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ABSTRACT

Background: Sudden cardiac death is a leading cause of death in the US and
globally. Implantable cardioverter-defibrillators (ICD) prevent this through
electrical therapy, but inappropriate therapy for non-life threatening heart

rhythms remains pervasive.

Objective: The goal of this study was to improve upon current ICD discrimination
algorithms by using supervised machine learning techniques on an annotated
database of ICD electrograms (EGM) preceding therapy to discriminate
between appropriate (App) or inappropriate (INApp) therapies.

Methods: A total of 54 EGMs of therapy events adjudicated by cardiologists
were digitized from 49 cases. The signals were analyzed within either a single
long window, or four short overlapping windows preceding therapy. The
discrimination between App and InApp therapies was done using EGMs
recorded over specific windows by separately calculating RR-based and nonlinear
dynamic (NLD) based metrics, and creating RR- and NLD-scores, respectively.
Linear and quadratic discriminant analysis (LDA and QDA) were then used on
the obtained RR- and NLD-scores to predict the App or InApp therapy. These
results were then compared to the App and InApp designation by cardiologists.
Error rates based on incorrect classifications were used to evaluate the

performance of both techniques.

Results: We demonstrated that the optimal windows for LDA and QDA can
both greatly improve upon modern error rates, with our QDA error going as
low as nearly 2% when using an optimal window, as compared to the errors
up to 25% found in recent studies. Despite QDA having a lower overall error
across all windows, the QDA error came mostly from more dangerous false
negatives, whereas the majority of LDA error came from less dangerous false

positives.

Conclusions: This novel strategy shows promise for use in retrospective
discrimination of inappropriate and appropriate ICD therapy events and
could improve real time decision making algorithms in ICDs. Additional studies
should be completed to assess its utility in real time decision making and case

adjudication.

© 2024 European Society of Medicine 1


https://doi.org/10.18103/mra.v12i10.5913
https://doi.org/10.18103/mra.v12i10.5913
https://doi.org/10.18103/mra.v12i10.5913
https://doi.org/10.18103/mra.v12i10.5913

Introduction

Sudden cardiac death (SCD) is a major health
problem in the United States and globally with over
four million deaths related to SCD per year globally.™
*SCD can be prevented by implantable cardioverter-
defibrillators (ICDs), a surgically implanted device that
detects and terminates life threatening arrhythmias
such as ventricular fibrillation (VF) and ventricular
tachycardia (VT) through anti-tachycardia pacing and
high voltage shock therapies. Thus, by implanting
ICDs in individuals deemed at high risk for SCD, many

cases of SCD are prevented.

Despite ICDs decreasing mortality in numerous large,
multicenter studies,>'? they are not without risk. ICDs
detect VT/VF through several embedded criteria.
When an ICD correctly detects VT/VF and delivers
therapy to terminate the event, the intervention is
labeled as an “appropriate” (App) therapy. Annually,
10-20% of patients with an ICD experience
appropriate ICD therapy to terminate VT/VF.'1?
However, an ICD may mistakenly identify a non-life
threatening rhythm, such as rapid atrial fibrillation
(AF), as VT/VF and deliver “inappropriate” (InApp)
therapy, which may cause pain, suffering and post-
traumatic stress disorder, thereby reducing overall
quality of life and increasing morbidity and
mortality.'3'

Current ICDs rely heavily on the heart rate (HR)
calculation from RR intervals on electrograms (EGMs)
for determining if current signals necessitate therapy.'
If the calculated HR for a potentially arrhythmic
signal is above a predetermined threshold, and
other criteria on onset, stability and morphology are
met, the rhythm will be labeled as VT/VF and therapy
will ensue. Recent studies have shown that up to 1
in every 4 applied ICD shocks may be applied
inappropriately.'®'?  Given these shortcomings,
devising an alternative approach to discriminate

between App and InApp therapy is imperative.

The goal of this study was to improve upon current
ICD discrimination algorithms by using supervised
machine learning techniques with both traditional

RR-based metrics as well as novel nonlinear-dynamics

(NLD) based metrics. The accuracy of linear
discriminant analysis (LDA) and quadratic discriminant
analysis (QDA) were quantified by calculating the
error for each technique.

