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ABSTRACT

Introduction: This paper explores a mathematical framework for defining
factors influencing obesity by comparing statistical design of experiment

and machine learning (ML) approaches.

Methods: A low-calorie program was applied to 100 overweight to
morbidly obese patients monitored over 8 visits in 4 months and over. A
traditional three-factor experimental design was employed to evaluate
the impact of glucose, Alanine aminotransferase (ALT) enzyme, and
cholesterol levels on obesity. ML methods (Multiple Linear Regression,
Random Forest, Decision Tree Classifier, Gradient Boosting Regressor
and XGBoost) were employed to evaluate the impact of glucose, ALT
enzyme, cholesterol levels, body mass, blood pressure, and sex on obesity.

Results: The three-factor experiment indicated glucose had the greatest
impact on obesity, followed by cholesterol and ALT, particularly
significant in females. ML models, with over 90% accuracy and RMSE less
than 1.5, corroborated these findings and also highlighted the roles of
blood pressure.

Conclusion: Both statistical and ML models aim to understand
relationships between variables and predict outcomes, differing in
assumptions, flexibility, and interpretability. Statistical methods offer high
interpretability and rigorous testing, while ML provides flexibility and
robust performance with complex data.

Keywords: Mathematical modeling, Three-factor model, Optimization,
Machine learning, Obesity.
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1.Introduction

Obesity is a global health concern that is influenced
by multiple factors, including diet, physical activity,
and metabolic health parameters. The statistical
design of experiments has evolved through several
stages, becoming a potent tool for process
optimization'?. Introduced in the early 20th century
by Ronald Aylmer Fisher, the application of statistics
in research was fundamentally altered, exemplified
by his well-known randomized experiment "The
Lady Tasting Tea" introduced in his 1935 textbook
The Design of Experiments®, established the
foundational  principles  of  randomization,
replication, and blocking for evaluating treatment
effects in virtually all research fields>.

Three-factorial designs are often used to simplify
models while evaluating the influence of different
factors on the response. This method has been
applied across various research areas, including the
optimization of extraction processes and
nanotechnology?, in the field of mechatronic
systems’ even in social and social and physiological
sciences®. In this study, a three-factor model is
presented as a mathematical tool to identify factors

influencing obesity’.

In addition to traditional statistical methods,
machine learning (ML) has emerged as a powerful
tool for analyzing complex data and uncovering
hidden patterns. ML techniques, such as multiple

linear regression’', decision trees™'8, random
forests'”?, support vector machines”?#, and neural
networks®?’, are increasingly used in health research

to predict outcomes and identify significant

%831 These models offer flexibility to

predictors
model non-linear relationships and interactions
between variables without requiring explicit
assumptions about data distribution®*”. Such
techniques are particularly suitable for analyzing
multifactorial conditions like obesity, where various
health features such as body mass, blood pressure,

blood parameters and sex play a role®".

In the references related to machine learning,

health, and obesity, there are numerous examples

of using machine learning for obesity prediction®.
The novelty of this paper is that this study employs
ML algorithms to complement the traditional
three-factor model in identifying the factors
influencing obesity outcomes including glucose,
ALT enzyme, cholesterol levels body mass, blood
pressure, and sex in determining obesity outcomes.
From these results, we aim to determine which

factors have the most and least influence on obesity.

2. Materials and Methods

This study was conducted at the dietetics and
nutrition counseling company "Protektal" in Skopje,
Republic of North Macedonia, from January 2022
to May 2023. A model was performed for the
practical application of three-factor experimental
design in relation to morbid body mass. The study
included 100

comprising 30 males and 70 females, ranging from

randomly  chosen  samples,
overweight to morbidly obese patients (see Figure
1. The

participants was in the obese class 2 category. The

highest representation among all
distribution of different obesity classes and
conditions among female and male patients is
given in Figure 2. There are noticeable differences
in the proportions of obese class 2 and obese class
1 categories, with females having a higher
percentage in obese class 2 and males in obese
class 1. No patients classified as normal.

