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ABSTRACT 

This study primarily focused on developing a system to generate 

simulated computed tomography pulmonary angiography (CTPA) 

images for pulmonary embolism diagnosis and aiding medical 

practitioners gain a more intuitive understanding of the occurrence of 

pulmonary embolism (PE) in diagnosis. Compared to existing methods, 

this system provides a non-invasive and cost-effective way to identify 

patients with possible pulmonary embolism. The research methodology 

employed the use of CycleGAN architecture to simulate CTPA images 

and additional implement classifier modulus to enhance ability to restore 

pulmonary vessel features, using computed tomography (CT) images 

from 22 patients and their corresponding CTPA images as training data. 

The experimental and simulation results provide a new approach to 

clinical diagnosis, which can assist physicians in the complex screening 

process, allowing physicians to assess whether a patient needs to 

undergo detailed testing for CTPA, improving the speed of detection of 

PE and significantly reducing the number of undetected patients. 

Keywords: Deep learning, Medical Images, Pulmonary embolism, Image 

generation, Generative Adversarial Network, Computer tomography, 

Pulmonary angiography 
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Introduction 
Pulmonary embolism (PE) stands as a primary cause of 
vascular death. Its clinical symptoms are not very sensitive 
or specific and lack distinctive features, complicating the 
diagnosis process1. Given the diverse triggers for PE, 
swift detection and treatment are crucial in substantially 
reducing mortality risks for hospitalized individuals.2, 3 
Within the clinical diagnostic process, Computerized 
Tomography Pulmonary Angiography (CTPA) serves as 
the primary tool for detecting PE. This sophisticated 
Computerized Tomography (CT) scan produces intricate 
imagery of the pulmonary vasculature. To optimize clarity 
during the CTPA process, a contrast agent is introduced 
into the venous system, which then disperses into the 
pulmonary arteries. This agent accentuates the 
luminescence of the pulmonary vessels in CTPA images, 

allowing clinicians to accurately identify obstructions or 
blood clots that appear as attenuated areas. Although 
CTPA offers definitive insight into PE, it's notably more 
expensive than a standard CT scan and the administered 
contrast poses potential risks to patients. Typically, the 
diagnostic procedure begins with a conventional CT scan 
or other clinical prediction such as X-ray, ECG 
(Electrocardiogram) and D-dimer measurement as shown 
in Fig. 1. Then, 4Medical practitioners evaluate the CT 
images or evaluate clinical prediction reports for 
indications of PE. If PE is suspected, CTPA is typically 
performed to establish a definitive diagnosis. 
Unfortunately, the sequential diagnostic process required 
before a CTPA can be conducted may extend beyond a 
week. Consequently, some patients who may have PE 
might experience complications or adverse outcomes due 
to delayed treatment5, 6.  

 

 
Figure 1. PE Diagnosis Flow Chart 7 

 
In previous research of our laboratory, it demonstrates 
that the deep learning model with hierarchical 
architecture can successfully distinguish CT scans with PE 
lesions and achieve high accuracy without using CTPA 
images, and indicates there are critical features on CT 
images for detecting PE.Previous proposed framework 
works in multiple stages on 3D lung CT scan images to 
detect and determine the malignancy of the nodules and 
also get the better result8. That means CT scans have 
enormous potential for CT to CTPA translation. Much of 
the recent research employing deep learning methods for 
image-to-image translation has yielded significant 

improvements, aligning with the current trends in the field. 
For example, in medical imaging, the translation of 
images from Magnetic Resonance (MR) to Computed 
Tomography (CT) stands as a notable application of 
deep learning for medical image synthesis and continues 
to be one of the most frequently published topics in this 
domain. Since the main difference between CTPA image 
and CT image is the characteristic of the contrast agent, 
and both have similar cross-section shown in figure 2, we 
can regard CT to CTPA translation as an image style 
conversion task. 
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Figure 2. Comparison of CT images and CTPA images of the same cross-section. 
 