Materials and Methods

DATA DESCRIPTION

Patients with heart failure who had an ICD implanted
for primary prevention of SCD according to the
practice guideline criteria were included in this
analysis."” Briefly, the patients had heart failure (New
York Heart Association class lI-I1l) with left ventricular
ejection fraction <35% while on optimal medical
therapy for at least 3 months were eligible. Those
who had a myocardial infarction in the last 40 days,
or coronary revascularization in the last 90 days were
excluded. The cohort included patients with ECG
characteristics that increased SCD risk.'® However,
those with left bundle branch block or intraventricular
conduction defect on ECG with QRS > 130 ms,
who were eligible for cardiac resynchronization
therapy were excluded. ICDs were implanted from
2016 to 2020 and followed centrally by the Veterans
Affairs National Cardiac Device Surveillance Program
(average follow up 31.5 months).

ICDs are electronic devices that monitor the heart
rhythm continuously for any arrhythmias. When an
arrhythmia occurs or an ICD therapy is delivered, a
rhythm strip, called EGM, is saved in the device's
memory. These EGMs can be accessed for analysis
and interpretation by ICD interrogation with a

programmer or remotely.

The database used consists of 54 case reports in
the form of PDF files. Each file consists of EGM signals
forboth App and InApp therapy in accordance with
an institutional review board # 1594876 approved
protocol. Within this database, EGMs recorded by
ICDs were professionally labeled and annotated,
allowing for identification of arrhythmia onset, App
or InApp therapy delivery, and visualization of the
temporal windows used to capture patient EGM
signals. Specifically, each EGM was reviewed by two
cardiac electrophysiologists and adjudicated as App
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or InApp therapy, using tachycardia onset, stability
and QRS morphology criteria. Differences were

resolved by discussion.

The EGMs from each case report were reviewed for
their ability to be digitized. 5 cases were excluded
at this point because they had thick solid-lined
grids obscuring much of the EGM signals on the
PDF dataset. 1 other case was excluded because
the device was BioTronik manufactured, while all

other case reports were from Boston or Medtronic

manufactured devices. In summary, 49 acceptable
cases with a total of 54 therapy events (42 App, and
12 InApp) were used for analysis.

DATA DIGITIZATION AND WINDOWING

First, each PDF image of the far-field EGM from the
case reports was digitized, and corresponding RR
intervals were transferred by hand. The digitized
signal recording typically had 20 to 40 RR intervals
(see Figure 1).
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Figure 1: Diagram of the workflow for the data digitization and pre-analysis. Panel A (top) shows a representative

example of an EGM from a Medotronic single chamber Transvenous ICD, together with annotated RR intervals.

Panel A (bottom) shows the digitized signal and a count of RR intervals prior to the therapy event indicated

by an arrow labeled “Therapy.” Panel B demonstrates Window 1 and Window 2 approaches.

The ASCII EGMs and RR interval data for each event
were segmented into several windows using two
approaches as shown in Figure 1B. In the first approach
(Window 1), we used 16 RR intervals prior to therapy
delivery (see top panel in Fig. 1B). This approach was
chosen as it was the largest window at which all App
therapy cases displayed VT/VF for the entire EGM.
In the second approach (Window 2), we used 25 RR
intervals prior to therapy delivery, and split them into
4 overlapping 10 RR windows (see bottom panel in
Figure 1B). The Window 2 strategy was chosen to
allow for therapy decisions closer to the most optimal
time for delivery. In addition to this, a practical
implementation of Window 2 in an ICD would result in
a higher frequency of App or InApp decision making,
allowing for therapy to be administered closer to the

most optimal time point than allowed by the Window
1 approach.