© 2024 European Society of Medicine 2
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Figure 2 The Female and male comparison

In the Table 1 is presents the summary statistics of
the clinical measurements used for calculations and
analyses in this study. These statistics provide an
overview of the central tendencies and dispersion
include ALT (Alanine
body
mass, sex, systolic blood pressure (bp_s), and

of the variables, which

Aminotransferase), cholesterol, glucose,
diastolic blood pressure (bp_d). This dataset serves

as the foundation for all subsequent calculations

and analyses conducted in this study. As it can be
seen from table the lowest value of ALT is 10.0 and
the highest value is 59.9. The average value of ALT
is 29.846. The highest cholesterol is 8.1, the lowest
value is 3.3 and the average is 5.7. The value of
glucose is between 3.5 and 11.5. The average
value of glucose is 5.358. The body mass is
between 150.7 and 71 kg.

Table 1 Summary Statistics of Clinical Measurements for Patient Datase

ALT cholesterol | glucose | body_mass sex bp_s bp_d
count 100 100 100 100 100 100 100
mean 29.845928 5.70 5.357655 110.35 0.296417 | 127.807818 | 84.283388
std 12.471018 | 1.041955 1.099450 | 19.902442 | 0.457423 | 23.013470 | 11.749335
min 10.000000 | 3.300000 | 3.500000 | 71.000000 | 0.000000 | 110.000000 | 70.000000
max 59.900000 | 8.100000 | 11.500000 | 150.700000 | 1.000000 | 290.000000 | 130.000000

© 2024 European Society of Medicine
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Figure 3 The scatterplot matrix of relationships between clinical variables, with points colored by sex.

The given plot (see Figure 3) is a pair plot (also
known as a scatterplot matrix) that visualizes the
relationships between several variables (ALT,
cholesterol, glucose , diastolic blood pressure, systolic
blood pressure), with points colored by sex.

STATISTICAL ANALYSIS OF THREE-FACTOR
EXPERIMENTAL DESIGN

Patients were placed on a very low calorie diet with
a daily intake of 750-900 calories minimum to 1200
maximum kcal, but reach with quality protein,
distributed in short yet frequent meals (usually 5
meals per day) of functional food***¢. The protein
food contains bioactive peptides and proteins and
rich in vitamins and minerals® 8 They were
closely observed by medical professionals working

to treat their weight 8 visits for 4 months or over 5749,

The three-factor experimental design with two
levels of variation (273 = 8) was used to assess the
impact of these key parameters on body weight (Y).
The main goal was to determine the relative
importance of each of these factors on the
response, which is weight reduction. the three
parameters are considered: ALT enzyme (factor
X1), total cholesterol (factor X2), and glucose
(factor X3).

The three-factor experimental design®*¥ can be
expressed in full (explicit representation) matrix

form as follows:

© 2024 European Society of Medicine 4



Y, +1 +1 +1 +1 +1 +1
Y, -1 41 +1 +1 -1 -1
Y, +1 -1 +1 +1 -1 +1
Y, -1 -1 +1 +1 +1 -1
Ys +1 +1 -1 +1 +1 -1
Ys -1 +1 -1 +1 -1 +1
Y, +1 -1 -1 +1 -1 -1
Ye -1 -1 -1 +1 +1 +1

also can be expressed in the shorter matrix form as:

The regression model and analysis were performed
using Python ¥4, employing regression equations,
Cochran’s test, Student's t-test, and Fisher's test

For each series for each patient, a combination of
factors for high and low levels has been made,
along with measurements of the questionnaire and

has two responses Y, andY;,, Y,, is an average of
2. .
those responses. Sjis the variance of each

response’? 4.

To determine that the order of dispersions is

considered homogeneous, it is necessary to

45

calculate Cochran's criterion #. It is differences

between three or more matched sets of

frequencies or proportions. Using Cochran's

criterion, we are testing

46-49

hypotheses  for
reproductive experiments

1. Cochran's Test for Homogeneity: To

determine the homogeneity of variances,

Cochran's B %559 criterion is given with formula:
max S?
2.5
j=1

The critical value of Cochran's test, Ggn, is read

p [3]

from standard statistical tables corresponding to
the 95% confidence interval, degrees of freedom,
the number of experiments (N-8), and the number
of levels of variation (k=2). The test statistic Gp. is
calculated from the observed data (see equation
2). If criteria G, >G,,  \ is satisfied then statistical

heterogeneity is determined, but if G, < Ggrn ,is

+1 +1 b,
+1 -1 b,
-1 -1 b,
-1 +1 b, 1l
-1 -1 b12
-1 +1| | b,
+1 41| | by
+1 1) by,

presented then the order of variances of

dispersions is considered as homogeneous [3].

