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ABSTRACT 
Based on an Ashkenazy Jewish case-control cohort for schizophrenia, we 

carried out (1) genetic association analysis for one variant at a time 

(GWAS) and (2) digenic analysis by comparing frequencies of genotype 

pairs between cases and controls. To control for genetic heterogeneity 

between sexes, we analyzed males and females separately. After pruning 

of variants in each of males and females, single-variant allelic analysis 

furnished 9 and 8 statistically significant variants in males and females, 

respectively, with 3 of these variants being significant in both males and 

females. Of the 14 distinct variants in males and females, 5 (36%) reside 

in genes. For digenic analysis, we evaluated all pairs of variants and, for 

a given variant pair, all nine genotype pairs. For each genotype pair, we 

applied the Fisher exact test to evaluate whether the given genotype pair 

was more frequent in cases than controls. We found 76 significant 

genotype pairs, comprising 36 distinct variants, 20 (56%) of which reside 

in genes, with many of which being known risk genes, thus lending credence 

to our approach. 
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Introduction 
Schizophrenia is a rather common, highly genetic trait 1 
that is also regulated epigenetically and environmentally 
2. The Human Gene Database lists 15,235 entries for 
schizophrenia. Many of its disease-associated variants 
are preserved across populations 3. Because of its high 
genetic heterogeneity, we chose to look for disease-
associated variants in a founder population 4,5 and 
downloaded an Ashkenazy Jewish case-control dataset 
from dbGaP. 
 

Most investigations of schizophrenia-associated variants 
have been carried out in case-control studies 6,7 by 
assessing direct (main) effects of variants, that is, 
differences in allele or genotype frequencies between 
cases and controls, possibly combined over multiple 
variants in a gene 8 or in the form of polygenic risk scores 
over large numbers of variants 9. To date, 287 loci with 
significant association to schizophrenia have been 
identified 9,10. 
 

Mathematical models have shown that empirical 
segregation ratios of schizophrenia fit polygenic models 
better than single-locus models 11. Thus, as outlined below, 
we proceeded to search for risk variants based on 
pairwise interactions between genotypes in addition to 
direct variant effects 12. Such an exhaustive search for all 
pairs of variant genotypes has previously required 
enormous computing efforts 13, but modern workstations 
containing dozens of threads (central processing units, 
CPUs) have made this task more manageable 14. Thus, our 
Gpairs program not only evaluates all possible pairs of 
variants, but, for a given variant pair, it tests each of the 
3 × 3 = 9 pairs of genotypes whether the pair occurs in 
higher frequency in cases than controls 14. 
 

Methods 
DATA 
A dataset entitled Genetics of Schizophrenia in an 
Ashkenazi Jewish Case-Control Cohort 15 was 
downloaded from dbGaP in the form of a binary plink-
formatted 16 fileset. Customary quality-control measures 
reduced the original 1,016,422 genetic variants down to 
892,850 variants, each genotyped in 3,096 individuals 
(1,044 cases and 2,052 controls; 2,164 males and 932 
females). 
 

Even though our data represent an ethnically 
homogeneous set of individuals, other sources of 
heterogeneity are of potential concern, notably 
differences in heritability between males and females 
from a genetic 17 and a biological 18 perspective. For 
example, for Parkinson Disease, a striking effect of sex 
on monocyte gene expression has been shown 19, with a 

note on the “importance of studies which examine the 
differential effects of sex on pathophysiology” of 
disease. Also, there are clear morphological differences 
in the brains of the two sexes 2, gene expression 
differences between male and female schizophrenics 
have been documented 20, association between troponin 
T levels and psychosis have only been found in women, 
not in men 21, a coronary heart disease genetic risk score 
predicted disease risk only in men, not women 22, sex 
differences in gene regulatory networks underlying lung 
cancer have been documented 23, and a sex difference 
exists in the association between cannabis use disorder 
and schizophrenia 24. Allowing for sex in case-control 
studies may be accomplished through a logistic regression 
model. However, rather than imposing the constraints of 
such a model, we decided to analyze the data in sex-
specific subgroups 24, which would eliminate any 
heterogeneity due to sex differences although at the cost 
of smaller numbers of individuals in each of the resulting 
two datasets. Analyzing a heterogeneous combined 
dataset would be expected to lead to false positive 
results. Thus, we proceeded to separately analyze the 
2,164 males (660 cases, 1,504 controls) and 932 
females (384 cases, 548 controls). In each of the two 
resulting data subsets, we imposed a minimum minor 
allele frequency of 0.01 and made variants relatively 
independent by applying the “indep 50 5 2” option in 
plink. These steps resulted in 179,104 variants in males 
and 179,898 variants in females. 
 