TRADITIONAL RR-BASED AND NONLINEAR-
DYNAMICS-BASED METRICS

A total of 7 traditional RR-based metrics were
calculated using the provided RR intervals from the
EGMs digitized from each case report in the database:
the mean RR interval (MeanRR) over the windowed
range, the proportion of the successive differences
in RR intervals (NNs) that exceeds 50 ms (pNN50),
the root mean square of the NNs (RMS), standard
deviation of the NNs (STD), two Poincare metrics (SD1
and SD2), and the ratio of those two (SD1/5D2). The
mean values of all 7 RR metrics were calculated for
the Window 1 of all 54 EGM case reports (see Table
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1) separately for all App and InApp EGMs. Table 1 and InApp EGMs. These metrics were further used

indicates that 6 out of 7 RR-based metrics are to calculate an RR Score according to the following

statistically significant (*, p<0.05) between App formula:

RR Scorex = MeanRRx+ pNN50x+ RMSx+ STDx+ SD1x+ SD2x

Table 1: Mean values and their standard deviations of RR and NLD metrics calculated for all App and InApp
therapies using Window 1 for all EGMs. * indicates a statistical significance between App and InApp parameters
at 0.05 level.

App INApp
MeanRR | 270.87+34.05% | 311.93%35.19
pNN50 0.01+0.04* 0.4+0 18
RMS 14.43+13.32* | 855444196
RR Metrics STD 11.52+9.45* | 66.52+30.33
SD1 10.49+976* | 62.39+30.60
SD2 11.91+9.86* | 69.15+33.12
SD1/SD2 0.81+0 49 0.95+0 27
MSF 4.95+1 27" 6.95+1.81
LD Metrics MSE 0.53+0.19 0.65+0 18
SE 8.30+0 39" 7.49+0 57
Kt 3.731.53" 6.89+2 12

where x = [1, 54] is the case number.

The NLD-based metrics identify changes in the
intrinsic electrical complexity of the EGMs. In this
study we utilized four NLD-based metrics that were
shown to be applicable to short non-stationary
signals: the information-theory based multi-scale
entropy (MSE) and Shannon entropy (SE), statistic-
based Kurtosis (Kt), and frequency-based multi-
scale frequency (MSF)."?21> The mean values of all
4 NLD metrics were calculated for the Window 1 of
all 54 EGM case reports (see Table 1) separately for
all App and InApp EGMs. Table 1 indicates that 3 out
of 4 NLD-based metrics are statistically significant
(*, p<0.05) between App and InApp EGMs. These
metrics were further used to calculate an NLD Score

according to the following formula:
NLD Scorex=MSFx-SEx+Ktx

where x = [1, 54] is the case number. The value of
-1 was used for SE to maximize the difference in
the scores for the App and InApp cases.

STATISTICAL ANALYSIS

All RR-based and NLD-based metrics from Table 1
were statistically compared between App and
InApp therapies with a one-way ANOVA. Statistical
significance was defined at p<0.05.

LINEAR DISCRIMINANT ANALYSIS AND
QUADRATIC DISCRIMINANT ANALYSISTO
DISCRIMINATE BETWEEN App AND InApp
THERAPIES

By calculating an RR and NLD Score for all 54 EGM
signals in the database, we represent every EGM as
a pointin a RR-NLD Score space. We further utilized
linear discriminant analysis (LDA) and quadratic
discriminant analysis (QDA) to create a decision
boundary (DB) that will separate all EGMs into an
App Zone and an InApp Zone based on whichever
window was used for the given EGM, deemed the
instantaneous window. App and InApp Zones were
created to better visualize false positive therapy (any
InApp therapy in the App zone) and a false negative
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therapy (any App therapy in the InApp zone) in the
RR-NLD Score space. In an ICD, false positive is the
application of an unwarranted shock, and false
negative is to withhold a warranted shock. In the
context of an ICD, a false negative is considered more
dangerous than a false positive, given that a missed
therapy can withhold life saving treatment, and that
an unwarranted therapy, just like a warranted therapy,
should come with an exceedingly small mortality
risk.

Both LDA and QDA were performed separately on
the Window 1 and Window 2 approaches. To quantify
the errors for LDA and QDA, we calculated the ratio
of incorrectly classified points based on RR and NLD
Scores to the total number of data points in each
Window, as within data classification error (WDCE). In
addition to WDCE, we also use a more sophisticated,
predictive approach by calculating built-in error in
the MATLAB “classify” function, which gives a
misclassification estimate based on the training data,
the apparent error rate (AER).?* Here, the training data
was a list of every RR score, NLD score, and App or
InApp classification, for all 54 EGM files. The sample
data used to determine the AER was an even
distribution of 10,000 sample points across the score

space for the given window.