2. Regression Model: The linear three-factor

model %3 is given by:

Y= B+ BX L%+ X+ BXX + BpdXs + BXoXs + XXXy 4

where y is factor of stress, for the corresponding
measurements yil and yil, the factors x;, xz, x3,
their units are given in the table 1, while Bis
represent coefficients of regression and f;
coefficient of interaction between factors. Some
coefficients may be negligibly small or insignificant.
The determination of the significance of the
regression coefficients is done with the help of the
Student’s test criterion. In order to determine
whether they are significant or not, first of all, the
variance in which they are determined should be
assessed:

3. Significance of Regression Coefficients:

Using the Student's t-test *!:

b
Sr,}i

Coefficients are significant if | 3] > Spit

[5]

4. Fisher's Test for Model Adequacy: The
adequacy of the model was verified using Fisher's

criterion 16471

© 2024 European Society of Medicine 5
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is the sum of the squared differences
j

between the average response (y.) and the
observed response (y). N is the number of
experiments, k is the number of factors, N—k—1 is

the degrees of freedom for the residual variance.

If the calculated F-ratio is less than the critical value
from the F-distribution table,
considered adequate.

the model is

5. Transformation to Natural Units: Conversion
from coded variables to natural units was

performed using:

X=X
X, =—— [7]
AX;

where: X, - natural variable (factor), X; - average of
code variable, AX; - the interval of change of X;

(standard deviation), X, - coded variable ",

(6]

variance of each response

Transformation to natural units is done to convert
the coded variables used in the experimental
design back to their original scale. Results in coded
units can be difficult to interpret. Transforming
them back to natural units makes it easier to
understand the practical significance of the results.
When applying the model to real-world scenarios
or making predictions, it is necessary to use the
natural units of the variables. This ensures that the
predictions and conclusions are directly relevant to
the actual conditions of the experiment.

w
) J
\_ — Three-factor model S —

VS
C Regression Coefficients
5.
=2 Aol s \

Coded Equation

_max S S

Natural Units
Equation
] N
\ Natural Coefficients

Figure 4 The Algorithm of traditional statistical three-factor model.

MACHINE LEARNING METHODS

In addition to the traditional statistical three-factor
model, we utilized several ML algorithms to analyze
the factors influencing obesity. These included
Linear Decision Tree

Multiple Regression,

Regression, and Random Forest *>>°, Each method

was implemented to evaluate their effectiveness in

identifying the key factors contributing to obesity.

DATA PREPROCESSING
Before applying ML models ® the dataset was

preprocessed as follows:

© 2024 European Society of Medicine 6



1. Label Encoding: Categorical variables (such as
category of obesity) were encoded into numerical

values using label encoding.

2. Cleaning data: Missing data can arise from
various reasons such as data entry errors or

participants missing appointments. It is essential to

Training Set

handle these missing values to maintain the
integrity of the dataset.

After preprocessing data is splitted od training and
testing set using the function ‘train_test_split’.
Function splits the dataset into training (80%) and
testing (20%) sets.

Multiple Linear
Regression

DecisionTree

L —

RandomForest

y

Model
Evaluation

boosting process/boosting
models

Model
Evaluation

Feature Importances

Figure 5 The Algorithm ML prediction in Python.

MODEL IMPLEMENTATION

Multiple Linear Regression

Dealing with Multiple Linear Regression > *,
includes several independent variables (x1, x2, ...,
xp), which the model is expressed as:

Y(yi) = B0 +B1x1 +B2x2 + ... + Bpxp [8]
the observed value is present with Y(yi)

To predict outcomes, the model is formulated as:
Y =B0+B1X1+B2X2+ ... +BpXp +e 9]

Y" denotes the predicted value of the dependent

variable Y based on given independent variables.