In medical image processing using deep learning 
research, Karim's team proposed MedGAN9, a 
Generative Adversarial Network (GAN) network10 
applied to the medical imaging environment. Their 
implementation of GAN was explored across three 
distinct imaging scenarios: transforming positron 
tomography (PET) images into CT images, mitigating 
image blurring in magnetic resonance (MR) captures, and 
reducing noise in PET images. The primary objective of 
their method emphasizes enhancing contrast 
characteristics, positioning the generated images to 
primarily augment post-processing procedures rather 
than serving direct diagnostic purposes. Tein et al 
introduced an approach that integrates both CycleGAN 
and Deblur-GAN models with the aim of enhancing the 
quality of chest CBCT images11, 12. Their findings 
indicated that the Cycle-Deblur GAN framework not only 
augmented image quality and CT-value precision but 
also retained intricate structural details inherent in chest 
CBCT imagery. MR-CT registration is a common practice 
in head-and-neck radiotherapy, the process and results 
are not satisfactory due to the contrast differences 
between CT and MR images as well as the unavoidable 
patient non-rigid motion between scans, such as neck 
flexion, direct registration is challenging, especially with 
deformable variations. McKenzie et al. introduced a 
CycleGAN method to create synthetic CTs, simplifying 
MR-CT registration in the head and neck by turning an 
inter-modality issue into an intra-modality one12. 
Considering the image translation methods for both 
aligned and unpaired datasets, Yan's team introduced 
MMTrans, a Swin Transformer-based Generative 
Adversarial Network (GAN) designed for Multi-Modal 
Medical Image Translation. The results demonstrated that 
when applied to Magnetic Resonance (MR) images, 
MMTrans outperforms existing MRI image-to-image 

translation methods, showcasing significant potential for 
clinical application13. 
 
From the aforementioned literature, we can utilize the 
GANs for medical image-to-image translation tasks, 
change the style of the input images and highlight their 
specific features to achieve a certain degree of 
restoration in medical images. Motivated by these 
advancements, our study tries to leverage deep learning 
framework in synthesizing simulated CTPA images from 
CT scans to visualize the occurrence of PE. We established 
a simulation system based on CycleGAN architecture to 
generate simulated CTPA images from CT images for PE 
diagnosis, when compared to previous studies, 
additionally implements a classifier, which enhances the 
model ability to restore PE features. Moreover, we show 
the effectiveness of the classifier in discussion section. 
With this simulation system, the clinician can obtain a 
CTPA simulation immediately after the CT image is taken, 
and can schedule a CTPA test directly if a pulmonary 
embolism is suspected from the simulated CTPA, reducing 
the treatment delay in the early diagnosis process. If the 
simulated CTPA image does not show PE-related features, 
the patient can continue to follow the original diagnosis 
procedure, reducing the patient's risk of exposure to 
radiation in a single tomographic scan and reducing the 
harm to the patient from contrast injection.  
 
The method we propose not only reduces the oversight of 
diagnosis of suspected PE cases or prevents the 
deterioration of patients already diagnosed with PE, but 
also the simulated CTPA images can be combined with 
many established PE computerized detection software 
(CAD) for PE diagnosis, further enhancing the accuracy of 
clinical diagnosis as shown in figure 3. 
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Figure 3. Schematic diagram of the PE consultation process by generating simulated CTPA. 

 

Materials and Methods 
In the initial phase of our study, we focused on selecting 
an appropriate backbone architecture for the 
adversarial network model. We employed the Pix2pix 
architecture14 for the generation of CTPA images from CT 
scans, while also exploring the CycleGAN architecture15 
for similar CTPA image synthesis. In the subsequent phase, 
we discussed the reason of choose due to concerns about 
the alignment of our image dataset not meeting the 
specifications required by Pix2pix and related 
architectures, we choose CycleGAN, which has capability 
to operate without the need for matching input and output 
images. We further delve into and discuss the nuances of 
this architecture in detail. 
 
