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ABSTRACT 

The analysis of nucleic acids from single cells 

functioning in their multicellular context is an 

important part of performing robust 

developmental genomics studies. Toward this 

goal, collecting the desired cell(s) from their 

milieu has been aided by physical means such as 

laser microdissection. However, tissue 

processing for laser microdissection has the 

potential disadvantage of losing molecular 

information. Procedures involving tissue 

embedding in plastic have the potential to 

circumvent these disadvantages, permitting the 

robust analysis of nucleic acids from single cells 

isolated from complex tissues. 
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INTRODUCTION 

Cell identity is defined by its function. In 

tissues, each cell has a function that is 

determined by spatial and temporal cues. 

Genetic approaches using mutant analyses have 

aided in our understanding of cell function. 

However, the downstream effects caused by 

altered gene function in some cases are left 

unclear and yet to be understood. Genomics 

analyses bridge that gap in knowledge.  

To obtain a faithful understanding of how cells 

are functioning in their context, it would be 

useful to isolate them from their multicellular 

environment so homogeneous samples can be 

collected for downstream genomics analyses. 

This goal has been approached in one of three 

major ways. (1) cell sorting, (2) 

micromanipulation and (3) laser microdissection 

(LM). However, in the past the faithful isolation 

of the desired cells or their cytoplasm to 

homogeneity has been impeded by the 

technological limitations of the time. This micro 

review will introduce each of the three sample 

collection methods, but focuses primarily on a 

new approach to laser microdissection that 

involves the embedding of the tissue in plastic 

and subsequent nucleic acid isolation. 

Cell sorting 

Cell sorting is reliant on disconnecting the cells 

from each other by physical, chemical or 

enzymatic methods (Fulwyler, 1965). This 

process is followed by using the physical 

characteristics of the cells and/or availability of 

cell type specific molecular markers or antigens 

to sort the cells. A widely employed procedure 

used to accomplish this goal is fluorescence 

activated cell sorting (FACS) or related 

methodologies (Julius et al. 1972). A unifying 

feature of the cells used in FACS-based isolation 

procedures is their ease in separation due to their 

physical or chemical characteristics. A detailed 

description is beyond the scope of this work and 

the reader is directed to a number of papers for 

details (Fraker et al. 1995; Galbraith et al. 1999; 

Valitutti and Dessing, 2000; Miura et al. 2000; 

Herzenberg and De Rosa, 2000; Maric and 

Barker 2004; Tung et al. 2007; Zhu and Murthy 

2013; Schwach and Passier, 2016).  

Micromanipulation 

Micromanipulation-based methods extract 

cytoplasm directly from the cell under study. 

Recent work in the field of neurobiology has 

shown it is possible to use a patch-clamp device 

to isolate cytoplasm for downstream analyses 

(Fuzik et al. 2016; Cadwell et al. 2016).  An 

interesting aspect of this work is that it is 
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possible to obtain several different types of 

information from the same cell. For example, the 

procedure is used to measure cellular 

morphology and physiology, followed by 

isolation of the cytoplasm for its use in single 

cell transcriptomics analyses of that same cell 

that had been previously analyzed 

physiologically (Fuzik et al. 2016; Cadwell et al. 

2016) The reader is directed to a number of 

papers for details (Lin et al. 2007; Biase et al. 

2014; Fuzik et al. 2016; Cadwell et al. 2016).  

Laser microdissection  

The LM technology has found use in different 

biological contexts including the study of DNA 

mutations, transcriptome, proteome, 

metabolome and miRNAs (Meier-Ruge et al. 

1976; Isenberg et al. 1976; Hedrum et al. 1994; 

Emmert-Buck et al. 1996, 2000; Bernsen et al. 

1998; Schütze & Lahr 1998; Sgroi et al. 1999; 

Ornstein et al. 2000; Jessani et al. 2002, 2004; 

Schad et al. 2005; Nonn et al. 2010; Cancer 

Genome Atlas Research Network 2011; 

Nishimoto et al. 2012). Furthermore, LM has 

found much use in plant research to circumvent 

problems presented by the cell wall that 

encapsulates the cell of interest (Nakazono et al. 

2003; Klink et al. 2005; Matsye et al. 2011). LM 

is accomplished by embalming the tissue with 

one of several different types of support media 

including paraffin or the cryopreservant, optimal 

cutting temperature (O.C.T.) compound or 

related mixtures (Goldsworthy et al., 1999; Tam 

et al., 1999; Bhattacharya et al., 2003; Tadros et 

al., 2003; Dalmas et al., 2008). The O.C.T and 

paraffin compounds have their advantages and 

disadvantages and are described briefly, 

followed by a description of plastic embedding 

of tissue for LM which is the focus of this mini 

review. 