Potential heterogeneity is often addressed by the use of 
principal components 25 as covariates in a logistic 
regression analysis. However, the steps outlined above 
did not seem to necessitate the use of principal 
components, and there are also concerns regarding their 
use 26. 
 

GENETIC ANALYSIS 
Initially, we carried out a standard GWAS in each of the 
two sexes and applied the Fisher exact test as 
implemented in plink (--assoc function). Empirical 
significance levels (p-values), corrected for multiple 
testing, were obtained in 100,000 permutations of 
phenotypes. Results were declared statistically significant 
for p < 0.05. For digenic analysis, we applied the Gpairs 
program as previously described 14 to evaluate, 
separately for males and females, all pairs of genotypes. 
For each genotype pair, we applied the Fisher exact test 
to see whether the given genotype pair was more 
frequent in cases than controls. Correction for multiple 
testing was carried out by the Bonferroni method. 
 

Results 
SINGLE-VARIANT GWAS 

 
Table 1. Nine variants significant in single-variant association tests for males 
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In males, 9 variants were significant (p < 0.05), while 8 
variants were significant in females, as shown in Tables 1 
and 2. Of the 17 significant variants, 3 were shared 

between males and females, that is, single-variant 
analysis furnished a total of 14 unique significant variants, 
of which 5 (36%) reside in genes. 

 
Table 2. Eight variants significant in single-locus association tests for females 

 
 
Table 3. Thirty-six unique variants in males (m) or females (f) contributing to the 76 significant genotype pairs; n represents 
the number of other variants connected with the given variant. 
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DIGENIC ANALYSIS 
In males, our analysis of genotype pairs (patterns) 
resulted in 69 patterns with significantly higher 
frequencies in cases than controls (p < 0.05) while in 
females, 7 genotype pairs were significant. None of the 
significant genotype pairs were the same in males and 
females although a few of the individual variants making 
up the pairs were shared (see below). Thus, we combined 
genotype pairs from males and females, resulting in 76 
genotype pairs or, equivalently, 76 variant pairs leading 
to these genotype pairs. The combined 76 variant pairs 
are listed in Supplementary Table S1, along with their 
genic locations, if known. 
 
For a given variant pair, the two component variants 
were either in two genes, only in one gene, or not in any 
gene, which occurred for 14 (18%), 44 (58%), and 18 
(24%) variant pairs, respectively. The total of 76 variant 
pairs comprised 36 distinct variants, 20 (56%) of which 
reside in genes. Table 3 lists these variants, along with 
gene names where a variant is located, and the number 
n of other variants connected with the given variant. 
 
Comparing Tables 1 (GWAS for males), 2 (GWAS for 
females), and 3 (variants furnishing significant genotype 
pairs in digenic analysis), we find the following overlaps, 
which add strength to the importance of these variants: 

• Variant rs7340057 on chromosome 1 occurs in all three 
tables and, thus, is likely to be important for the 
etiology of schizophrenia even though it does not reside 
in a gene. 

• Variant rs6675786 on chromosome 1 occurs in males 
(GWAS) and in digenic analysis; it resides in an intron 
of the OR2L13 gene and is a transcript variant. 

• Variant rs6747270 on chromosome 2 occurs in females 
(GWAS) and in digenic analysis and does not reside in 
a gene. 

• Variant rs422548 occurs in all three Tables and does 
not reside in a gene. Its function is unknown although it 
must be important for the etiology of schizophrenia. 

• Based on flanking variants, we can assign variant 
SNP6-26333526 to gene H3C6 on chromosome 6. It is 
significant in GWAS for males and in digenic analysis, 
but its function is unknown. 