IMAGE SOURCES 
In the initial pre-experimental phase, we evaluated 50 
patients from National Cheng Kung University Hospital 
who did not have pulmonary embolism, establishing the 
foundation of our selection framework. Subsequently, in 
the second phase, we analyzed a dataset from the same 
hospital, consisting of 22 patients diagnosed with 
pulmonary embolism. Both datasets were obtained from 
National Cheng Kung University Hospital and were 
reviewed by the Human and Behavioural Research Ethics 
Board of National Cheng Kung University School of 
Medicine (IRB No: B-ER-108-380). CT images and CTPA 
images were taken in these patients during diagnosis. 
Since there were some coordinate shifts and differences 
in slice detail between the CT and CTPA images, we used 
Velocity AI software to align the CT images with the 
coordinates of the CTPA images on the patient images 
without pulmonary embolism. However, we found that 

using image processing software to align the target 
images was equivalent to passing through another layer 
of simulation, and this simulation could not faithfully 
represent the original cross-sectional images. 
 
DATA PREPROCESSING 
In the first phase of the pre-experiment, we processed 
the images by dividing the DICOM image files into CT 
and CTPA as the input and output of the generation 
counterpart network and converted the images into JPEG 
files for easy observation. We compressed the original 
image resolution from 512×512 to 256×256 to increase 
the learning capability of the model. In the second phase 
of the dataset, we utilized DICOM file format images 
directly as input. We selectively chose image intervals 
featuring pulmonary embolism as both training input and 
target, aiming to focus the model's attention on simulating 
regions associated with pulmonary embolism in the CT 
images. 
 
FIRST PHASE CTPA_PIX2PIX MODEL 
Our initial model is a variant of the Pix2pix architecture, 
leveraging U-Net16 as the generator network and 
employing two distinct discriminator networks for 
assessment: a Pixel Discriminator for pixel-level scrutiny 
and a 3-layers Discriminator for distinguishing output 
image characteristics, as illustrated in Figure 4. Patient CT 
images and corresponding CTPA images are paired and 
fed into the network jointly. CT images are fed into the 
U-Net generator network to produce simulated CTPA 
images, while the discriminator network discerns 
disparities between simulated CTPA images and input CT 
images, feeding back results to the generator network for 
subsequent training cycles. 
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Figure 4. The CTPA_Pix2pix Model Framework. 
 
CTPA_CycleGAN MODEL 
Since the main difference between CTPA image and CT 
image is the characteristic of the contrast agent, and its 
characteristic can be regarded as a style conversion, we 
try to use the CycleGAN architecture to solve this problem. 
 
We use two mirroring generator networks, as shown in 
Figure 5, generator network A is the network that 
converts CT images to CTPA images, and generator 
network B is the network that converts CTPA images back 
to CT images. First, the CT images are imported into the 
generator network A to form the simulated CTPA images, 
which are first evaluated by a discriminator network for 

their style conversion, and then imported into the 
generator network B to convert the simulated CT images 
back to the original input images for comparison. On the 
other hand, the CTPA images are input into the generator 
network B to generate the simulated CT images, and 
after judgment, they are sent to the generator network A 
to convert the simulated CTPA images and then compared 
with the original input CT images. 
 
In view of the complexity of the image features that Cycle 
GAN may need to learn, this study uses the U-Net and 
ResNet [14] architectures to test the CycleGAN generator 
network architecture respectively. 

 

 
Figure 5. The CTPA_Cycle GAN model architecture 
 

Second Phase 
PULMONARY EMBOLISM CLASSIFICATION CYCLEGAN 
Since we found in the first phase of experiments that 
aligning images is equivalent to generating a 
substandard simulation result as the target for generative 
adversarial network learning, we chose CycleGAN, which 
does not require image matching, as the backbone of our 
network. 
 
In this phase of the experiment, we first tested the 
simulation of CTPA images using the original files in 
DICOM format as the input images. However, the DICOM 

format file covers a wide range of image values, which 
makes the model learning results not focus on the PE 
features of the pulmonary vasculature. 
 