BO is the y-intercept, indicating the expected value
of Y when all independent variables are zero.

B1, B2, ..., Bp are the coefficients (slopes) for the
respective independent variables.

e (error or residual) is the discrepancy between the
actual observed value (Y(yi)) and the predicted
value (Y'), it is expressed as:

e =vyi—§i [10]

The main goal of linear regression is to find the
coefficients that minimize the sum of squared
errors (SSE) to provide a reliable model for
predicting the target variable using the input
features. This is typically achieved through
techniques such as the least squares method,
which optimizes the coefficients to develop a
predictive model.

DECISION TREE REGRESSION

Decision trees are non-parametric models that split
the data into subsets based on feature values,
creating a tree-like structure of decisions. They are
easy to interpret but prone to overfitting. A
decision tree makes splits based on the feature that
maximizes the information gain or minimizes the
Gini impurity. For binary classification, the Gini

impurity for a node with mmm samples is defined
as 44, 56:

© 2024 European Society of Medicine 7



6=1-3,(p) 1]
where pi is the proportion of samples belonging to
class iii in the node and C is the number of classes.
The information gain is the reduction in entropy
after a split:

IG:H(X)—Z?l%H(Xi) [12]
where H(X) is the entropy of the parent node and
H(Xi)) is the entropy of the i-th child node.

RANDOM FOREST REGRESSION

Random forests are an ensemble method that
constructs multiple decision trees and averages
their predictions. This reduces overfitting and
improves  generalization. A random forest
constructs B decision trees on different bootstrap
samples of the dataset and averages their predictions.

The prediction for a sample is given by “4>¢:

y=5 e (1) 13

where hy(x) is the prediction of the b-th decision
tree for input x.

The feature importance is calculated as the
average decrease in Gini impurity (or increase in

information gain) across all trees:

1
FI, =EZf:1F|j,b [14]

where Flj, is the importance of feature j in tree b.

GRADIENT BOOSTING REGRESSOR

It is a machine learning technique for regression
problems. It builds an additive model in a forward
stage-wise manner; each new tree attempts to
correct errors made by the previously built
ensemble ® The goal is to minimize the loss
function L which measures the difference between

the actual valuesy; and the predicted values ¥;:

IL(p) = Xiz L ) [15]

Where y; is the actual value, J;is the predicted
value, I is the loss function (e.g., mean squared

error for regression).

For each data point i, the gradient of the loss

function is:

© _ oLy ™)

l a}f;i(t_l)

[16]

Gradient descent: The new tree g; is fit to the
negative gradient of the loss function with respect
to the current predictions:

PN(D)
Ti(t) — [6L(yl.yl )] [17]

ayi(t—l)

Where ri(t)are the residuals (errors) at iteration t

XGBOOST (EXTREME GRADIENT BOOSTING)

It is an implementation of gradient-boosted
decision trees designed for speed and
performance. The algorithm iteratively builds new
trees that improve on the errors of the existing
ensemble. The goal is to minimize the objective
function L, which combines a loss function £ that
measures how well the model fits the data and a
regularization term Q that penalizes model

complexity [Smola, A] :

L(@) = X1 l(yu 90) + Xis Qi) (18]
Where, y; is the actual value, J;is the predicted

value and Q(fy) the is the regularization term for
the k-th tree.

MODEL EVALUATION

The performance of the ML models was evaluated
using metrics such as accuracy, R-squared (R?),
Mean Squared Error (MSE), Root Mean Squared

Error (RMSE): to compare their predictive power?>’.

Accuracy: Measures the proportion of correctly
predicted instances out of the total instances. It is
generally used for classification problems.

Number of correct predictions

Accuracy = —
Total number of predictions

[19]

R2 Score: Indicates the proportion of the variance
in the dependent variable that is predictable from
the independent variables. It ranges from 0 to 1,

where 1 indicates perfect prediction P37,

Dy - 9)?
Dy -Y)

R2 Score: Reflects how well the model explains the

R2 Score: R? =1— [20]

variance in the data. Higher R? values indicate

better explanatory power.

