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ABSTRACT  

The global public health situation is constantly threatened by infectious 

diseases. To effectively control the spread of these diseases, it is crucial to 

quickly disrupt the transmission pathways of the pathogens. During the 

COVID-19 pandemic, testing, tracing, and isolation programs effectively 

responded to disease outbreaks in some areas but have largely failed in 

many other countries. This study presents a computational model to evaluate 

the effectiveness of various prevention and control measures in managing 

epidemic transmission dynamics. The model utilizes an individual-based 

model and dynamic close-contact networks to simulate the spread of 

infectious diseases. By considering the dynamic contact network formed by 

different individuals and their activities in various social environments, the 

model can track the spread of the disease and changes in the infection status 

of each individual through simulation. Using COVID-19 as an example, the 

model simulations demonstrate that infections increase rapidly after a local 

outbreak without preventive measures, quickly reach a peak of daily new 

infections. However, implementing test-trace-isolate measures significantly 

decreases the scale of infections and the number of daily new cases. Further 

stringent preventive measures to reduce individual contact are required to 

achieve the goal of zero infections. The results emphasize the importance of 

early detection and isolation in curbing the spread of the virus. The model 

established in this study can be used to evaluate and optimize prevention 

and control measures to achieve the goal of zero infections. 

Keywords: dynamic contact network; mask wearing rate; vaccination rate; 

individual-based model 
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Introduction 
The COVID-19 pandemic has had a serious impact on 

global public health and the economy, highlighting the 

importance of a comprehensive evaluation of disease 

prevention measures and control strategies1,2. By 

quantitatively evaluating the different prevention and 

control measures employed by various countries during 

infectious disease outbreaks, we can provide valuable 

insights for scientifically managing potential future 

outbreaks. Programs of testing, contact tracing, and 

isolation have successfully mitigated the spread of 

COVID-19 in countries like China, Korea, and 

Singapore3,4, but have largely failed in many other 

regions5,6. To promote more precise and effective 

epidemic prevention and control, it is necessary to conduct 

quantitative research on epidemic transmission dynamics 

under different prevention and control strategies. 

 

Due to the uncertainties surrounding COVID-19, 

predictive mathematical models are crucial for 

forecasting the likely outcomes of disease outbreaks, 

informing healthcare needs, and minimizing the impact on 

people’s lives and economies. Previous studies have 

proposed various mathematical models to study the 

dynamic process of infectious diseases, offering valuable 

insights for predicting epidemic trends. However, many 

traditional infectious disease dynamic models assume a 

uniformly distributed population3,7-11 and use the mean-

field assumption to simulate virus transmission. The 

assumption does not align with the reality that COVID-19 

spreads through close-contact networks, which change 

with daily individual activities. Therefore, the close-

contact relationships between individuals are dynamic 

and cannot be accurately described by the mean-field 

assumption. 

 

Some studies have developed individual-based models 

to simulate the transmission dynamics of COVID-19 by 

focusing on individual-to-individual contacts and 

heterogeneous responses among individuals12-14. 

Individual-based models allow us to track the process of 

disease outbreaks and simulate varied responses and 

control measures for different individuals, providing a 

valuable technique for evaluating the influence of the 

test-trace-isolate programs. 

 

This paper introduces an individual-based model 

designed to simulate how individuals moving within 

communities and different environments influence 

epidemic transmission dynamics. The model considers 

individual activities and changes in disease status to 

simulate the dynamic process of infectious diseases 

following a local epidemic outbreak. We applied the 

model to evaluate the impact of different prevention and 

control measures on the epidemic’s evolution. Specifically, 

the model includes measures such as testing, tracing, and 

isolation to quantitatively assess their effects on 

controlling the spread of the epidemic. This model can 

digitally reconstruct the regional disease transmission 

process and predict the epidemic’s evolution under 

different prevention and control measures, thus providing 

guidance for strategic decision-making in disease 

prevention and control. The paper uses COVID-19 as a 

case study to introduce the model and calculate the 

relevant parameters. This model can also be applied to 

infectious diseases with similar transmission characteristics. 

 

Methods 
In this paper, we established a model to simulate the 

spread of infectious diseases after a local outbreak. The 

local area comprises functional compartments such as 

residential communities, workplaces, schools, and other 

settings. A discrete computational model based on 

individual activities was developed to simulate both 

individual activities and disease transmission within the 

area. The model mainly consists of two parts. one part 

simulates the contact situation of all individuals, known as 

the dynamic contact network; the other simulates changes 

in the infectious disease status of each individual, known 

as the individual-based model. While the model uses 

COVID-19 as an example, its structure can be applied to 

other similar respiratory infectious diseases. Detailed 

descriptions of the model are provided below. 