Therefore, we added a supervised neural network to the 
original CycleGAN to interpret the reconstructed CT 
images to see if they are images of pulmonary embolism, 
and to use this network to interpret these images as 
images of pulmonary embolism. In this way, our 
generative adversarial network can generate simulated 
CTPA images that are closer to those with pulmonary 
embolism features. The designed architecture are shown 
in figure 6. 
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Figure 6: PE Classification CycleGAN model architecture 
 
Although the generated images are closer to the real 
CTPA images after adding the Pulmonary Embolism 
Recognition Network to the generative adversarial model 
for supervision, the CTPA image format is partially 
different from the CT image format, which is prone to 
structural deformation without pre-processing and 
alignment. We speculate that the main reason for this 
deformation is that our loss function uses Binary Cross 
Entropy loss (BCE loss) as the loss function of the generator 
and L1 loss as the loss function of the discriminator, and 
both loss functions are computed on a pixel-by-pixel 
basis. To solve this deformation problem, we try to use 
the structural similarity index (SSIM) as the discriminator 
loss function to increase the degree of network restoration 
to the structure and reduce the image caused by pixel 
deviation. We also try to use Mean absolute error (MSE) 
as the loss function of the generator to reduce the pixel 
deviation as well. 
 

EVALUATION METHOD 
Since the purpose of this experiment is to generate 
different types of medical images for conversion, there 
are no related studies, so this experiment will design a 

method to evaluate the results of our model generation. 
We hope that the model output images are as close to 
the original CTPA images as possible, so we want to 
observe the following objectives: image generation 
quality, structural similarity, and image similarity. Since 
the generated images are expected to have less noise, 
we use the peak signal-to-noise ratio (PSNR)17 as a metric 
to evaluate the quality of the generated images. For PE, 
the structure of blood vessels is an important criterion, 
and we use the structural similarity index (SSIM) as the 
evaluation criterion to select the result that can best 
restore the structure. For image similarity, we will use the 
general image generation evaluation methods such as 
depth perception image similarity (LPIPS)18 and Fréchet 
Inception Distance (FID)19, and then calculate the mean 
absolute error (MAE) pixel by pixel to make a 
comprehensive evaluation. 
 

⚫ Peak Signal-to-Noise Ratio (PSNR) 
PSNR is a quantitative index used to evaluate the 
distortion of an image. the result of PSNR represents the 
ratio of the maximum possible signal power to the 
destructive noise power and is defined as follows: 

 

𝑀𝑆𝐸 =  
1

𝑚𝑛
∑

𝑚−1

𝑖=0

∑

𝑛−1

𝑗=0

[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]2 

𝑃𝑆𝑁𝑅 = 10 ∙ (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
)  

 
If the size of both the generated image and the original 
image is m×n, and I is the original image and K is the 
generated image, the mean square error (MSE) of the 
two images can be obtained. In general, it is difficult to 
distinguish the difference between PSNR>30 and PSNR 
between 20 and 30, so that some difference can be felt. 
If the PSNR is between 10 and 20, it is obvious that there 
is noise, but the similarity of the two images can still be 
seen. If the PSNR is below 10, it is difficult for the human 
eye to determine the similarity of the images. 

 

⚫ Structural Similarity Index (SSIM) 
SSIM is similar to PSNR in that it is also an indicator of the 
quality of image production. However, unlike PSNR, SSIM 
places more emphasis on structural information17. In a 
natural image, there should be a strong correlation 
between adjacent pixels, and such a correlation can 
express the structural information in the image scene. 
Therefore, SSIM is defined as follows: 
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𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  [𝑙(𝑥, 𝑦)]𝛼[𝑐(𝑥, 𝑦)]𝛽[𝑠(𝑥, 𝑦)]𝛾 

𝑙(𝑥, 𝑦) =  
2𝜇𝑥𝜇𝑦 + 𝐶1

𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1
  𝑐(𝑥, 𝑦) =  

2𝜎𝑥𝜎𝑦 + 𝐶2

𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2
 𝑠(𝑥, 𝑦) =   

𝜎𝑥𝑦 + 𝐶3

𝜎𝑥𝜎𝑦 + 𝐶3
 

 
In SSIM, three parameters are evaluated: luminance l(x,y), 
contrast c(x,y) and structure s(x,y), with C_1, C_2 and 
C_3 as constants. If two identical images are computed 
by SSIM, it will get 1. Therefore, the closer the SSIM index 
is to 1, the higher the similarity of the two images. 
 