Cryogenic embedding tissue for LM 

The cryopreservation of tissue is a longstanding 

method for biological analysis and diagnostics 

(Cullen, 1895; Wilson, 1905). Out of this 

approach came the development of O.C.T.,  

a material that is composed of polyvinyl alcohol,  

polyethylene glycol and non-reactive 

ingredients. Tissue embalmed in O.C.T. has 

been useful for LM and can be sectioned to 

thicknesses of at least 10 m and typically much 

thicker. However, since the sections are thick the 

cryopreserved tissues have an increased 

likelihood that undesired cells or their fragments 

are also collected. It must be noted that when 

using O.C.T the ability to obtain thinner sections 

is temperature-dependent. Therefore, these 

determinations must be made empirically during 

the course of the experiment for each tissue. 

Since the O.C.T. matrix is composed of water 

soluble glycols and resins that can disrupt 

membranes, it is possible that the integrity of the 

tissue is disrupted which would allow cellular 

contents to be released into the tissue 

surroundings. This undesirable characteristic of 

cryopreserved tissue may result in the loss of 

biological information or mixing of cellular 

contents within the tissue block or on the slide 

prior to or after LM. Furthermore, the fine 

structure of cells is not preserved well when 

tissue is infiltrated in O.C.T., complicating the 

identification of specific target cell types. 

Therefore, while cryopreservation is desirable 

for limiting the activity of deleterious enzymes 

such as RNAses which would complicate 

downstream analyses, the procedure itself may 

introduce false or misleading structural 

information in a field of sectioned tissue. These 

potential difficulties presented by O.C.T. 

processing methodologies may therefore impose 

the need for staining, immunostaining or 

employment of molecular markers to identify 

the desired cells. This situation is a problem if 

there are no molecular probes or stains to detect 

the desired cells since in many cases, the 

identification of uniquely expressed genes is the 

reason why the LM technique is used in the first 

place. These limitations do not mean the use of 

O.C.T. is detrimental to biological study as it has 

been used in many analyses for decades (Pusey, 

1974; Ishii et al. 1993; Dalmas et al. 2008; 

Sturm et al. 2013). 
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Paraffin embedding tissue for LM 

A lab pipeline employing paraffin is simple, 

requiring little technical experience and permits 

thermal storage indefinitely between 4
o
C and 

ambient temperature. In contrast to O.C.T., 

paraffin has the advantage of preserving 

anatomical detail well. This characteristic 

facilitates identification of the desired cells 

during LM. Undesirable characteristics of 

paraffin include complications presented in 

some of the early processing steps involving 

temperatures that are greater than 50
o 

C prior to 

casting the tissue which could affect the tissue or 

stability of mRNA. Tissue blocks can be stored 

at temperatures as low as 4
o
 C. However, at 

temperatures below 4
o 

C the paraffin becomes 

brittle and cracks rendering it useless for study. 

Another drawback of the paraffin embedding 

strategy is that the cells must be sectioned at 

thicknesses of 4 m or greater because of the 

physical limitations of the paraffin matrix during 

sectioning. Regarding transcriptomics, paraffin 

has the highly undesirable characteristic of being 

contaminated with RNAses which promotes 

RNA degradation (Jonsson and Lagerstedt, 

1957, 1958; Nair, 1958). Other problems include 

that the sectioned tissue that is being placed onto 

microscope slides cannot be visualized directly 

after sectioning due to the crystalline and opaque 

nature of paraffin. Therefore, the tissue must be 

processed through a step that includes a paraffin 

solvent. This step likely results in the loss of 

biological molecules into the solvent during 

processing. After dissolving the paraffin support, 

the tissue can be observed for LM. However, 

since there is no mounting medium or cover slip, 

the light passing through the tissue is refracted 

in various ways, distorting the image of the 

tissue passing through the microscope. This 

problem can make identifying the desired cell or 

cells difficult or impossible without stains or 

molecular markers. Even with these limitations, 

paraffin-mediated LM has permitted a genomics 

analysis of a plant defense mechanism involving 

the vesicle transport system that is mediated by  

 

the soluble N-ethylmaleimide-sensitive fusion 

protein attachment protein receptor (SNARE) 

(Matsye et al. 2011, 2012; Pant et al. 2014, 

Sharma et al. 2016). 

