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ABSTRACT

The target of this paper is to review the main Probability models that
have been proposed to examine different problems in (experimental)
carcinogenesis. The models have been grouped, classified and analysed,
while their necessity was discussed. We were referred Data Analysis for
Brest Cancer, which has been faced under different Mathematical lines
of approach, as with fractals, information measures, among them.
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1. Introduction

The aim of this paper is to discuss and provide a
compact and critical review for the appropriate
Probability Models (Probability Model Oriented
Data Analysis) concerning the statistical bioassays
of the experimental carcinogenesis. Recently more
Mathematical approaches have been developed to
face the Cancer problem, the fractals being the
most popular.' These methods are not stochastic,
there is not a Probability distribution following the
underlying Biological mechanism, but certainly
deserve particular interest. Since the early 50's
interest in the cancer risk assessment has led to
various statistical lines of thought, due to different
intrinsic biological background considered each
time to tackle the problem and supported by the
appropriate statistical analysis.

The biological insight (cell proliferation, mechanism
of inhibition in mutagenesis and carcinogenesis) of a
cancer risk assessment has not been discussed here
—itis really too complicated, but we devote this paper
to Statistical consideration to face the problem.
Emphasis was given to the statistical models
considered in the literature in the area of experimental
carcinogenesis. Moreover, an optimal experimental
design approach is discussed, for evaluating the
percentiles of a distribution, facing the Low Dose
problem, while the D — optimality, always with an
aesthetic appeal in Biological — Toxicological
problems, is chosen as an optimal design criterion.

We applied this method for the typical One-Hit model.

There is a different line of thought facing the
"Cancer Problem" for different Sciences: There is
the Medical approach, Biological, Toxicological
and even Mathematical. There is a completely
mathematical approach to the Probability Models
emerged to discuss the Cancer, which are unpleasant
for the experimentalist, 2 however beyond the target
of this paper. We try to bridge the different lines of
facing the problem, around the Statistical way of
supporting the investigation of the problem.3*

An example of Epidemiological analysis was discussed

by Bernal et al.,” Hayat et al.,® Angelopoulou et al.,’

among others, while a Biologically based approach
adopting the Statistical theory was followed by
Coglianno et al.,® a Medical approach by Chyczewski
et al.,” and, finally, as a Relative Risk development
appeared in various cases and approaches by Edler
and Kitsos, '°© where a number of more than one
thousand references concerning the Cancer Risk
Assessment are listed. A large area of different
research was covered by Cogliano et al.,  covering
both Biological and Statistical development, in
their pioneering work.

The pioneering work of Moolgavkar and Venzon, ™
Moolgavkar and Knudson'? and latter that of
Luebeck and Moolgavkar %> addressed the model
building problem towards to probability models,
rather than to the statistical line of thought. Kopp-
Schneider ™ is working within the same probability
theory spirit, while the problem known as the "low
— dose extrapolation”, is in the boundary with the
curve fitting methodology. In such cases the limits
of the confidence interval of the extrapolating value
are used. We believe that the tolerance intervals
are more appropriate, covering that the 95% of
future observations will lie to the tolerance interval,
with certain probability, Muller and Kitsos. "’

There is a number of chemicals that have been
identified as initiators for a cancer process, through
experimentation, while others have been considered
as promoters. Initiation and promotion, in animal
experiments are referred as well as early — stage and
late — stage respectively, from the epidemiological
point of view. It has been underlined that a cancer
bioassay should be considered as the one that
proliferation might increase the frequency of
mutations as a consequence of errors in replication
or of the conversion of endogenous or exogenous
DNA adducts into stable mutations. Moreover, a
number of different animal experiments, especially
those conducted in the skin of mice, have been
used to distinguish the different levels of cancer
risk, working under the Risk Analysis. Therefore,
experimental carcinogenesis has an important role

in examining cancer initiation and promotion.
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The Risk Analysis problem does notaccept a unique
line of thought and development, but highly
depends on the nature of the problem. Typical
example is the food processing. It is clear in such
cases, and not only, that the chemical hazards can
be either naturally occurring (mycotoxins, pyrrolizidine,
alkaloids etc) or added chemical hazards (pesticides,
antibiotics, hormones, heavy metals etc), see Kitsos, '®
for examples. The Cancer problem, , admits, so to
speak, this data analysis line, and created "models”
for the development of tumour, and epidemiological
analysis for describing other characteristics, food
being one of them, associating with the Relative
Risk. This paper is focused to the former case of
study and provides a classification of the developed

models.

The optimal experimental design techniques,
Kitsos, ' usually have as a primary goal to extract
the maximum amount of unbiased information
regarding the factors affecting the response of the
experimentation, from a "small" number of
observations and get the "best" possible estimators,
with Statistical criteria. Risk Assessment in a Bioassay,
National Research Council (NCR),? complex
experimental design among many factors that
influence the response are often regarded as a
"nuisance”, and the problem is getting worse in
the neighbourhood of zero, as all the assumed
models, appears to be "linear” in that small area, so
extrapolation is dangerous for misleading results.
We believe the tolerance intervals are more
appropriate, as we have already mentioned.