⚫ Deep Image Perception Similarity (LPIPS) 
For the human eye, it is easy to quickly evaluate the 
perceptual similarity between two images, but this 
evaluation process is not well quantified. The human eye 
does not evaluate the similarity of two images on a pixel-
by-pixel basis. After the significant application of neural 
networks in recent years, Richard Zhang et al. found in 
2018 that it is useful to extract feature maps of shapes 
through VGG networks as a basis for image judgment, 
and therefore proposed a new evaluation method, LPIPS, 
to systematically compare the deep features in different 
images18. 
 
LPIPS is calculated by inputting two images to a VGG 
network, obtaining the vector map of the specific 
convolutional layer of the two images in the VGG 
network and calculating the remaining chordal distances, 
and then averaging these distances to obtain the LPIPS 
score. 
 

⚫ Fréchet Inception Distance (FID) 
FID is a common evaluation method for GAN image 
generation, which calculates the distance between the 
real image and the feature vector of the generated 
image as an indicator of the quality of the image 

generation19. The FID score uses the classification model 
of Inception v3 and takes the last pooling layer as the 
feature map for evaluation, and by calculating the mean 
and standard deviation between these image feature 
maps, the target image and the generated image are 
generated as a set of After calculating the mean and 
standard deviation between these image feature maps, 
a Gaussian distribution is generated for the target image 
and the generated image, and the distance between 
these two distributions is calculated by the Wasserstein-
2 method. Therefore, the FID score should be 0.0 in the 
best case, which means that the distributions of the two 
sets of images are exactly the same. 
 

Results 
FIRST PHASE - GENERATING CONTRASTIVE MODEL 
ARCHITECTURES FOR COMPARISON 
We first exported and compared the results generated 
by the unmodified model after 1500 epochs of training. 
We tested the CT images of the patients and their 
matching CTPA images with independent untrained 
images, and only the trained generation network was 
used as the network for image generation. 
 
The results of the CTPA_Pix2pix model are shown in 
Figure 7. We can find that the images generated by the 
generator perform well in the reproduction of bones and 
organs, with little error from the real images, but are 
relatively blurred in the judgment of the PE block, except 
for the thicker arteries and veins, and the vessels of the 
lungs are very poorly imaged. 

 

 
Figure 7. Simulated images generated by CTPA_Pix2pix model 
 
In the CTPA_CycleGAN model, as shown in Figure 8, we 
used U-Net and ResNet as the backbone of the network 
for training, and we can see that the performance on U-
Net is not as good as expected, although the restoration 
performance on bones and organ tissues is excellent as in 
the CTPA_Pix2pix model, but the microvascular part of 

the lungs The generation of the lung microvasculature was 
different. In the CTPA_CycleGAN model (U-Net), the 
amount of vessel restoration was improved, but the main 
pulmonary artery was not generated, making the 
vascular trend different from reality and making it 
difficult to identify the symptoms of PE. 
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Figure 8. Simulated images generated by CTPA_CycleGAN model (U-Net) 
 
In the generation results of CTPA_CycleGAN model 
(ResNet), as shown in Figure 9, we can find that the 
simulated CTPA image Fake_B generated by generator 
A has a high degree of similarity to the real CTPA image 
Real_B, and the vascular imaging is also the best among 
all models. A point that is worth discussing is the Rec_B 

image, which is a simulated CTPA image generated by 
the CTPA image through generator network B and then 
generated by generator network A. Its similarity to 
Real_B is even higher than that of Fake_B, and there is 
almost no difference with the original image. 