Results

(i) DISCRIMINATION OF App AND InApp THERAPIES
USING LINEAR DISCRIMINANT ANALYSIS

Figure 2 shows App (blue triangles) and InApp (red
triangles) therapies from Window 1 in the RR-score and
NLD-score parameter space. Since these therapies are
from Window 1, the pink instantaneous decision
boundary (IDB) for Figure 2 is an LDA line calculated
using metrics from Window 1 EGMs. The black DB
is an LDA line calculated using metrics from Window
2D. The two DBs divide the parameter space into
two regions, an App zone (blue area), and an InApp
zone (red area), which are different when calculated
for Window 1 (pink IDB line) and Window 2D (black
DB line). Window 2D is closest to the therapy
application, and is therefore expected to be the
most representative of a fibrillatory state when
compared to all other windows. Several InApp
therapies (red triangles) were placed into the App
zone by the pink IDB. These false positives represent
instances when the algorithm would still indicate a
shock was appropriate despite it not being so. The

results of misclassification are summarized in Table 2.

NLD Score

A K
A
| Window 1 DB /|
10 15 20 25

RR Score
Figure 2: This plot shows App (red triangles) and InApp (blue triangles) therapies for Window 1, along with the

respective LDA instantaneous decision boundary (IDB) (pink) for Window 1. The LDA decision boundary (black

line) from Window 2 is also plotted. The IDB divides the RR Score / NLD Score parameter space into an App zone

(blue area) and an InApp zone (red area)
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Table 2: WDCE, AER, False Negative, and False Positive calculated for all windows when using LDA to calculate
the IDB. WDCE: Within Data Classification Error, AER: Apparent Error Rate, LDA: Linear Discriminant Analysis,

IDB: Instantaneous Decision Boundary

LDA Error WDCE (%) AER (%) False Negatives | False Positives
Window 1 3.7037 8.3333 0 2
Window 2A 20.3704 22.0238 8 3
Window 2B 20.3704 25 7 4
Window 2C 3.7037 8.3333 0 2
Window 2D 5.5556 12.5 0 3
Figure 3 shows App and InApp therapy results for zone (red area). DB (black lines) are calculated using
Window 2 A, B, C, and D, along with an IDB (pink line) LDA from Window 2D. Figure 3 shows the presence
calculated using LDA from the respective Window of misclassified points indicated by App therapies
and dividing the RR-score and NLD-score parameter in the InApp zone and vice versa. The error rates for
space into an App zone (blue area) and an InApp Figure 3 are summarized in Table 2.
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Figure 3A-D: This plot shows App (red triangles) and InApp (blue triangles) therapies for Windows A, B, C, and
D, along with the respective LDA instantaneous decision boundaries (IDB) (pink line) for each Window. The
LDA decision boundary (black line) from Window 2D is also plotted for each. The IDB divides the RR Score /

NLD Score parameter space into an App zone (blue area) and an InApp zone (red area)
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(i) DISCRIMINATION OF App AND InApp THERAPIES
USING QUADRATIC DISCRIMINANT ANALYSIS

Figure 4 shows App and InApp therapies for Window
1 in the RR-score and NLD-score parameter space.
Since LDA is not necessarily the best way to

discriminate App and InApp therapies on the basis
of calculated RR and NLD metrics, QDA was also used
to calculate an IDB. The black DB line in Figure 4
was also created using QDA based on Window 2D.
The error rate for this Figure is summarized in Table 3.
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Figure 4: This plot shows App (red triangles) and InApp (blue triangles) therapies for Window 1, along with the
respective QDA instantaneous decision boundary (IDB) (pink line) for Window 1. The QDA decision boundary
(black line) from Window 2 is also plotted. The IDB divides the RR Score / NLD Score parameter space into an

App zone (blue area) and an InApp zone (red area)

Table 3: WDCE, AER, False Negative, and False Positive calculated for all windows when using QDA to calculate
the IDB. WDCE: Within Data Classification Error, AER: Apparent Error Rate, LDA: Quadratic Discriminant Analysis,

IDB: Instantaneous Decision Boundary

QDA Error WDCE (%) AER (%) False Negatives | False Positives
Window 1 5.5556 7.7381 3 0
Window 2A 14.8148 18.4524 5 3
Window 2B 16.6667 22.619 5 4
Window 2C 5.5556 7.7381 2 1
Window 2D 3.7037 2.381 2 0

Figure 5 shows four plots, each displaying App and
InApp therapy results for Window 2 A, B, C, and D
respectively. Each plotin Figure 5 contains a pink IDB
from the respective windows. Each IDB in Figure 5
was calculated using QDA, and was used to separate
App and InApp therapies into App and InApp zones.