The focus of interest lies in the qualification of the
time to tumour, as it depends on various
environmental factors, such as chemical substances
or radiation. Since the early work of Armitage and
Doll?" — also Armitage, %2 Doll 2% — Probability
models have been used to describe the process of
forming benign and malignant tumours. The cancer
problem was eventually the most beloved and
impressive statistical problem under consideration
and Sir David Cox was providing a number of
working examples, Cox, ?® Cox and Snell,? Kitsos,

2 with his hazardous function being a fundamental

tool for applications. Epidemiological studies were
performed under Statistical cover and essential
"parameters" were evaluating, even without the
support of Statistical packages. In principle there
are two main reasons for formulating Probability

models of carcinogenesis, to:

- provide a framework for evaluating the
consequences of the proposed mechanisms

of carcinogenesis.

- help to determine allowable concentrations
of known carcinogens in the environment, and
to estimate the consequences of exceeding
them.

This is necessary because animal experiments must
be done at concentrations high enough to cause
some of the animals to develop tumours, while
environmental concentrations must be low enough
to produce very few tumoursin man. Thus, apart from
the great difficulties due to interspecies differences,
animal experiments cannot be used directly to
study low concentrations. Therefore, beyond the
Statistical analysis, covered widely with software
now, some Probability model theory is needed,
which is not always covered from popular software,
to extrapolate the dose — response relationships
downward from the high doses used in animal
experiments to the low doses to be allowed in the

environment.

In principle there are two different approaches in

cancer modelling:

1. Those models that consider the whole
organism as the modelling unit and describe
the time to overt tumour in this unit.

2. Models that describe the formation of
carcinomas at the level of the cell, since
knowledge is accumulating about the cellular

biological events leading to cancer.

The problems we shall describe in this paper are
under the line of thought of Probability and Statistics.
As far as the shape of the tumour concemns, based
on tissue image analysis, can be studied under

(multi)fractal analysis, Stehlik et al.,? describing
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different tumour groups. In principle a fractal is a
geometric shape containing detailed structure even
at arbitrarily small scales, attracting interesting in
Biology and Medicine, due to the computational
improvements, for their strong Mathematical insight,
Losa and Nonnemmacher. ** A particular study based
on fractals for mammary cancer, Hermann et al., %
provides evidence that the method can be adopted
on case study, by case study as the probability models
are devoted for particular cases. Fractal methods,
although have developed a strong Mathematical
background they haven't developed an "intimacy",
there is no feedback with users and have not grasped

the potential for failure, eventually the existent

Relevant Risk per case. In section 2 the development
of the Probability models, at the early stages are
discussed.

2. Probability Models in

Carcinogenesis

Let D be the set of random variables, of the dose
level of a carcinogen that induces a tumour in an
individual agent and let T be the time at which an
individual develops a tumour. Then, it is assumed that,
an individual can develop tumour, at dose level d,
say, at a particular time t, with probability P(x, t),
which can be represented either restricted on time
or on dose as

P(d,t) x P(X < d|t):=F(d) or P(d,t) x P(T <t|ld):=G(t) (2.1)

The Probability models, which have been proposed
to describe the process of carcinogenesis, differ by
their realism and the description of the underlying
mechanism. due the assumed Biological insight
and their Mathematical tractability. In principle, the
underlying mechanism of the process is not usually
known. There are special guidelines for carcinogenic
risk, see US EPA. 3233 We are looking for that model,
which provides a "satisfactory" approximation to
the true process, using the Kolmogorov Statistical
Nonparametric test to verify the approximation, to
provide evidence that the chosen model, among
various rivals is the right one, Wosniok et al. (1998).
¥ In principle when the distribution of cancer
occurrence is requested, in dependence of dose
level d, and time dependence t, in experimental
carcinogenesis, and not only, it is needed to define
the cancer occurrence for the underlying model:
the common definition is to declare that cancer has
irreversibly occurred, when the first cell has reached
the final stage. The description of the involved
parameters, the comparison of different models,
those models considered for "low dose" cases, as
well as the possible data analysis, concerning the
Statistical inference, has been extensively discussed
by Wosniok et al. (1998).3

A pioneering paper on quantitative model of
carcinogenesis was that of Iverson and Arley, 3* who

assumed that the transformed cells are subject to a
pure linear birth process and a clone of transformed
cells is detected, if it exceeds a certain threshold.
It has been noted this model could be modified in

two different ways:

¢ [f we assume that only one step is needed for
the transformation of a normal to a malignant
cell.

e To assume that a tumour arises from a single

transformed cell.

In the former case we could assume that a number
of these transformed cells must accumulate for a
tumour to arise, while in latter a number (how many?)
of steps are needed for a transformed cell to arise

from a normal cell.