 

 
Figure 9. Simulated images generated by CTPA_CycleGAN model (ResNet) 
 
SECOND PHASE - RESULTS OF CYCLEGAN MODEL 
SUPERVISED WITH PULMONARY EMBOLISM CLASSIFIER 
In the comparison of generative adversarial model 
architectures, we can find that CycleGAN performs the 
best in the task of converting CT images to CTPA images, 
and in clinical applications, CT images without imaging 
software simulation will not have corresponding CTPA 
images to be used as the generated target. Therefore, 
the DC GAN and Pix2pix architectures, which must use 
control sets, cannot be used as the generative adversarial 

network architecture for this experiment. For these two 
reasons, we decided to use CycleGAN as the backbone 
network architecture for CT generation simulation of 
CTPA. In this section, we will investigate the differences in 
the output results of different adaptations and 
modifications of CycleGAN and the reasons for them. 
Since most of the models we evaluate are pixel-based, 
we first fine-tune the coordinates and dimensions of the 
output images to align them with the original images 
when evaluating the generated images. 
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Figure 10. Comparison of the generated results. The right graph is the simulated cross section generated by the proposed 
generator and the left is the original cross section. 
 
In the generated results in Figure 10, we can see that the 
generated model reproduces the vascular vein as much 
as possible, but there are still many differences that are 
visible to the naked eye, and we will discuss how the 

model is adjusted later. As detailed in Table 1, each 
metric is associated with a desired outcome, providing a 
clear benchmark for comparing the similarity between 
the simulated and target images. 

 
Table1. Evaluation metrics for simulated CTPA image quality. Higher PSNR and SSIM values indicate better image quality, 
while lower MAE, LPIPS, and FID scores suggest closer similarity to target images. 

  Stimulated CTPA Metrics Desired Metric Outcomes 

PSNR  11.24 
Higher is better; >30dB is 
desirable for high image quality. 

SSIM  0.324 
Closer to 1 indicates higher 
structural similarity to the target 
image 

MAE  102.13 
Lower is better; indicates less 
deviation from the target image 

LPIPS  0.439 
Lower is better; indicates higher 
perceptual similarity to the 
target image. 

FID  223.68 
Lower is better; indicates closer 
distance to target image 
features. 

 

Discussion 
We compared CycleGAN networks with different 
generators and found that the performance of the 
generated results on ResNet was significantly better than 
that on U-Net, and the reconstruction loss and generator 
loss were both better than those on U-Net. In terms of 
reconstruction loss, the deeper ResNet50 performs better 
than ResNet9. The loss function represents the ability to 
restore the graphs, and the source of comparison is the 
original graph and the graphs restored by two layers of 
generators. It can be assumed that this generative 
feature is more diverse and therefore more complex 
networks can be considered as generator networks in the 
future. However, the more complex network may be 
relatively difficult to train in an adversarial way, so we 
plan to pre-train it by classifier first, and then place it 
into the generative adversarial network for optimization. 
 

First, we input the original DICOM images for the first 
training, and found that the CT values of each pixel in the 

DICOM file were too widely distributed, which caused the 
model output to fail to focus on the PE features. Since our 
goal is to detect PE, we try to pass the input images 
through a HU filter first, and keep the relevant CT values 
of lungs and blood vessels into the model to enhance the 
model's ability to restore PE features. In addition, since 
CycleGAN is an unsupervised adversarial generative 
neural network, we believe that if we can add a pre-
trained classification network for PE features in its 
discriminator, it can enhance its ability to restore PE 
features. In figure 11, we can see that with the addition 
of the classification network, CycleGAN can focus more 
on the vascular features and lung regions for 
reproduction, and the overall image similarity is greatly 
improved. In each of the image evaluation indexes (Table 
2), we can see that the generated network with the 
addition of the classification model not only has less noise 
and higher structural similarity, but also has improved the 
overall image style similarity. 
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Figure 11. Comparison of the output image with categorization network. The left is the original image, the middle is the result 
of adding classification network to the analog generation network, and the right is the result of the analog generation network 
without classification network. 
 