© 2024 European Society of Medicine 8



Mean Squared Error (MSE): Measures the average
of the squares of the errors, which is the average
squared difference between the estimated values

and the actual value.
1Y A2
MSE = >°(3, -9) 21)
i-1

Root Mean Squared Error (RMSE): Is the square
root of the mean of the squared errors. It provides
a measure of the average magnitude of the errors

56-57

in a set of predictions , predictions with lower

RMSE values is more precise.

Root Mean square Error (RMSE)

N 2
RMSE =MSE = %Z(yi -9) [22]
i=1

Results

In Table 2 is given a detailed overview of the
parameters of anthropometric indicators BMI, and
blood parameters according to gender after 8

controls.

Table 2 Summary of Control Parameters and Program Outcomes by Gender

Parameters

female male

[min-max] + SD [min-max] + SD

Number of controls

(8] (8]

Number of days of program

[40-210] £ 170 [40-247] £ 155

Desired body mass [kg] [50-80] 8,2 [74-90] £ 10,0
Body mass after 4 month and over [kg] [58-85] = 9,1 [75-98] = 8,8
The loss of weight [%] [28-38] = 3,0 [24-36] 7,6
After 4 month and over BMI [kg/m?] [23,1-28,9+ 3,8] [24,0-32,2] £ 2,8
ALT [U/L] (After 4 month and over) 10-45+ 18 10-40+ 15
Cholesterol [mol/L] (After 4 month and over) 3-3,3+1,3 3-3,5+1,2
Glucose [mol/L] (After 4 month and over) 3-3,6x1,2 3,3-3,6x1,2

The data showcases the significant impact of the
diet regime on various health parameters for both
genders. Females showed a greater range of body
mass reduction, while males exhibited consistent
improvements in cholesterol and glucose levels.
Overall, the diet effectively contributed to weight
loss and improvement in key health markers over

the monitored period.

To further understand the impact of the diet, a
three-factorial design was employed using detailed
patient data, including body mass (BM), for 8
controls (see Figure 4). This data is essential for
calculating the Coded Equation (y) and the Natural
Units Equation (Y). Table 3 summarizes all the

regression equations in both coded and natural
units along with relevant patient data for a better
understanding of factors of influence of obesity. A
preview calculation for 15 randomly chosen
patients was conducted, but the model was
applied to all 100 participants in the diet regime.
This approach helps in understanding the
interactions between variables such as body mass,
BMI, and other health indicators, contributing to a
comprehensive analysis of the diet's effects. Key
Findings: Glucose (X3) has the highest positive
impact on body mass in both coded and natural
unit equations. Cholesterol (X2) also has a
significant positive impact on body mass. ALT (X1)
has a smaller but still positive impact on body

© 2024 European Society of Medicine 9



mass. The interaction between cholesterol and
glucose (X23) is significant, indicating that the
combined effect of these two factors is important

in determining body mass®®.

These equations can be used to predict body mass
based on ALT, cholesterol, and glucose levels.
They can help in identifying which factors need to
be controlled or monitored to manage body mass
effectively. The natural units equation is particularly
useful for healthcare professionals and researchers
and
interventions. Visualizations help to identify how

for  making  real-world  predictions

well the model captures the influence of ALT,

cholesterol, and glucose on body mass,
highlighting any discrepancies between the actual
and predicted data. Figure 6 presents the actual
and predicted body mass values alongside ALT,
cholesterol, and glucose levels. The three plots
illustrate the relationships between these factors
and body mass, comparing the real measurements

with the predicted values from a regression model.

Table 3 Comparison of Actual and Predicted Body Mass with ALT, Cholesterol, and Glucose Levels