The improvement was from Nordling * who assumed
that k specific mutational events have to occur, for
a normal cell to transform into a malignant cell and
called this the multi-hit theory. Armitage and Doll
2 modified the multi-hit theory: they assumed that
a certain sequence of irreversible cell alterations
has to be followed. Moreover, the quantitative
implication of this approach was really masterly
investigated. The approach was called multi-stage
theory. It was not only accepted but, eventually,
found widespread application as the biological
plausibility was combined with the applicability to
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data sets (either from experimental or epidemiological
studies).

Now, let us consider the case of a constant,
continuously applied dose at level d. Moreover,
the transformation rate from each stage, i, say, to
the next one, i + 1, is assumed to increase linearly
with the dose. In mathematical terms this is equivalent
to: the transformation rate from the stage i — 1 to

the next stage i is assumed to be equal to a; + b;d,

where q; > 0 and b; > 0. The parameter a; presents
the spontaneous transformation rate, in the absence
of dosing (i.e. d = 0). Suppose that a tumour will
develop before time t if all k transformations have
occurred in sequence: the commutative probability
density function —that is the time t is involved, and
therefore mentioned in (2.2) model. Eventually the
model describing the k-th change has occurred, is
then given by

F(d,t) =1 —exp[ — (a; + byd)(ay + byd) -+ (ay + b d)t*/k!]. (2.2)

As the main assumption was that the transformation rate, from each stage, to the next one is linear model,

then (2.2) can be written as

G(d)=1—exp[—(0y + 0,d + -+ + 6, d")] (2.3)

where 6;, i =0,1,...,k are defined through the
coefficients of the linear transformations assumed
between stages, i.e.9; = 0;(t) = a; + B;t. Notice the
biological inside on the coefficients of model (2.3),
and therefore the value of k is essential: describes
that the susceptible cell can be transformed through
k distinct stages in order to be a malignant one as
the multistage model describes the phenomenon,
and not just an extension to a non-linear mathematical
model —this is a crucial point for the Statistician to
clarify. Same line of thought exists for the coefficients
9; = 6;(t), which are function of time, which is not

coming into light. Points like this bring Medicine-
Biology, close to Statistics.

It was noticed that for some cancers (e.g. lung cancer)
the cancerincidence rate increases with age, as log
incidence is linear related to log age. Therefore, a
log — log linear model describes the mechanism,
Mc Cullagh and Nelder.* In case that the time
independence is assumed and the mutation rates
are supposed to be small the hazard function, Cox,

26 Kitsos?® can be written as

At) =ct—ty) 1, c>0 k=1, or logA(t) =logc+ (k—1)log(t—ty) (2.4)

where t, is fixed for the growth of tumour and k is the number of stages.

The above hazard function is the basis of the
Armitage-Doll model, which may be considered
biologically inappropriate for very old persons. The
explanation is based on the fact that the very old

cells lose their propensity to divide, and, therefore,

are more refractive to new transformations. Thus,
the "plateau" at older ages may simply reflect a
compensating mechanism. Notice that to the
Armitage-Doll hazard function corresponds to the

density function

F©) = c(t — to) exp — < (t — to)*]. (25)

The target of low dose exposure is to estimate
effects of low exposure level of agents, known already
and to identify if there are hazardous to human
health. The interspecies extrapolation problem has
been discussed by Luebeck et al.,*® among others
and is based mainly to the fact that the "body weight",
say B, is related to the physiological parameter of

interest h exponentially as h = pB4, with p and g
parameters (very often q is reported around the
value of g = 0.75). Therefore, the experimentation
is based on animals and the results are transferred
to humans. So, the target to calculate the probability
of the occurrence of a tumour during the individual’s
lifetime is exposed to an agent of dose d during
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lifetime is replacing humans with animals. Moreover,
the idea of "tolerance dose distribution” was
introduced to provide a statistical link and generate
the class of dose risk functions.

Consider a nutshell - a tumour occurs at dose level
x = d if the individuals’ resistance is broken at x, then
the excess tumour risk is given by the Probability

"model"
F(d) = P(X <d) = P(Tolerance < d)

The above "model" is actually the unknown
cumulative distribution function that is eventually
modelled, in the sense that it is assumed: there
exists a statistical model which approximates F(d),
which acts as a cumulative distribution function. Then
the dose level "d" is linked with the binary response

(success or failure)
1 success with probability F(d)
0 failure with probability 1 — F(d)

Technically speaking the researcher only knows
that the parameter vector comes from a subspace of
the real numbers, 8 € @ € 9% and we try to estimate
as well as possible, different to be considered
models, for different studies, see also Hartley and
Sielken, ¥ as far as the safe dose concerns.

When the proportion of "successes"”, as a response
in a binary problem, is the proportion of experimental
animals killed by various dose levels of a toxic
substance, Finney, ©° called this experimental design

bioassay.