Table 2. Comparison of the output image with categorization network 

 Classification model  Without classification model 

PSNR  11.227  7.79 

SSIM  0.325  0.207 

MAE  96.9  114.72 

LPIPS  0.494  0.526 

 
In the second stage, we compare the weights of the loss 
returned to the generator by the classification network 
and CycleGAN. We find that if the returning weight of 
the classification network is too high, the generated 
image will easily resemble the feature map of the 
classification network due to the lack of the adjudicator 
to monitor the quality of the generated image. Therefore, 
we multiply the categorical network return value by a 

weight to reduce its image quality, but still retain the 
ability to monitor the PE features. From figure 12, we can 
find that a weight between 0.1 and 0.3 results in the best 
image restoration ability, and from the values in Table 3, 
we can see that as the weight decreases, the structural 
similarity is lost due to the decrease in the requirement 
for PE features, and the rest of the values do not differ 
significantly. 

 

 
Figure 12. Comparison of classification network and discriminator weights on the output image. The weights from left to right 
are 1, 0.3, and 0.1 respectively. 
 
Table 3. Comparison of classification network and discriminator weights on the output image. 

 Ratio = 1 Ratio = 0.3 Ratio = 0.1 

PSNR  11.19 11.227 11.23 

SSIM  0.116 0.325 0.304 

MAE  122.72 96.9 96.38 

LPIPS  0.540 0.494 0.428 
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In adversarial generative networks, the discriminator is 
also an important basis. If the discriminator is too 
powerful, the generator may not learn easily. Therefore, 
we try to balance the learning ability of generators and 
discriminators, but due to the hardware limitation, our 
experimental platform cannot handle such a huge 
computation if the generators are deeper, so we fix the 
generator as ResNet34 and adjust the number of layers 
of discriminators to achieve a balance in training. In this 

experiment, we tested the discriminators of three-, four-, 
and six-layer NNs, and we found that the discriminator 
with six layers was too fast to learn the convergence of 
the generative network, so we only compared the results 
of the three- and four-layer discriminators. As shown in 
figure 13 and table 4, we believe that the combination 
of the three-layer discriminator and ResNet34 is the most 
suitable for the CT to CTPA conversion task. 

 

 
Figure 13. Comparison of the output image with different depths of the discriminators. The left image is the original image, 
the middle image is the result of training the discriminator with three layers of depth, and the right image is the result of 
training the discriminator with four layers of depth. 
 

Table 4. Comparison of different depths of the discriminators on the output images. 

Target CTPA 3-layers 4-layers 

PSNR  11.23 11.25 

SSIM  0.304 0.276 

MAE  96.38 97.31 

LPIPS  0.428 0.459 

 

After adjusting the main model structure, we found out 
that the generated model tended to enlarge the 
simulated image due to the size difference between the 
CT image and the CTPA image in the original format. This 
action caused distortion of the image structure. Therefore, 
we adjusted the loss function calculation of the generator 
and the discriminator respectively. In the discriminator, we 

replaced the L1 loss by SSIM to increase the 
discriminator's requirement for the image structure, while 
in the generator, we tried to use MSE to complement the 
pixel-to-pixel similarity. From figure 14 and table 5, we 
can find that the use of SSIM as the discriminator alone 
will cause the degradation of the generated image 
quality. 

 

 
Figure 14. Comparison of the loss function on the output image. The left figure shows the result of using BCE loss with L1 loss, 
the middle figure shows the result of BCE loss with SSIM, and the right figure shows the result of MSE loss with SSIM. 
 
Table 5. Comparison of loss function for output image. 

