ 0.1). 
However, for higher probabilities (po ≈ 0.3) these are not 
relevant at all in the propagation speed. 
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