When it is assumed that the cancer occurs when a
portion of the tissue sustains a fixed number of
"hits"; cancer is observed when the first such portion
has sustained the required number of "hits", then
the One-Hit model is considered. That is the
carcinogenesis problem is formulated to quantify
incidence data, then the tolerance distribution
models are adopted. In this family of models, the
parametric function is suggested as the distribution

of the time.

The best known tolerance distribution is proposed
by Finney, * in his early work, the probit model of
the form

P(d) = &(u + ad),

with @ being, as usual, the cumulative distribution
function of the Normal distribution and u and o >
0 are location and scale parameters estimated from
the data. Practically, the logarithm of dose is used
that implies a log normal tolerance distribution.

The most commonly used parametric model for

carcinogenesis is the Weibull model

P(T<t)=1—e D"
With t being the time to create a tumour, and with
hazard function.

A(t) = k GF t*1 (2.6)

For the shape and scale parameters 6, k >0,
respectively, it is assumed when the Weibull model
can exhibit a dose-response relationship that is
either sub-linear (shape parameter k > 1) or supra-

linear (k < 1), and has a point of inflection at x =

(G- 1) /1"

The Weibull distribution is the fundamental
distribution in Survival Analysis and is used in
Reliability theory as a lifetime distribution. It is an
extreme value distribution and is obtained as the
distribution of the minimum of identical
exponentially distributed random variables. Hence,
if a "system" consists of independent components,
each having identical exponential lifetimes, and if
the system fails, whenever the first component
reaches the end of its lifetime, then the lifetime of

the system follows a Weibull distribution.

Due to its flexibility, the Weibull model is suited to
describe incidence data as they arise in animal
experiments and in epidemiological studies. It has
been used for common parametrical analyses, e.g.
comparison between experimental groups, which
were treated with different doses of a carcinogenic

substance.
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The Weibull model has been extensively discussed
for tumorigenic potency by Dewanji et al.,*
through the survival functions and the maximum

likelihood estimators.

The second derivatives of the log-likelihood [ are

Kd d
lgg = —57" k(k —1)0% 2 Z tl, Lo = —2 0"2 tillog(6t;)]

Thus, from the maximum likelihood function, from

a censored sample the MLE of 6 is

1/
0 — (;K) _ 2.7)

2

d
g = s 0% 1(1 + klog H)Z t — KHK_lz tf logt;,

Therefore, the 2 x 2 Fisher's information matrix,
with diagonal elements Iyg, I, can be evaluated
and then the Variance-Covariance matrix is the

inverse of Fisher's matrix.

Example 2.1: For a working example on the above,
see Kitsos and Limakopoulou. %2

Example2.2. Simulation Study for the One Hit Model.

The One Hit model was chosen for a particular

study under the imposed frame work We face this

problem as a sequential design, Kitsos ** with equal
and unequal batches. Practically the definition of
the design space means "where the input variable"
for example dose level, takes values, the rand of the
dose level, while the parameter space means where
the parameter lies. Then the Probability model
describing this assessment, depending on the

unknown parameter we try to estimate is,

T(x;0) = P(y =1|x,60) = exp(—0u) = 1-P(y = 0|u, 6)

The corresponding log-likelihood function is

70) = =Yx;y; — (1 — y)[xexp(—=6x;)]/[1 — exp(—0x;)]

while the summation ¥, runs from 1 to n. In probability
terms the value x,,; = 1.59/6 corresponds to p =
0.2 — notice the dependence on the unknown
parameter 0. For the binomial model with success
probability p = P(y = 1|x, 6) it seems reasonable
in practice to keep probability levels within the
interval [0.025,0.975]. Notice that the optimum
design point depends on the unknown parameter,
therefore a prior guess is needed. The unknown
parameter is estimated sequentially.

3. On the Michaelis-Menten Model

A general theory for enzyme kinetics was firstly
developed by Michaelis and Menten* in their
pioneering work. This is discussed very briefly bellow:
When an enzyme, say E, combines reversibly with
a substrate, say S, to form an enzyme-substrate

complex, say ES, which can be dissociate or proceed
to the product, say P, the following scheme is

assumed
kq
N k3
E+ S ES —— E4+ P
k
2

with ky, k,, ks the associated rate constants. We
k2+k3

let K, = the Michaelis-Menten (MM) constant,

Viax = k3CT10T, Cror = the total enzyme concentration.
In principle Ky, is the concentration at one half .
with V. being the maximum metabolic rate
constant. As far as the interspecies extrapolation
concerns the MM constant is assumed to remain
constant. Then a plot of the initial velocity of reaction
u, against the concentration of substrate, Cg, will

provide the MM rectangular hyperbola of the form

© 2024 European Society of Medicine 7



_ VmaxCS

U= (3.1)