 

INDIVIDUAL-BASED MODEL 

The individual-based model was developed with 

reference to existing models14-16. The model was 

designed to simulate the epidemic dynamics in a local 

area, such as a city containing at most N individuals. All 

individuals form a dynamic contact network through close 

contacts, with each individual represented as a node in 

the network. The epidemic status of each node can be 

categorized as vacancy (V), susceptible (S), infectious (I) 

(including latent, asymptomatic, and symptomatic 

infectious), confirmed (H), quarantined (Q), recovered (R), 

and death (D) according to the status change of the 

corresponding individual. The vacancy indicates no 

individual at the node (for example, if the corresponding 

individual has migrated or died). Each node, except for 

vacancies, represents an individual who dynamically 
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changes between six statuses according to the basic 

assumptions of the susceptible-infectious-confirmed-

quarantined-recovered-death (SIHQRD) model (Figure1). 

 

Figure 1: Sketch of  the individual-based model of  COVID-

19 transmission and individual state transition diagram. Each 

individual can transit among the status of susceptible (S), 

infectious (I), confirmed (H), quarantined (Q), recovered 

(R), and death (D) following the direction of arrows. The 

transition rates can vary with time and are individual-

dependent. Solid lines show the transition of the infectious 

states of individuals, and dotted lines show the 

transformations due to the test-trace-isolate program. 

 

In the SIHQRD model, a susceptible individual (S) 

becomes infectious (I) with an infection rate βi(t) after 

contact with an infectious individual. The situations of 

latent, asymptomatic infectious, and symptomatic 

infectious are not distinguished in this model, but different 

infection stages are distinguished by the variance in their 

infection rates and confirmed rates. Infectious individuals 

(I) become confirmed (H) with a rate 𝛿i(t). The confirmed 

rate is related to the duration of infection and the 

frequency of nucleic acid testing (NAT) for infectious 

individuals. Moreover, we assumed that confirmed cases 

were hospitalized immediately, thus no longer contacting 

susceptible individuals. When an infectious individual is 

confirmed, their close contacts are tracked through the 

contact network of the confirmed case. Following the test-

trace-isolate program, close contacts of the confirmed 

case are isolated and become quarantined (Q). 

Quarantined persons cannot contact others and are 

tested for nucleic acid during the isolation period. 

Individuals confirmed during the quarantine period enter 

the confirmed status; otherwise, they return to their status 

before isolation (susceptible(S), infectious (I), or 

recovered (R)) after the isolation period. Infectious 

individuals may recover with a recovered rate θi(t). 

Confirmed cases (H) may either recover with a rate λi(t) 

or death (D) with a rate 𝜑i(t). 

 

The model highlights individual differences and stochastic 

dynamic changes and considers changes in the total 

number of individuals by introducing. 

 

DYNAMIC CONTACT NETWORK 

The dynamic contact network was divided into family 

contacts and public contact networks, such as workplaces, 

schools, and other public places, according to contact 

relationships between different individuals. Each 

individual can simultaneously belong to the family contact 

network and different public network modules. The 

contact network matrix T(t) represents the network 

formed by N individuals through contact relationships. 

The matrix T(t) can vary over time due to changes in 

contact relationships. The matrix T(t) is an N × N matrix, 

with elements defined as follows: 

 

 

To track the close contact relationship between 

individuals, we introduced S(t) as the effective contact 

matrix between individuals. The two individuals are 

considered effective contacts at time t if they have been 

in close contact within the effective contact time ET (in 

days) before the current moment t. The element Sij(t) 

indicates whether individual i and individual j have had 

close contact during the past effective contact period. 

We set Sij(t) = 0 if individual i and the individual j have 

had no contact during the effective contact period, and 

Sij(t) > 0 represents the days from the current moment of 

the last close contact between individuals i and j. For 

instance, Sij(t) = k means that i and j have close contact k 

days eariler. We set Sij(t) = 0 if Sij(t) exceeds the 

maximum value of the effective contact time ET. Hence, 

the matrix Sij(t) is defined as follows: 

 

 

It is easy to see that S(t) is a symmetry matrix. 