Plastic embedding tissue for LM 

A variation on the paraffin and cryogenic 

embedding methods is plastic-embedding (pe) 

the tissue for LM (pe-LM) (Klink et al. 2013; 

Klink and Thibaudeau, 2014). Plastics have been 

used for decades in histological analyses for 

both light and transmission electron microscopy 

(TEM). The embedding of tissue in plastic has 

the advantage of preserving fine cellular detail 

very well. Furthermore, tissue can be processed 

entirely at low temperatures (-20
o 
C). Depending 

on the application, the tissue can be ultra-thin 

sectioned at 0.05–0.1 m or semi-thin sectioned 

at thicknesses between 0.1-2 m. A desirable 

aspect of embedding the tissue in plastic is that 

the plastic remains clear after casting and 

sectioning. This characteristic is unlike paraffin 

which is opaque after sectioning and O.C.T.-

embedded tissue which renders the cells difficult 

to visualize under the microscope. The clear and 

usually colorless nature of plastics allows for the 

visualization of the tissue on the microscope 

slide directly after semi-thin-sectioning. By 

definition, since the tissue within the clear, semi-

thin sections can be visualized, there is no need 

to dissolve the plastic prior to LM. Therefore, 

for the purpose of LM, the plastic itself serves 

the purpose of a coverslip, preventing refraction 

of the light as what happens in paraffin and 

O.C.T-embedded sections.  

 

Choice of plastic 

While many different types of plastics exist, one 

of the best for pe-LM is Technovit® 9100® 

(Klink et al. 2013, Klink and Thibaudeau, 2014). 

Technovit® 9100® is a methacrylate resin that 

is clear and colorless after polymerization. 

Technovit® 9100® can be cold-polymerized at 

temperatures between -8 and -20
o
 C with a 

catalyst. This property of the polymerization 
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step allows for the dissipation of heat, inhibiting 

enzymatic activity within the tissue. More 

importantly for modern molecular analyses, 

since all tissue processing steps can be done at 

these low temperatures, RNA quality would be 

better preserved (Klink et al. 2013; Klink and 

Thibaudeau, 2014). Technovit® 9100 has been 

used in many studies including the study of 

tooth and soft tissues. Technovit 9100 exhibits 

superior antigen retention as compared to 

paraffin sections and other plastics (Arnold et al. 

1998, 2003; Yang et al. 2003; Brorson and 

Reinholt 2008; Vertenten et al. 2008; Singhrao 

et al. 2009; Wittenburg et al. 2009; Steiniger et 

al. 2013; Bako et al. 2015). The Technovit® 

9100®-based pe-LM allows for obtaining semi-

thin sections at 0.8 m, far thinner than the 10 

m or greater typically used for paraffin or 

cryosectioning and LM (Klink et al. 2013). As 

stated earlier, a major advantage of the pe-LM 

procedure is that the plastic does not have to be 

dissolved away prior to microdissection since 

the plastic is clear. Therefore, the entire cellular 

contents can be collected during LM (Figure 1). 

In LM procedures using paraffin as a support 

matrix, its crystalline and opaque nature 

interferes with the visualization of the cells. This 

interference happens because light refracts as it 

passes through the paraffin and tissue. 

Therefore, solvents must be used to dissolve the 

paraffin away prior to the LM procedure. Even 

then, light is refracted as it encounters the tissue. 

Therefore, the resolution observed under the 

microscope of tissue processed in paraffin and 

O.C.T. is much poorer than tissue processed for 

pe-LM (Klink et al. 2013; Klink and 

Thibaudeau, 2014). Furthermore, loss of 

biological molecules in the form of RNA, 

microRNAs (miRNAs) proteins and metabolites 

would be expected to happen as the paraffin is 

dissolved away and the cytoplasm becomes 

liberated on the slide (Jonsson and Lagerstedt, 

1958; Nair, 1958). In contrast, the collection of 

serial, semi-thin plastic sections allows for the 

reconstruction of the entire tissue series onto LM 

slides. After microdissection, the plastic is 

dissolved with methanol in the tissue collection 

tubes and the RNA is isolated by standard LM 

procedures. 

Pe-LM procedure 

The pe-LM procedure has been adapted from 

our previously published methods (Klink et al. 

2005, 2007, 2009, 2010a, b, 2011, 2013; Klink 

and Thibaudeau, 2014; Matsye et al. 2011). The 

protocol is summarized here. Glassware and 

metal utensils are made RNAse-free by an 8 hr 

baking at 180
o 

C. RNAse-free solutions are 

made with Nano-pure® water (Barnstead, 

Thermo Fischer Scientific Inc., Waltham, MA) 

with 0.1% diethyl pyrocarbonate (DEPC) 

(Sigma, St. Louis, MO). The DEPC is dissolved 

in aqueous solution and stirred for 12 hr, 

overnight prior to autoclaving thus removing the 

DEPC. Tissue fixation occurs in 75% 

ethanol:25% glacial acetic acid (Klink et al. 