Notice that in practice we only have readings of the
form (3.1) with f(x,0) =u being a non-linear
function as above with the parameter vector to be
0 = (Vmax Ku), x = Cs. The deterministic relation
(3.1) is linked with the experimental error. And in
practice only readings for the stochastic non-linear
model of the form y;=u;+e¢;, i=12,..,n is
obtained. That is, readings y; are associated with
noise, with mean zero and variance constant, with
the Normality assumption valid when inference is
needed. For the optimal design consideration and
evaluation of the parameters in Michaelis-Menten
Model, see the early work of Endrenyi and Chan, #°

while Currie * have discussed the heteroscedasticity

in the Michaelis-Menden Model and Gilberg et al.#
provides an extensive discussion, while for all the
possible ways the experimentalist wishes to fit the
model, see Toulias and Kitsos.*® As far as the
construction of the confidence intervals, here a
special consideration is needed. An extra statistic
is defined: the supremum value of Beale’s measure
of nonlinearity, Bates and Watts, * for models with
two or more parameters, can be reduced to

n 1
B=1+ 2 VF (32)
with F being the F distribution with the appropriate
degrees of freedom (df). Therefore, the approximate

confidence region for the MM model is

(9 - @)Tl(é, f) (0 - @) < Bps?F(a;p,n —p) (3.3)

When B =1, a linear approximation is considered.

As usually s? is a suitable estimator of g2 i.e. s% =
1 -

— 2= i — 9%

There are two lines of thought to approach the MM

model as an optimal experimental design:

1. From the biological point of view, which
eventually ensures: enzymatic process plays
an import role in practice. In cancer studies,
the question is whether enzymatic induced
interactions have an influence on the
production of a carcinogen. This is strongly
related with the estimation of V,,,, and K,
with such attempts give more emphasis to
practical problems, Currie,* Endrenyi and
Chan, * Gilberg et al..

2. The statistical point of view includes Michaelis
Menten within the class of non-linear models
and uses the model within this theoretical

framework, Kitsos*® among others.

Two more very crucial points are also mentioned
namely: that this design is optimum for estimating the

ratio V.4 /Ky and that the variance o2 is not constant.

Endrenyi and Chan“ discussed and obtained the

D-optimal design points, without the minimization

of the information matrix. They worked out,
empirically, different designs to calculate efficiencies
and claim calculations for 100% or 95% efficient
designs. The Optimal Design theory can be applied
in experimental Carcinogenesis, Kitsos, >""? while the
Metabolizing Enzymes for Lung Cancer Risk Factors
have been discussed by Risch et al.. %2

It is clear that in enzyme kinetic studies, with
constant variance the one design point might be at
the highest possible concentration, and the second
at the maximal feasible velocity. The main result,
Kitsos® for the Michaelis - Menten Model is that
the D-optimal design for the MM model as in (3.1)
does not depend on V., the "linearly contributed"
parameter. That practical means that only for one
parameter you need prior information, and the D-
optimal design for the extended Michaelis - Menten
model of the form
VmaxCS

U=

=X L g.C
Ky+C  °7%

for estimating 8 = (Vjax, Ky, 89) does not depend
on Vyuax and 6y, which can be considered as the
linear metabolic rate constant. Moreover, the Dg-
optimal design for estimating 6,, depends only on

K. This comes as a result that an extra linear term

© 2024 European Society of Medicine 8



does not influence the MM optimal experimental
design, Kitsos,*° while if U >> K, (U is too large
comparing Kj) the locally D-optimal design (the one
which allocates half observations at two contributed
optimal design points) allocates half points at U
(the maximum value of the concentration of substrate)
and K, (the initial guess for the MM constant).
Moreover, it is Optimum value of Cs = K.

Notice that the D-optimal designs as above for
estimating the parameter vector (W45, Kyy) are the
D-optimal designs for estimating the ratio ¢ =
Vinax/Ku- This result is really helpful for the
experimentalist, as to get a ratio estimates is a
difficult task in Statistics.

This result is Statistically essential, as there is, in
principle, a difficulty on ratio estimates.

The problem is always the initial guess. Therefore,

we propose two steps of calculations:

A1: Devote a proportion p for your n observations
at first stage i.e. allocate nz—p observations at U
and K,, or at U and Optimum Cs. Get the
estimates. Use these estimates to feed the next
step A2.

A2: Perform sequentially @ more runs OR a

second static design with the estimates obtained
at stage A1 (this case is known as two stage
design).

The MMM is rather a Statistical model, than a
Probability one, but still within the useful models
facing the Cancer problem. More elegant,
mathematically, models can be constructed and
are discussed below.

4. Advanced Probability Models

The mechanistic models have been named so,
because they are based on the presumed
mechanism of the carcinogenesis and they form a
particular class of models. The main and typical
models of this class are the dose response models,
used in Risk Assessment, based on the following

main characteristics:

> There is no threshold dose below which the

carcinogenic effect will not occur.

» Carcinogenic effects of chemicals are induced
proportionally to dose (target tissue

concentration) at low dose levels.

» A tumour originates from a single cell that
has been damaged by one of the two reasons:
either the parent compound or one of its

metabolites.