• Variant rs6915052 on chromosome 6 occurs in GWAS 
for females and in digenic analysis but does not reside 
in a gene. 

• Variant rs7011530 on chromosome 8 is significant in 
GWAS for males and in digenic analysis yet does not 
reside in a gene. 

• Another variant that does not reside in a gene is 
rs1582781 on chromosome 11; it occurs in all three 
Tables and seems highly important for schizophrenia. 

• Variant rs12296316 on chromosome 12 occurs in 
GWAS for females and in sigenic analysis. It is an 
upstream transcript variant in the MGAT4C gene. 

• Variant rs2496577 on chromosome 13 occurs in 
GWAS for males and in digenic analysis but does not 
reside in a gene. 

• Variant rs8138145 on chromosome 22 occurs in 
GWAS for males and in digenic analysis but does not 
reside in a gene. 

• Finally, variant rs5998848 on chromosome 22 occurs in 
GWAS for males and in digenic analysis. It is a 
downstream transcript variant in the LARGE1 gene. 

 

For the 14 variant pairs with both component variants of 
a pair located in genes, we constructed the interaction 
gene network shown in Figure 1. 

 

 
Figure 1. Connections among 13 genes in 14 significant gene pairs 
 
Here we briefly discuss the 20 genes we have 
significantly identified as forming gene pairs associated 
with schizophrenia. 
 
ATG2A, “autophagy-related 2A”, also known as BLTP4A, 
has recently been mentioned as one of 11 autophagy-
related 27 differentially expressed mRNA genes 

potentially involved in schizophrenia 28,29. Various 
autophagy-related genes have previously been 
implicated as risk factors for schizophrenia and other 
psychiatric disorders 30. 
 
CDKAL1 is a protein-coding gene without known function. 
Various reports have demonstrated an association 
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between CDKAL1 and gestational diabetes 31, and an 
older study showed association of CDKAL1 with type 2 
diabetes 32. These associations seem to be related to the 
known increased prevalence in schizophrenics of type 2 
diabetes, which is associated with CDKAL1 33. 
 

CEP295, also known as KIAA1731 and SCKL11, is a 
protein coding gene that has just recently been shown to 
be associated with a Seckel-like syndrome involving 
intellectual disability and short stature 34, but we have 
been unable to find any references that associate the 
CEP295 gene with schizophrenia. Based on 
Supplementary Table S1, CEP295 is indirectly connected 
with several genes listed here via associations to variants 
outside of genes. 
 

GRM5, also known as GPRC1E, MGLUR5, PPP1R86, and 
mGlu5, encodes a protein functioning as a metabatropic 
glutamate receptor, with a restricted expression toward 
the brain. It is an emerging target for the treatment of 
schizophrenia 35. Recently, GRM2 and GRM3 have been 
implicated for their differential expressions in brains of 
schizophrenics versus controls 36. Our results suggest that 
GRM5 may function in a similar manner. 
 

H3C6, also known as H3.1, H3/d, H3C1, H3C2, H3C3, 
H3C4, H3C7, H3C8, H3FD, H3C10, H3C11, H3C12, and 
HIST1H3E, is a protein coding gene lacking introns. It 
encodes one of the histones responsible for the 
nucleosome structure. While we have not found any 
reports on a direct association of H3C6 with 
schizophrenia, post-translational modifications of histones 
have been suggested to play a role in the etiology of 
schizophrenia 37. 
 

IRS2 has been listed as a schizophrenia-associated gene 
with a strong fold change in expression level compared 
with that in databases 20. 
 

LARGE1, also known as LARGE, MDC1D, MDDGA6, and 
MDDGB6, is mostly expressed in brain and heart and, to 
a lesser degree, in various other tissues. We have not 
found much information about a direct association 
between this gene and schizophrenia, but a very recent 
report in medRxiv 38 lists LARGE1 as one of several genes 
involved in a pathway of neuroinflammatory response of 
the nervous system to various forms of damage, which 
may be connected to an inherent genetic predisposition 
to neurodegenerative aspects of schizophrenia. 
 