2005). Specimen dehydration occurs through a 

graded ethanol series (75%, 90%, 3 X 100%). 

Tissue infiltration and embedding using 

Technovit® 9100® (Electron Microscopy 

Sciences, Hatfield, PA) with xylene as a 

transitional fluid is done according to the 

manufacturer’s  instructions 

(http://www.ebsciences.com/histology/methacry

late.htm) (Klink et al. 2013). Tissue pieces are 

placed into Beem
®
 capsules. Subsequent 

polymerization occurs at -8
o 

C for 24 hr (Klink 

et al. 2013). Using a Reichert-Jung Ultracut-E 

ultramicrotome, semi-thin sections are cut with a 

diamond knife at 0.8 m (Leica Microsystems
®
, 

Germany). DEPC-treated water is dropped on 

PEN MembraneSlides® (Leica Microsystems®) 

set on a slide warmer set at 40° C. This step 

permits evaporation of the DEPC-treated water 

so that the plastic sections flatten and adhere to 

the PEN membrane that coats the slide. Once the 

water is completely evaporated, the slides are 

used immediately for LM on an Arcturus® 

Veritas® microscope (Molecular Devices, 

Sunnyvale, CA). Cells are collected on CapSure 

HS LCM Caps (Applied Biosystems, Foster 

City, CA). Subsequent downstream application 

http://www.ebsciences.com/histology/methacrylate.htm
http://www.ebsciences.com/histology/methacrylate.htm
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include washing off the cells of the HS cap by 

micropipetting 20 l of XB buffer (Applied 

Biosystems) onto the HS cap. The solution is 

then moved to a microcentrifuge tube. The RNA 

samples are then isolated with the PicoPure 

RNA Isolation Kit (Applied Biosystems) 

according to the manufacturer’s instructions 

(Klink et al. 2005, 2007, 2009, 2013). A 

DNAfree (Ambion) DNAse treatment is done 

just before the second column wash (Klink et al., 

2005, 2007, 2013). Subsequently, RNA yield 

and quality is determined using the Nanodrop® 

spectrophotometer (Biorad, Hercules, CA) 

according to the manufacturer’s instructions 

(Klink et al. 2013; Klink and Thibaudeau, 2014). 

 

CONCLUSION AND FUTURE DIRECTIONS 

 The application of plastic embedding tissue for 

laser microdissection is allowing for the 

collection of cells at unprecedented resolution. 

This improvement allows for the isolation of 

biologically relevant molecules for their analysis 

and placement in the framework of cell 

physiological and developmental genomics 

processes. A series of new technologies have 

been developed for downstream analyses of 

small amounts of DNA, RNA, protein and 

metabolites. Because of these technical 

improvements, the heretofore impediment 

presented by low quantities of isolated sample is 

no longer a limitation. These technological 

improvements therefore are allowing pe-LM to 

be applied to single cell analyses. In particular, 

the development of microfluidics is an exciting 

platform to accomplish high throughput 

genomics analyses of low quantity sample. The 

application of pe-LM as a method to obtain 

RNA and other sample types will undoubtedly 

be part of the future of single cell biological 

analyses. Merging small sample preparation 

approaches to the roust microfluidic arrays will 

allow for an understanding of cellular processes 

at high resolution in cells that have been 

intractable for such study (Jang et al. 2011; 

Weaver et al. 2014; Trapnell et al. 2014; Pollen 

et al. 2014, 2015; Xin et al. 2016). 
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FIGURES 

 

Figure 1. 

The advantage of pe-LM, comparing paraffin 

(A-C) and plastic (D-F) embedding approaches. 

A, tissue, represented in light blue with a red 

nucleus is illustrated in the paraffin support 

(dark blue box). The black vertical arrow (left) 

represents a 4 m section limit. B, paraffin is 

dissolved away, accompanied by the loss of 

biological information (i.e. RNA) that is  

 

represented by the lighter hues of the cell and 

nucleus with the black arrows showing loss of 

molecules out of the cell. C, the cell (red arrow)  

after LM. D, tissue, represented in light blue 

with a red nucleus is illustrated in the plastic 

support (dark blue box). The black vertical 

arrow (left) represents a 0.8 m semi-thin 
section. E, there is no loss of biological 
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molecules since the plastic does not have to be 

etched away because both visualization and 

sectioning can be done effectively without that 

step. F, pe-LM of a semi-thin section of tissue 

containing the target cell.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 An advantage of the method is that the pe-LM 

procedure vaporizes neighboring cells. This 

facet maximizes the likelihood of collecting the 

desired cell (blue arrow). 