The mechanistic class of models can be subdivided
into those models that describe the process on the
level of the organism or on the level of individual
cells, see section 1. The following subclasses are

referred.

The sub-class of Global models, includes those
models that on the level of the whole organism, are
closely related to the introduced Probability Models
for Cancer, as also describe the time to detectable
carcinoma. Typical example is, the cumulative
damage model is motivated by reliability theory.
This model considers that the environmental factors
cause damage to a system, which although does
not fail "immediately", eventually fails whenever
the accumulating damage exceeds a threshold. The
model adopts a Poisson process generating time
points in which damage occurs.

The second sub-class of the class of Mechanistic
Models is the Cell Kinetic models. They attempt to
incorporate a number of biological theories, based
on the line of thought that the process of
carcinogenesis is on the cellular level. There has
been a common understanding among biologists
that the process of carcinogenesis involves several
biological phenomena including mutations and
replication of altered cells.

Cell kinetic models are subdivided by the method,
which is used for their analysis, in Multistage Models

and Cell Interaction Models, as follows.

The main class of cell kinetic models comprises
multistage models, which describe the fate of single
cells, but does not take into account interactions

© 2024 European Society of Medicine 9



between cells. In these models, mutations and cell
divisions are described. These models stay
analytically tractable because cells are assumed to
act independently to each other. The variables of
interest can be derived explicitly, and hence the
usual statistical techniques can be used to apply these
models to data. The pioneering work of Moolgavkar
and Venzon ' formulates a two - stage model with
stochastic clonal expansion of both normal and
intermediate cells and they introduced a mathematical
technique to analyse a two - stage model with
deterministic growth of normal cells and stochastic
growth of intermediate cells. Moreover, Moolgavkar
and Knudson ' showed how to apply this latter

model to data from epidemiological studies.

Working on incidence data from animal experiments
and epidemiological studies, Kopp — Schneider, '¢
is providing the appropriate definitions and
understanding for the underlying probabilistic

mechanism model for applications.

The second sub-class of the cell kinetic models is
the Cell interaction models incorporating both the
geometrical  structures of the tissue and
communication between cells are too complicated
for analytical results. These models aim to describe
the behaviour (described by a number of simulations)
of complex tissues in order to test biological
hypotheses about the mechanism of carcinoma

formation.

The Generalised Multistage Models (GMS) or Cell
Interaction Models and the Moolgavkar-Venzon-
Knudson Models (MVK) are based on the following

assumptions:

» Carcinogenesis is a stochastic multistage

process on cell level.

> Transition between stages is caused by an
external carcinogen, but it may also occur

spontaneously.

Cell death and division is important in MVK models.
The normal, intermediate and malignant cells are
depending on time. Intermediate cells arise from a

normal cell due to a Poisson process with known
rate. A single intermediate cell may die with rate g,
divide into two intermediate cells with rate a, or
divide into one intermediate and one malignant
cell with rate u. Therefore, the process gives rise to
the three steps:

e Initiation, promotion, progression which are
very different from the biological point of view.
If an agent increases the net cell proliferation
a- B, the cancer risk will also increase, Leubeck

et al., *® Leubeck and Moolgavkar. '

These cell kinetic models were used to describe
the time to tumour as a function of exposure to a
carcinogenic agent. Two objectives guide this
research. On one hand, the models can be used to
investigate the mechanism of tumour formation by
testing biological hypotheses that are incorporated
into the models. On the other hand, they are used
to describe the dose-response relationship for

carcinogens.
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PROBABILITY MODELS OF CARCINOGENESIS

Level | /\

Mechanistic Models Tolerance Distribution Models (TDM)

Level Il /\

Cell Kinetic Models

Global Models

Level I /\

Multistage Models (MM) Generalized Multistage Models (GSM)

or Cell Interaction Models

Figure 4.1: A classification of the stochastic models of carcinogenesis.

The compact presentation and discrimination in
Figure 4.1 has been taken place at first level according
to the intention, at second level according to biological
detail and at third level according to the desired

method, and is based on the above discussion.

5. Theoretical Implications in
Practice

There is a need for calculating low level percentiles,
Kitsos, > working for low dose extrapolation
problems. For practical reasons the calculation
should be simple such that it can be adopted easily
be the experimentalist, while at the same time, this

derivation has to be optimal in the statistical sense.
One of the targets of this paper has been to refer
on the calculation of the low — dose percentiles by
adopting the sequential principle of design, Hu. %
The sequential approach can be faced easier through
the stochastic approximation scheme. This is
discussed below in comparison with a static design
approach: i.e., perform once an experiment.

Example 5.1 Recall the One Hit model F(x) =
1- exp(—6x),6 >0,x=>0.