LIFR (chr 5: 38,474,668..38,608,403 bp, complement), 
Leukemia Inhibitary Factor Receptor, is a protein coding 
gene, and LIFR-AS1 (chr 5: 38,556,786..38,671,216 bp) 
is a noncoding RNA gene. LIFR is located at 22q12.1-
q12.2, a hot spot for schizophrenia, and was associated 
more than ten years ago with schizophrenia 39,40. Also, a 
large-scale transcriptomic meta-analysis of patient brain 
tissues with single-cell sequencing data of CNS neurons 
involving LIFR and other genes, was able to shed light on 
the well-known sexual dimorphism of schizophrenia 41. 
 

MGAT4C is a protein coding gene with biased 
expression in thyroid, brain, and three other tissues. For 
several of the MGAT genes, but not for MGAT4C, post-
translational protein modifications in schizophrenics have 
been demonstrated 42. On the other hand, in a very 
recent schizophrenia case-control study of individuals of 

Chinese descent, recurrent somatic copy number 
variations were observed at several chromosomal regions 
including MGAT4C 43. 
 

OR2L13, also known as OR2L14, is a protein coding gene 
on chr 1 (247,937,177..248,101,163 bp) and 
LOC105373275 is an uncharacterized non-coding RNA 
gene on chr 1 (248,047,705..248,095,542 bp, 
complement). A decrease in taste receptor expression in 
the brain has been reported for several genes but results 
for OR2L13 were not statistically significant 44. Our 
results strengthen that earlier report. 
 

PCDH9 is a protein coding gene with biased expression 
in brain, fat, and two other tissues. In a large GWAS for 
Major Depressive Disorder (MDD), PCDH9 was identified 
as a novel risk factor 45. In that study, individuals with 
schizophrenia had been excluded, but our data strongly 
suggest that PCDH9 also plays a role in schizophrenia, if 
only through its connections with other genes. In other 
publications, however, PCDH9 has clearly been 
implicated in playing a role in familial schizophrenia 46,47. 
 

RP1L1, also known as DCDC4B, OCMD, and RP88, is a 
protein coding gene and has in many publications been 
associated with photoreceptor diseases including macular 
dystrophy and retinitis pigmentosa 48. Recently, genetic 
association analyses between cognitive impairment in 
schizophrenia showed results for large numbers of 
variants, including RP1L1, although the statistical 
significance for the involvement of RP1L1 was unclear 49. 
 

TMEM161B, also known as FLB3342 and PRO1313, acts 
as a regulator of sonic hedgehog signaling and, in mouse 
models, plays a CNS-specific role 50; it is also associated 
with defective formation of folds of the early brain 
development (polymicrogyria) 51. In a case-control study 
of Chinese freshmen, major depressive disorder was 
associated with TMEM161B 52. In that study, individuals 
with schizophrenia and bipolar disorder were excluded, 
but our analysis strongly suggests an involvement of 
TMEM161B in schizophrenia. Another transmembrane 
protein, TMEM204, has been listed as being 
differentially expressed in schizophrenics 53. 
 

The following additional 7 schizophrenia-associated 
genes are not directly connected with other genes but 
with variants outside of genes: 
 

CD226, also known as PTA1, DNAM1, DNAM-1, TLiSA1, 
encodes a glycoprotein on the surface of several cell 
types. We have not found evidence for direct association 
between CD226 and schizophrenia. In a mendelian 
randomization study 54, CD226 was one of five proteins 
with a causal relationship to psychiatric disorders. 
 

E2F3 is a protein coding gene and encodes a transcrip-
tion factor. In our analysis, E2F3 is significantly connected 
with three other genes (Figure 1). It is one of a large num-
ber of genes interacting with other genes in their relation 
to abnormal psychomotor behavior characteristics in 
schizophrenia and other severe mental disorders 55. 
 

GPR88. The protein encoded by GPR88 is a G protein-
coupled receptor with particularly robust expression in 
the brain 56,57. It is emerging as a potential drug target 
for CNS-related diseases including schizophrenia 58. 
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GPR88 has been shown long ago to be a risk factor for 
psychiatric traits in three different populations 59. Another 
G protein receptor gene, GPR56, has been published as 
being differentially expressed in schizophrenics 53. 
 