 BCE+L1 BCE+SSIM MSE+SSIM 

PSNR  11.24 11.25 11.24 

SSIM  0.309 0.171 0.324 

MAE  96.84 106.76 102.13 

LPIPS  0.479 0.510 0.439 
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Finally, we compare the results of PE classification 
network supervising different sources on CycleGAN. 
Since our classification network wants to preserve the PE 
features in the CT images, we can supervise two images: 
the reconstructed CT images generated from the 
simulated CTPA images and then transformed by 
CycleGAN (Rec_CT) and the simulated CT images 
generated from the CTPA images (Fake_CT). From figure 
15 and table 6, we can find that the images generated 
by Rec_CT supervised by PE classification network are 

more similar to the original images, while the output 
results supervised by Fake_CT are more likely to produce 
structures that are not present in the original images. We 
speculate that the source of the PE features supervised on 
Fake_CT is the CTPA image which is not the original CT 
image, so this PE classification network will prompt the 
generator to generate the vessels that may generate PE 
features by generalizing from the CTPA image, instead 
of emphasizing the PE features from the original image.  

 
Table 6. Comparison of categorized network monitoring targets to output images. 

Target CTPA On Rec_CT On Fake_CT 

PSNR  11.24 11.23 

SSIM  0.324 0.336 

MAE  102.13 107.44 

LPIPS  0.439 0.495 

FID  223.68 250.02 

 
 

 
Figure 15. Comparison of categorized network monitoring targets to output images. 
 
Observing the above experimental data, we can see that 
the parameter PSNR for judging image quality is 
between 10 and 20, and this value is not yet judged to 
be similar in image quality. The reasons for this may be 
the following. First, the PSNR index is originally designed 
to determine the image compression quality, and the 
images are all neatly aligned, and the difference 
between the PSNR and the original image is a small 
difference in the compressed image algorithm. However, 
when applied to the image generation field, especially 
in the style-shifting CycleGAN framework, it is easy to 
cause significant PSNR degradation due to small image 
misalignment. In order to solve this problem, we try to 
minimize the parameter discrepancy caused by this bias 
by manual correction. Secondly, the result of image 
conversion is not from the same image as the compressed 
image, and there are some resolution and size 
differences between our CTPA images and CT images, 
which makes the PSNR results not always better. In 
addition, our SSIM results also have similar problems to 
PSNR, and we have manually corrected them to reduce 
the error, but there is still the problem of different image 
standards. In summary, we believe that the LPIPS and FID 
scores of the deep learning framework are more suitable 
as the reference standard for the evaluation of image 
generation tasks. 

 
In summary, we believe that the best method to simulate 
CTPA images with PE features is to enhance the 
supervised CycleGAN architecture by a PE classification 
network with 0.3 times of weight on the reconstructed CT 
images, and choose ResNet50 for the generator and a 
three-layer convolutional neural network for the 
discriminator. The loss function is chosen as MSE as the 
generation loss and SSIM as the discriminant loss, and the 
initial input images should be filtered by HU filter. For the 
final model evaluation, LPIPS and FID score are more 
accurate criteria to evaluate the generated model. 
 

Conclusion 
In our study, we demonstrated that CT images can be 
generated by using a generative network to produce 
CTPA images, with most bones, organs, and body 
structures being accurately reproduced. Generation 
ability is not as expected. In CTPA_CycleGAN, the model 
with ResNet as the skeleton can enhance the generation 
of microvessels, but the microvessels are not derived from 
the thicker major vessels but directly from the cavities 
when generating microvessels. After adding the PE 
classifier, our proposed PE classification CycleGAN can 
generate simulated CTPA images from CT images more 
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accurately. The current image generation results can still 
be improved in two directions. First, the number and 
diversity of training data can be increased by adding 
datasets from different hospitals and different regions, 
so that the model can learn more different pulmonary 
embolism features and lung regional structural features 
to increase the ability of the model to restore images. In 
addition, the output image results still need to be tested 
clinically in the hospital, and the resulting images will be 
interpreted by the physicians to observe whether the 
symptoms of pulmonary embolism can be successfully 
detected, and then the model structure will be further 
adjusted to generate simulated images with more 
reference value for clinical judgment. 
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