 

The effective contact matrix Sij(t) is updated daily 

according to the contact relationship Tij(t), and the matrix 

Sij(t+1) is given as follows: 
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When constructing the contact network matrix, N 

individuals were first divided into family units, with each 

family unit containing 1 to 6 individuals who form close 

contact relationships. Next, each family member was 

randomly assigned to different public networks. The two 

networks were updated alternately according to 

individual activities. Usually, the contact relationship 

between family members does not vary over time. To 

describe the close contact relationship of the public 

networks, we utilized a small-world network to 

approximate the close contact relationship in each public 

network instead of tracking the activation of each 

individual. Different contact properties of public networks 

can be represented by their small-world network 

parameters. The statistical properties of social networks 

have been extensively studied, and small-world networks 

can effectively describe the features of social networks 

and simulated the contact networks17,18. Hence, using a 

small-world network to describe contact relationships 

between individuals in the public network is appropriate. 

The parameters of the small-world network in the current 

study are listed in Table A.1 in the Appendix. 

 

The contact network matrix Tij(t) includes different 

network modules of family contacts and public networks. 

The individual contact relationships of the family network 

are fully connected, while the individual contact 

relationships in each public network are updated 

according to the small-world network. Moreover, if an 

individual is quarantined, confirmed, or dead, the contact 

relationships between that individual and others are 

eliminated and no longer updated. In this study, eight 

public networks were considered, including three type-I 

networks with mostly fixed individuals, such as workplaces, 

schools, kindergartens, and buildings, and five type-II 

networks with relatively mobile individuals, such as 

restaurants, marketplaces, buses, and subways. The 

network structure parameters for different public 

networks were varied. In type-I networks, individuals 

were mostly fixed, and the contact relationship and 

network parameters remained unchanged. However, the 

infection status of each individual within these networks 

could vary over time (e.g., isolation, confirmed, or dead). 

In contrast, type-II networks and their contact networks 

changed daily, forming a dynamic contact network 

relationship. Different network parameters were set in 

our model to represent the unique features of each 

network, including individual update probabilities, as 

shown in Table A.2 in the Appendix. 

 

STATE TRANSITION OF INDIVIDUALS 

To model the transition of individuals to an infectious state, 

we need to formulate the transition rates between 

different statuses. 

 

INFECTION 

During infectious disease transmission, an infected 

individual contacts a susceptible individual and transmits 

the virus to them. Let IRi,j represent the infection 

probability in one day when a susceptible individual i 

comes into contact with an infectious individual j. Then, the 

probability that susceptible individual i is infected in one 

day through close contacts is given by: 

 

Here, N(i) represents all close contacts of the individual i. 

 

If susceptible individual i is vaccinated, the infection rate 

may be reduced. Let Vi represent the efficiency of the 

vaccine; then the infection probability should be modified 

as: 

 

Here, 0 ≤ Vi < 1 represents the reduction in the infection 

probability, with Vi = 0 indicating no vaccination. In our 

model simulation, we used the following values: 

 

The infection probability between a susceptible individual 

i and an infected individual j can be influenced by their 

mask-wearing situations and the infectiousness of the 

infected individual j. Mask-wearing reduces the 

transmission of respiratory infectious diseases19-22. To 

account for the effect of mask-wearing, let Mi,j represent 

the reduction factor of the infection rate due to different 

mask-wearing situations of the susceptible i and the 

infected j. We set the following values in our model 
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simulation: 

  

The SARS-CoV-2 viral load varies after initial exposure, 

typically leading to symptom development within 5-6 

days23. Consequently, the infectiousness of the infected 

individual j changes depending on the time after initial 

exposure, referred to as the infection age a. To account 

for this variance, we introduced a function f(a) to describe 

the dependence of infectiousness on the infection age a: 

 
Here, a is the time since the initial exposure (days). Figure 

2 shows the plot of f(a), which trends similarly to the 

SARS-CoV-2 viral load23 and reaches a maximum value 

of 1 at a = 4. 

 

Figure 2: The figure of  function f(a) 

 

Based on the effective factor Mi,j and the infectiousness 

function f(a), the infection probability IRi,j is expressed as 

 

where IR is the maximum infection probability, and aj is 

the infection age of the infected individual j. In our model 

simulations, we set IR = 0.9, referring to the Omicron 

SARS-CoV-2. This means that when a susceptible and an 

infected individual are in close contact without any 

prevention, the probability of infection is 90%. Each 

individual has a preference for wearing a mask every 

day, so the situation regarding mask-wearing can vary 

daily. 

 

Equations (2.5) and (2.9) together provide the 

probability that a susceptible individual will be infected 

by close contact, taking into account the influences of 

vaccine protection, mask-wearing, and the temporal 

variation of infectiousness. 

 

CONFIRMATION OF INFECTIOUS INDIVIDUALS 

We assumed that an infected individual i is confirmed 

with a confirmation rate 𝛿i(t). Various clinical factors may 

affect a patient’s confirmation rate. However, in this 

model, we simplify the situation by assuming the 

confirmation rate only depends on the symptoms, which 

are associated with viral load, or the infectiousness f(ai). 