According to the definition of the percentile point
itis

1 1/k
F(Lp) =1 — exp(— (0Lp)* = L = (=52 In(1-p)) (5.1)

This result can be generalized. It has been proved,
Kitsos, *° that within the class of Multistage Models
there exists an iterative scheme which converges to
the percentile L,,. Such a need is essential when p is
very small and can always be evaluated sequentially,
rather than working with a static design, as the

estimated percentile is re-estimated. >

Another point of interest, with a strong theoretical
background, is mixtures. Humans are exposed to a
large number of chemicals from a variety of different
sources, either sequentially or static/concurrently.
We would like to clarify that the mixtures of chemicals

are ubiquitous:

1. in the air the animals and humans are

breathing
2. the food that all species are eating

3. the water that all species and especially

humans are drinking.

Therefore, an extended analysis to the involved
chemical mixtures is needed to provide a further
analysis on Cancer Risk Assessment, Kitsos and
Edler,> who worked on the different Statistical
models concerning the mixtures and the
corresponding Geometrical presentation, to clarify

the situation to the experimenter.
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A simple chemical mixture consists of a composition
of chemicals. In practice this composition consists of
no more than ten chemicals. The qualitatively and
quantitatively synthesis is supposed to be known,
in any case, that means that even if it is not known
has to be investigated and analysed. The various
combination of chemicals can eventually affect on
either different target organs or the same target

organ.

The above two groups can be combined with the
two assumptions on the action of these chemicals.
This action is consisted of chemicals that can be
either with different mode of action or with the same

mode of action.

The main terms in a biological mixture bioassay,
when a mixture experimental approach is adopted
for the biological/toxicological problem, under
investigation, has been developed by Hodgson and

Levi, *® Kitsos and Edler®’:

- Synergism: Both involve toxicity greater than
would be expected from the toxicities of the
compounds administrated separately, by in
the case of synergism one compound has
little or no intrinsic toxicity administered alone,

where in the case of

- Potentiation: both compounds have appreciable
toxicity when administered alone.

As a toxicological interaction, the National Research
Council (NCR), % defines a circumstance in which
exposure to two or more chemicals results in a
qualitatively or quantitatively altered biological
response relative to that predicted from the actions
of a single chemical.

log{p(x)/(1 —p(x)} =

Hosmer and Lemeshow, ®' Rao and Toutenburg, ¢2
we can evaluate that

p(x) = Logit™'(x"B)
which remains invariant under affine transformations, %
while for a development of the Generalized Linear
Models see Collet, ¢’ Cox and Snell. ?” A very similar

In principle the investigator is interested to get
more information and they are usually constructed
in such a way, that they extract as much information
about the process as is possible, following a certain
criterion. An "optimal experimental design" is that
design which estimates the involved parameters
"aswell as possible", with the most popular criterion
being to have the estimators the smallest variance,
i.e., the smallest possible error —this is the D-optimal

criterion.

There are different types of optimal experimental
design for different targets. The main ones are Kitsos
and Edler>”:

R/

% 2% Factorial Design, 2¥~9 fractional factorial,

Rotatable, Simplex,

% Optimal designs (e.g., D-optimal etc.) and
other.

Another theoretical issue, which it is not considered,
unfortunately, is the effect of Covariates to prognosis,
Prentice and Kalbfleisch,* Kitsos,®® Begg and
Legakos, ®’ among others. The adoption of the
covariate idea to the development of tumour, needs

a careful study and it is beyond the target of this
paper.

In this paper, the logit modelis adopted to estimate
the relative risk, through the relative risk. The logit
model has been suggested, since the pioneering
paper of Berkson.¢? That is the "log odds" have
been assumed linear in terms that considering a
subject with attributes, given by the input vector
X = (X, ...,Xp)T, Breslow and Day, # Cox and Snell,”
then

= Bo + Brxy + -+ Bpxyp,

approach had been adopted by Bliss®® in his
pioneering paper of Risk Analysis, were counting the

number of dead insects after being exposed to CS,.

Usually, interest is focused on the Relative Risk (RR),
with RR = exp(B;) and we test the null hypothesis
Hy: RR = 1 vs the alternative H;: RR # 1. The Chi-
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square test, Lemeshow and Hosmer®” among others,
is very useful, when a "large" number of observations
are considered, while the hazard function has been
also proved useful to the experimenter, especially
when the time is part of the whole study. Although
the Normal distribution has been generalized and
the hazard function for the Generalized Normal has
been evaluated, Toulias and Kitsos, ° the researcher
still needs the classic hazard function, as it is easier
to be evaluated and there are not Mathematics
associated with it.