Each plot also shows a black DB line from Window
2D calculated using QDA. All misclassified therapies
are summarized as error rates in Table 3, which
indicates that QDA had lower occurrences of
misclassified therapies than LDA across all Windows
using AER.
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Figure 5A-D: This plot shows App (red triangles) and InApp (blue triangles) therapies for Windows A, B, C,

and D, along with the respective QDA instantaneous decision boundaries (IDB) (pink line) for each Window.
The QDA decision boundary (black line) from Window 2 is also plotted for each. The IDB divides the RR

Score / NLD Score parameter space into an App zone (blue area) and an InApp zone (red area)

Discussion

(i) OVERALL FINDINGS

Our goal was to improve upon current ICD
discrimination algorithms by using supervised
machine learning techniques (LDA and QDA). These
techniques discriminated EGM data based on
traditional RR-based metrics as well as novel NLD
metrics. The accuracy of LDA and QDA were

quantified by calculating the error for each technique.

The LDA Window 2C error was ~8.3%, and the QDA
Window 2D error was ~2.4%. As compared to the
errors of up to 25% found in recent studies, we
demonstrated that the optimal windows for LDA and
QDA can both greatly improve upon modern error

rates.'®

It was expected that QDA would outperform LDA,
given that a more customizable boundary line

calculated through more terms can be better fine-

tuned to discriminate between groups of data, but
in the upper limit, an exceedingly complex IDB would

run the risk of over-fitting to its training model.

(ii) ISSUEA WITH CURRENT ICDs

In the PainFree trial, using rate-based decision making
and novel discriminations algorithms as described
above, patients with Medtronic single chamber TV-
ICD implanted between 2009 and 2013 had a 1 year
InApp therapy incidence of 3.4%. However, across
both single chamber and multi chamber devices,
an alarming 115 out of 804 (14%) therapeutic shock
episodes were InApp. The number one cause for
InApp therapy in this study (PainFree SST) was AF.™
These differences in InApp therapy rates are likely
attributed to differences in algorithms between the
studies, more so than differences in hardware. This
is further supported by the Multicenter Automatic
Defibrillator Implantation Trial-Reduce Inappropriate
Therapy (MADIT RIT) study, which also showed that

© 2024 European Society of Medicine 8



programming higher thresholds or longer durations
reduced InApp ICD therapies significantly.'? Latest
Boston Scientific S-ICD devices had a 1 year InApp
therapy incidence of 3.1%, with an even more alarming
88 out of 152 (58%) of therapeutic shocks labeled
as InApp.' The number one cause for InApp therapy
in this study (UNTOUCHED) was T-wave oversensing,
which is a known concern for SICDs, but not for
transvenous ICDs.?* Algorithms more efficient at
discriminating between VT/VF versus oversensing
and/or non-life threatening arrhythmias are required
to lower the number of InApp therapies, specifically
InApp therapeutic shocks. Therefore, the current
rate-based decision making must be improved upon

with more accurate identification methods.

A second issue with the current ICD platform is the
time-consuming burden that past therapy delivery
adjudication places on physicians. In today's clinical
practice, clinicians review previous therapies that
were delivered to a patient. This is done to ensure
a patient's ICD is only delivering App therapies. If
InApp therapy is noted, clinicians may reprogram
the devices or even consider explanting the device
if the problem is serious. However, the adjudication
process is a time consuming process that could be
completed by a computer rather than a clinician. The
computer could alert a physician that the device
delivered InApp therapy, and the clinician could
make necessary clinical decisions afterwards. As
such, providing physicians with an algorithm that
retrospectively discriminates between InApp and
App therapies would lower the time-consuming
burden.