IGF2BP2, also known as IMP-2, IMP2, and VICKZ2, is a 
protein coding gene. Significant associations between 
IGF2BP2 and type 2 diabetes as well as with 
schizophrenia have been found in Iran 60. 
 

LINC02789 is a non-coding RNA gene. A recent study 
pointed out that plant-derived miRNAs can be found in 
the human body through eating and can then affect post-
transcriptional gene regulation by binding to human 
mRNAs 61. In that study, miRNAs were shown to bind to 
33 human mRNAs associated with schizophrenia and 
other human traits. LINC02789 is one of many potential 
target genes of 84 wheat miRNAs identified in humans 61. 
 

LOC107984378 is an uncharacterized non-coding RNA 
gene, located at chr 11p14.3 at bp 
24,118,969..24,158,536. It contains an enhancer 
sequence, bp 24,155,823..24,156,117. 
 

UBE2W, also known as UBC16 and UBC-16, is a protein 
coding gene with broad expression in brain, thyroid, and 
25 other tissues. It encodes an enzyme, E2, in the ubiquitin 
proteasome system (UPS). In recent years, several 
publications reported association of schizophrenia with 
disruption of the UPS 62-65 although UBE2W is not 
generally mentioned specifically. Another ubiquitin 
conjugating enzyme, UBE2G1, has been implicated in 
schizophrenia 53. 
 

Combining variants from our GWAS and digenic analysis, 
and eliminating duplicates, we wound up with 38 unique 
significant variants located outside of genes, shown in 
Supplementary Table S2. 
 

Discussion 
It has long been postulated that for common human traits, 
interactions among genes (and environmental effects) 
may be the norm rather than the exception 66. Indeed, in 
our single-variant GWAS, only a relatively small number 
of variants were detected as being significantly 
associated with schizophrenia, but many more were 
significant based on pairs of genotypes involving 
different variants. Given that thousands of variants 
contribute to schizophrenia risk 67, it is gratifying to see 
that with powerful statistical methods, we can find 165 
risk variants on the basis of only slightly more than 1,000 
cases and 2,000 controls. Quite a few of these variants 
have previously been identified as being disease 
associated, which lends credence to our approach. 
 

The statistical significance of our results appears highly 
reliable, particularly for our digenic analysis, where we 
had to rely on Bonferroni correction, which is known to be 
conservative. It is also immune to dependency among test 
items – genotype pairs in our situation, which are 
somewhat dependent as a given variant tends to occur in 
multiple genotype pairs. While many of our variants 
detected in digenic analysis are located in genes, many 
others were found outside of genes. The functions of these 
variants are unknown at this time but there can be no 
doubt that they are associated with schizophrenia. 

 

A standard GWAS evaluates disease association for one 
variant at a time, which is most appropriate for 
monogenic traits. Polygenic traits like schizophrenia, 
however, should be addressed with methods allowing for 
the combined disease association of multiple variants. 
Early approaches in this direction considered family 
pedigree lod scores over multiple variants and their 
correlations 68, combination of p-values over multiple 
contiguous markers in the form of scan statistics 69,70, and 
sums of test statistics over large numbers of markers 
anywhere in the genome 71. The current version of similar 
approaches for capturing the genetic liability to disease 
are polygenic risk scores (PRSs), several of which have 
recently been published for schizophrenia 72-74. All these 
methods, including PRSs, represent aggregations of main 
effects while digenic analysis captures main and 
interaction effects although only over two variants at a 
time. A combination of multiple genotype pairs, perhaps 
over thousands of them, in the form of a polygenic risk 
score would presumably capture both main and 
interaction effects for large numbers of variants. We plan 
to develop such an approach. 
 

Conclusion 
Our digenic analysis has uncovered or confirmed 36 
significant variants, quite a few more than the 14 
significant variants found in standard GWAS. The value 
of our contribution is that it confirms previous tentative 
associations and points to new assignments not previously 
known, which are worth being followed up. 
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Supplementary Material 
 
Supplementary Table S1. List of 76 variant pairs in males and females furnishing significant genotype pairs. 
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Supplementary Table S2. All 38 significant unique variants as obtained in single-variant and digenic analysis, where n 
indicates the number of other variants connected with the given variant. 

 
 