No | sex | age | Initial BM | BM after 4 |Height | Initial BMI after | Coded Equation (y) and
(kg) months (kg) {m) BMI 4 months | Natural Units Equation (Y)
(kg/m?) | (kg/m?)
1 m |55 | 1495 82,5 186 43,2 24.0 y = 107.25 + 4.412x, + 8.312x,
+18.288x; + 3.7x,5
Y = 1.29 + 0.25X, + 6.65X, + 15.9X,
+ 24Xys
2 m |37 | 116 92 169 40,6 32,2 y = 97,2875 + 3,8875x, + 5,3375x3
+ 2,8375 x,x5
Y = 80,7476 — 5,67385X, + 3,7377X5
+1,9739 X, X,
3 f 34 | 90 75 158 36,1 30,0 y =79.1125 + 2,5625x, + 3.7125x4
Y = 56.03 + 2,05X, + 3.23X,
4 f 65 | 107 75 163 40,3 28,2 y = 85.65 + 2.19x; + 4.64x, + 7.78x4
Y = 66.16 + 0.13X, + 3.715X, + 6.77X,
5 f 33 |130,8 76,2 164 48,6 28,3 y =103.212 + 6.54x, + 10.9x;
Y = 38.81 + 5.23X, + 9.48X,
6 |f |36 1333 75 181 | 40,7 23.0 y = 99.93 + 2.89x; + 4.99x, + 18x,
Y = 59.93 + 0.17X, + 3.99X, + 16.29X5
7 | 44 [1616 85 170 [ 559 |29,4 y = 128.75 + 4.26x, + 7.65x, + 12.5x;
Y =47.31+0.24X; + 6.1X, + 10.95X;
8 |m |42 [135 93 180 |41,7 |287 y = 103.75 + 4.26x, + 7.65x, + 12.5x;
Y =73.53+0.20X; + 5X, +9.04X;
9 m | 48 | 123,7 96 170 39,9 31,0 y = 101.175 + 4.2x, + 4.85x;
Y =59.49 + 3.38Y, + 4.22Y;
10 |m |42 |129,6 75,9 176 41,8 24,5 y = 98.31 + 3.8x; + 6.8x, + 15.06x;
Y =10.87 + 0.22X; + 5.45X, + 13.10X;
"M |m [62 |121,2 90 172 41,0 30,4 y = 96.575 + 8.075x;
Y =65.33 4+ 7.02X;
12 |m |39 |144,7 95 181 44,2 29,0 y =112.48 4+ 6.23x, + 11.48x;4
Y = 46.87 + 499X, + 9.98X,
13 |m |45 |104,6 79 168 37,1 28,0 y = 87.48 + 1.9x; + 3.05x, + 6.36x3
Y = 49.49 + 0.11X, + 2.44X, + 5.53X,
99 |f |43 [98,8 60 154,4 | 41,4 25,2 y = 8591 + 2x; + 4.1x, + 9.8x,
Y = 30.63 + 0.12X, + 3.28X, + 8.55X;
100 | f 51 120 70 159 47,5 27,7 y =89+ 4.5x; + 7.35x, + 11.38x,
Y = 13.73 + 0.24X, + 5.9X, + 9.89X,

© 2024 European Society of Medicine 10
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Figure 6 Comparison of Actual and Predicted Body Mass with ALT, Cholesterol, and Glucose Levels

The three plots (see Figure 6) illustrate the
different (ALT,

and glucose) and body mass,

relationship  between factors
cholesterol,
comparing the actual body mass measurements
with the predicted values from a regression model.
The distribution of blue dots (actual measurements)
indicates how body mass varies with ALT,
cholesterol, and glucose levels. The orange dots
(predicted values) should ideally align closely with

the blue dots if the model predicts well.

a) In this plot, there is a visible clustering of actual
and predicted values around certain ALT levels,
suggesting some correlation. However, there is
also a noticeable spread, indicating variability in
body mass that the model might not fully capture.

b) This
between cholesterol and body mass, with the

plot suggests a clearer relationship
predicted values aligning more closely with the
actual values, indicating that cholesterol might be
a significant predictor of body mass in this model.

c) This plot suggests a significant correlation
between glucose levels and body mass, with
predicted values aligning well with actual values,
indicating that glucose is an important predictor of
body mass.

While the three-factor design

focused primarily on glucose, ALT enzyme, and

experimental

cholesterol, the  machine-learning  models
expanded the analysis to include additional factors
such as body mass, blood pressure, and sex. This
combined approach allowed for a more nuanced

understanding of how these variables interact and

influence obesity, providing deeper insights into

their relative impacts.