(iii) PRACTICAL IMPLEMENTATION

This analysis method demonstrated in this study shows
promise in addressing the need for an algorithm to
reduce the time burden created by adjudication and
shows promise for use in surpassing current rate-
based algorithms in accuracy during real-time
detection. In this way, a future iteration of our
technique is theorized to be capable of running as
quickly as necessary EGM data can be collected from

a potential patient.

From a practical standpoint, computing the IDB for
an ICD, whether with LCD or QDA, would take more
time than could likely be done in real time by an ICD.
However, this is a non-issue so long as each ICD is
pre-programmed with an IDB fitting the needs of a
given patient prior to releasing the patient from
physician care. To that end, a patient using an IDB
based algorithm such as those studied here, could
better fine tune their individual IDB by providing their
physician with their own personal ICD data on an

annual or semi-annual basis.

Practical use of this technique may find restrictions
in the requirement to compute all RR-based and
NLD metrics for a given window in real time. This is
ultimately a question of computing power, which
would vary from one ICD to the next, but in the event
that these metrics prove too cumbersome for live
computation, the metrics themselves could be
altered to suit the needs of a given product, or at
the very least, this technique could prove useful for
retrospective discrimination of patient EGMs. This
alternative use for aforementioned techniques would
not be done in real-time, and instead could be used
purely as a tool for physicians to diagnose error rates
of ICD therapies with much better accuracy than
the simpler on-board calculations of the ICD. In this
scenario, physicians could catch malfunctioning or
under-performing ICDs to avoid potentially fatal

outcomes.

(iv) LINEAR DISCRIMINANT ANALYSIS AS
COMPARED TO QUADRATIC DISCRIMINANT
ANALYSIS

In this study we investigated methods to enhance
discrimination between App and InApp ICD therapies
using supervised machine learning. To effectively
utilize the sets of NLD-based metrics and RR-based
metrics, a score of each set of parameters was
created, which summated the statistically significant
parameters from both sets of metrics. Discrimination
was then aided by LDA.

Our technical conclusions from this investigation
were as follows: 1) Window 1 and 2C had the best

© 2024 European Society of Medicine 9



AER for LDA at 8.333%. 2) Window 2D had the best
AER for QDA at 2.381%. 3) QDA had lower AERs
for all windows. 4) LDA error came mostly from false
positives. 5) QDA error came mostly from false
negatives.

Based on these conclusions, it would be easy to claim
that QDA is superior to LDA for use in retrospective
discrimination of ICD EGMs, but this is not clearly the
case. Despite the fact that QDA has a lower percent
error than LDA, these QDA errors are more likely
to come from the more dangerous false negatives
(withholding needed therapy), as opposed to the
less dangerous false positives (delivering unneeded
therapy). This means that QDA as compared to LDA
has a trade off of higher accuracy in exchange for

higher stakes in the case of a misclassified EGM.

Conclusion

In conclusion, this study set out to create a machine
learning algorithm for discrimination of InApp and
App ICD therapies. To do this, NLD-based metrics
were introduced as novel parameters for analyzing
the ICD EGMSs, in addition to standard RR-based
metrics. Combining 3 NLD-based metrics and 6
RR-based metrics into linear combination scores
allowed for effective separation between the InApp
and App therapy across all time windows.
Discrimination of EGMs based on RR and NLD
scores was done using both LDA and QDA for each

time window.

When comparing LDA and QDA both by percent
errors and by false positive and false negative errors,
it was shown that QDA is more accurate (<=2.381%
error), at discriminating between the InApp and
App EGMs but its errors come mostly from false
negatives, which would result in withholding life-
saving therapy.

In addition, the most accurate time windows across
the study were Window 1, Window 2C, and Window
2D, which unsurprisingly demonstrates that a
representative ICD EGM should encompass a large
duration of time, indicated by the accuracy of Window
1 (the longest window) and that a representative

ICD EGM should show a time just prior to therapy,
indicated by the accuracy of Windows 2C and 2D
(the windows closest in time to the actual therapy
application).

Due to the success of the study objectives, the next
steps of this project should likely be to expand the
existing database, and to develop new metrics to
be used in the calculation of RR and NLD scores.
This would potentially allow for more accurate
differentiation of the InApp and App therapy

instances.
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