Example 5.2. Some of the markers related to the
breast cancer are widely monitored and the relevant
tests are routinely performed on patient samples,
with the following being the most popular: Estrogen
Receptors (ER), Progesterone Receptors (PR), HER-
2, p53, S phase. Many gene polymorphisms in the
metabolism of breast cancer have been described
as possible neoplasm etiologic factors, Bugano et
al..”" Regarding the breast cancer risk assessment,
susceptibility, and its relation to CYP17, MspA1
polymorphism, different opinions have been
expressed, Feigelson et al.,’? while Huang et al.”
found a positive association between the breast
cancer relative risk and the individual susceptibility
genotypes. See Kitsos ™ for the details of this study,
while the method was extended for the Generalized
Normal distribution and Information criteria providing
an appropriate software, Kitsos and Toulias. 7>

Therefore, a study, was performed referring to 98
breast cancer patients and 125 healthy controls
where they were compared considering the age at
menarche, age at menopause, the number of full-
term pregnancies and the CYP17, COMT genotypes.
The frequency of CYP17 A1/A1 genotype was
compared to A1/A2 and A2/A2, whereas the
frequency of COMT G/G genotype was compared
to G/A and A/A. The result was that the full pregnancy
with Relative Risk, RR = 1.42 and Menopause with
RR = 1.04 (p < 0.05) influence the final RR.

Interpretation of the coefficients of the statistically
significant variables, provide evidence, that on the

basis of this study, when the age at menopause

increases one year the probability of breast cancer
increases 4%.

Moreover, women with full time pregnancy have
42% less probability for breast cancer than the other
women. In that point it is useful to remark that from
the interpretation of the coefficient of the variable
age of menarche from the full model we have that
when the age of menarche increases one year then
the probability of cancer decreases 5%. There is a
strong interest on the subject from the statistical
point of view, see Duffy, ” Prentice and Gloeckler,”’

among others.

6. Conclusion

It has mentioned that tumour markers (usually
proteins associated with a malignancy) might be
clinically usable in patients with cancer, Cheung et
al.,”® Amaral-Mendes and Pluygers.”” Atumour marker
can be detected in a solid tumour, in circulating
tumour cells in peripheral blood, in lymph nodes, in
bone marrow or in other bodly fluids. As the problem
of Carcinogenesis is so important a number of models
have been already reviewed, Vineis et al.,® while
others provide new ones, Gatenby and Vincent, ®'

as it is expected due to the evolution.

The aim of this paper has been to offer Statistical
methods and discussion either for experimental
carcinogenesis problems or for real life Cancer
problems. The former needs extrapolation to humans
or interspecies extrapolation, Travis et al., ® while
the latter is a real problem with the most references
in the Science, Edler and Kitsos, '° Crump et al..®
Different accidents, the main one being the
Chermobyl, Baverstock and Williams, # among others,
provided less information than it was expected, due
to the problems to collect the appropriate data. As
the Risk Assessment of Cancer has studied in detail
from the medical, Ladenson, ® Kawai et al., % Hayat,
et al., ¢ toxicological studies, Bowman et al.,® and
biological points of view, Arden et al.® the main
objective of this work has been to provide an insight
into this problem from the Statistical point of view

proposing a sequential bioassay for the estimation
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of low — dose exposure, i.e. low — dose percentiles.
The optimal experiment design has been adopted
and the sequential principle has been considered.
Static designs, where all the observations are used
once have the disadvantage that a costly experiment
might be performed and the acquired estimator might
be far from the "true" value. The effect of covariates
in Cancer problems, it is always a useful idea to
proceed, Petersen, ¥ Kitsos. ¢

The Probability Models it is not related to
epidemiological studies, Ferlay et al.,”® Horn-Ross
et al.,”" Kafadar and Tukey, ¥ among others. These
studies can be helpful in constructing statistical
parameters, and being helpful in Risk Analysis
studies. We strongly encourage the development
and use of such models trying to explain the
underlying mechanics through Statistical modeling.
It is better to approach the situation with an error
than to have no model to describe the phenomenon.
In the development we attempted, mainly based on
our research work, we believe that Luebeck et al., 3
Montie and Meyers * are among those who tackled
the real problem, while the majority of Statistical work
offer ideas for facing the problem, as it happens to
Risk Analysis which oscillates between practice and
theory, Kitsos. '® But still we believe that a simple
geometrical figure clarifies the situation, providing
food for investigating the Statistics behind. It is a
real need the Statistical coverage, usually through
an appropriate, and assumed correct, model. There
are a number of theoretical techniques, trying to
support the research on this kind of Bioassays.

The affine Geometry approach for the invariance of
the logistic model, Kitsos, *® can be useful on defining
the appropriate transportation from animals to
humans (usually it is assumed the transformation:
the body weight to the power around the value of
0.74), while Hermann et al.®" provided more
Mathematics to study the surface of a tumour.
Statistics is the right hand of Sciences, so we believe
it can proved herself useful facing Cancer problems,
communicating with Medicine and Biology. The

advice "Keep It Simple", Kitsos, %8 is depending on

the definition of "simple", which is a function of time.
What is "simple" today was not 50 years ago, with
typical examples being the conic sections (of
Apollonius), which were waiting for centuries Kepler
to adopt them. Now ellipse, parabola etc. are simple
questions at high schools. Therefore, it needs
determination, and capable communication skills,
to adopt the Probability models of today to study,
in a team work, the evolution of the cancer problems.
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