To enhance the robustness of our analysis, we
incorporated Multiple Linear Regression, which
included additional variables such as body mass,
blood pressure, and sex. Mathematically, this
approach is similar to the three-factorial design,
allowing us to expand the model to include more
variables while preserving the ability to analyze
interactions between factors. During machine
learning, for the given model (see Table 4), the
metric parameters were obtained for checking the
accuracy of the models. The accuracy of Multiple
Linear Regression is 0.90, but MSE=4.526 and
RMSE=2.128.
performs well with high accuracy and moderate

Multiple  Linear Regression
error rates. "Moderate error metrics" refers to the
level of difference between the actual values and
the predicted values by the model. A lower MSE
indicates that the predictions are closer to the
actual values. Here, the MSE is 4.526270, which
suggests that while the model makes reasonably
accurate predictions, there is still some room for
improvement compared to the models with lower
MSE. An RMSE of 2.127503 means that, on
average, the predictions are about 2.13 units away
from the actual values. This is considered moderate
because it indicates that the predictions are fairly
close to the actual values, but not as precise as
those from the best-performing models in the

comparison.

Decision Trees and Random Forest operate

similarly in terms of decision-making methodology.
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The decision tree model (see Figure 7) provides a
visual representation of how different factors
influence obesity categories. The root node starts
with the body mass (BMI) < 91.4. This initial split
helps distinguish between different obesity classes.
First Level- Left Split: If the glucose level is < 4.95,
the model further examines body mass to
categorize patients as overweight or class 1 obese.
This branch highlights glucose as a significant
factor in determining obesity levels. Right Split: For
those with body mass < 120.3, the model looks at
ALT levels and sex, showing these factors'
importance in differentiating between class 2 and
class 3 obesity. Second Level - Left Branch: Further
divided by body mass, highlighting its role in
distinguishing between overweight and class 1
obesity. Right Branch: Analyzes ALT levels and sex,

indicating their combined effect on obesity
Third Level -Cholesterol: The

model examines cholesterol levels, further refining

categorization.

the classification into obesity classes. This indicates
that cholesterol, while influential, plays a more

nuanced role compared to other factors.

The decision tree (see Figure 7) clearly
demonstrates how glucose, ALT, body mass, blood
pressure, and sex contribute to predicting obesity
categories. It visualizes the complex interactions
between these factors, emphasizing the
importance of a comprehensive approach to

understanding obesity.

body_mass <= 91.4
enfropy = 2.059
samples = 214
value = [3, 55, 62, 39, 55]
class = obese_clas_2

glucose <= 4,95
entropy = 1.536
samples = 106
value = [3, 35, 13, 0, 55]
class = overweight

ALT <= 190
entropy = 1.642
samples = 56
value = [0, 24, 13, 0, 19]
class = obese_clas_1

body_mass <= 77.1
entropy = 1.065
samples = 50
value = [3, 11, 0, 0, 36]
class = overweight

entropy = 1.369
samples = 36

entropy = 0.993
samples =20

[ 4
entropy = 0.491 entropy =1.0
samples = 28 samples = 22

value = [3, 0,0, 0, 25] value = [0, 11,0, 0, 11]

class = overweight class = obese_clas_1

class = obese._clas_1 class = overweight

pl pl
value = [0, 5, 34, 12,0]  value = [0, 15, 13, 0, 0]
class = obese_clas_2

pi
value = [0, 11, 9,0, 0] value = [0, 13, 4, 0, 19]

body_mass <= 120.3
enfropy = 1.498
samples = 108

value = [0, 20, 49, 39, 0]
class = obese_clas_2

sex <= 05
entropy = 1.36
samples = 79

value = [0, 20, 47, 12, 0]
class = cbese_clas_2

[
entropy =0.918
samples = &

p
class = obese_clas_3

entropy = 0.996
samples = 28

[
entropy = 1.21
samples = 51
value =[0,0, 2, 4, 0]
class = obese_clas_1

Figure 7 Decision Tree Visualization of Factors Influencing Obesity

The Decision Tree, with an accuracy of 0.81, MSE
of 9.133, and RMSE of 3.022, shows lower accuracy
and higher errors, suggesting less robustness. In
contrast, the Random Forest model achieves better
performance with an accuracy of 0.86, MSE of
6.898012, and RMSE of 2.626407, demonstrating
a better balance of accuracy and error metrics. To
further
models like Gradient Boosting Regressor and

improve prediction results, boosting

XGBoost are employed. These models act as a

boosting process to reduce overfitting and

enhance prediction accuracy. As was expected
Gradient Boosting Regressor and XGBoost
models have the highest accuracy and the lowest
errors, demonstrating  superior  predictive
capabilities. This results are making them the most

reliable for predicting the outcomes in this studly.

Table 4 presents a comparison of model

performance for both basic and boosting models.
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Table 4 Model Performance Comparison

Model Training | Testing R- MSE (RMSE)
Accuracy | Accuracy | squared

Multiple Linear Regression 0.910977 | 0.902875 | 0.902875 | 4.526270 | 2.127503

Decision Tree 0.88 0.81 0.810075 | 9.133131 | 3.022107

Random Forest 0.91 0.86 0.856555 | 6.898012 | 2.626407

Gradient Boosting Regressor 0.99 0.95 0.949479 | 2.429442 | 1.558667

XGBoost 0.99 0.95 0.954510 | 2.187526 | 1.479029

From the conducted feature importance analysis of
the given ML models, the results are summarized
in Table 5. It can be observed that body mass is the
most significant factor influencing obesity, which
aligns with general knowledge. However, machine
learning models have confirmed that glucose is the
significant  factor, followed by

next most

Table 5 Feature importance

cholesterol, ALT, and blood pressure. This analysis
provides a comprehensive understanding of the
relative importance of various factors affecting
obesity, with body mass being the predominant
factor, but also highlighting the significant roles of
glucose and cholesterol.

feature importance
3 body_mass 0.461685
2 glucose 0.155964
1 cholesterol 0.117732
0 ALT 0.098791
5 bp_s 0.082499
6 bp_d 0.078030
4 sex 0.005299

Discussion

This study contributes by integrating traditional
statistical approaches, such as factorial design, with
advanced machine learning models to analyze

obesity factors and predict outcomes.

Traditional statistical methods, particularly the
factorial design used in this study, have proven
effective in identifying key variables like glucose,
cholesterol, and ALT, as well as the influence of
combining these factors. However, the main
strength of our approach is demonstrating how
enhance

well machine learning models can

prediction accuracy and offer a more

comprehensive understanding of the data.

This finding is consistent with existing research,
such as that presented by Thamrin et al. *” and By
Ferdowsy et al.®?, which also identifies glucose
levels as a major predictor of obesity in sugary
foods, alcoholic drinks consumption, sweet drinks,

fatty/oily foods, and soft/carbonated drinks.

Cholesterol (X2) was also found to have a
substantial impact, albeit slightly less than glucose.
This is in agreement with the findings of Chatterjee

et al.®

. who note that physiological factors like
cholesterol, significantly contribute to obesity and

cardiovascular disease.

The smaller but noticeable impact of ALT (X1) on

obesity especially to female attendance in this

© 2024 European Society of Medicine 13



study. Aligns with the literature, particularly
DeGregory et al.®?, who in the study apply neural
networks, and deep learning and were evaluated
using area under the curve for predicting high
blood pressure and high body fat. But also is many

studies that ALT is in relation with blood pressure®.

The primary contribution of the machine learning
analysis is not merely to reconfirm the influence of
well-known factors like glucose and cholesterol but
to rigorously assess how accurately these factors
can predict obesity outcomes when modeled
through advanced techniques®®. The decision
tree model, for instance, not only provides a
hierarchical understanding of obesity determinants
but also showcases how machine learning can
visualize and simplify decision-making processes.
In this study, machine learning models, including
Gradient Boosting Regressor and XGBoost,
achieved the highest prediction accuracy (95%)
and low RMSE values, significantly outperforming
traditional regression models and results from
other references for regression methods.

Conclusion

Integrating statistical methods with ML models

provided a more comprehensive understanding of

the factors affecting obesity, offering deeper
insights into their relative impacts and interactions.
This combined approach not only confirmed
known predictors of obesity but also revealed the
health

parameters and the influence of combining these

importance of considering multiple

factors for accurate prediction and effective

intervention.

Future research should continue to explore how
combining these methodologies can provide even
more precise and actionable insights into obesity

management and intervention strategies.
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