Thus, for simplicity, we assumed that the confirmation rate 

is proportional to the infectiousness: 

  

where 𝛿  is the maximum confirmation rate. Once an 

individual is confirmed, they are hospitalized and lose all 

contact with others. 

 

CLOSE CONTACT TRACING AND ISOLATION 

When a confirmed case is identified, close contact tracing 

and isolation programs are immediately initiated. 

Previous studies have shown that these measures are 

crucial for breaking the transmission chain of the disease 

and preventing the spreading of the epidemic11,24-27. 

 

Using the effective contact matrix S(t), we can determine 

the individuals who have been in close contact with an 

infected individual. For example, the close contacts of 

individual i at time t forms a subset 

𝐶𝑖(𝑡) = {𝑖 ≤ 𝑗 ≤ 𝑁 | 𝑆𝑖𝑗(𝑡) > 0} 

For each𝑗 ∈ 𝐶𝑖(𝑡) , we can further identify their close 

contacts, forming the secondary level contacts of the 

individual i. Under different control measures, first and 

secondary-level contacts may be isolated to block virus 

transmission3,14. Once a confirmed case is identified, close 

contacts are traced and isolated. However, this process 

can be complex in reality, as it takes time to trace the 

close contacts, and identifying all contacts is usually 

challenging. In our model simulations, we introduced two 

parameters to represent the probabilities of finding the 

close and secondary-level contacts, respectively. For 

simplicity, we assumed that close contacts are isolated on 

the second day after the confirmed case is identified. 

Isolation typically lasts one or two weeks, depending on 

the control measures. 

 

For isolated individuals, nucleic acid testing (NAT) is 

assumed to be performed on specified days after 

isolation. Those confirmed by NAT are hospitalized, and 

their close contacts are traced and isolated. Individuals 

who are not confirmed during the isolation period return 

to their normal lives. 

 

RECOVERY OR DEATH 

Each infected individual recovers at a rate θi(t). The 

recovery rate θi(t) is associated with the infection age ai 
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since the initial exposure: 

 

The isolated infected individuals have the same recovery 

rate θi(t). Confirmed infected individuals who are 

hospitalized have a higher recovery rate λi(t). We simply 

assumed: 

 

Patients with mild to moderate illness often have a high 

rate of self-recovery, while those with severe or clinical 

illness are more likely to be confirmed and hospitalized. 

 

Each infectious individual may die at a rate ϕ. 

Hospitalized patients have a lower death rate 𝜑 (𝜑 <

 ϕ). According to the WHO, the death rate of COVID-19 

patients was approximately 2−3% in 2020 and 

decreased to 0.6−1.0% in 202428. However, since many 

COVID-19 infections recover without medical intervention, 

the actual death rate is likely lower than these reported 

figures. 

 

NUMERICAL SCHEME 

In numerical simulations, we update the infectious status 

of each individual and the contact network daily, 

following a stochastic simulation method based on 

changes in individual status. To simulate the impact of 

different prevention and control measures, we introduce 

daily variance in the system in accordance with these 

measures. A brief summary of the numerical scheme is 

given below: 

Initialization: Initialize the system with the initial contact 

network and the initial infection status of each individual. 

1) Initialize the nodes in the network, assigning either 

vacancies or individuals. 

2) Initialized the contact network; assign each 

individual to a family network and a public network, and 

set the initial infection status of each individual.  

3) Calculate the status transition rates for each 

individual. 

Update: Update the infection status of each individual 

and the contact network daily. 

1) Update the mask-wearing status of each individual 

according to their preference for wearing masks. 

2) Update the dynamic contact network. Type-I 

networks contain fixed individuals, and their contact 

relationships may change daily based on the small-world 

network model. Type-II networks may include alterable 

individuals, with membership varying daily. The 

corresponding individuals and contact networks are 

updated to maintain a dynamic contact network. 

3) Update the infection status of each individual based 

on the contact network and the infection status of others. 

4) Update variables that dynamically change over 

time and may depend on control measures, such as mask-

wearing rate, the number of new confirmed cases, the 

total number of confirmed cases, the number of new 

deaths, the total number of deaths, the number of close 

contacts, etc.. 

Simulation termination: Terminate the simulation when 

the simulation time is reached and save the epidemic 

dynamics generated by the model. 

 

PARAMETER ESTIMATION 

In this study, the model parameters were set with 

reference to the epidemic spread of COVID-19, 

particularly focusing on the Omicron variant. The 

parameters for the contact network and individual status 

are shown in Table A.2 and Table A.3 in the Appendix. 

Most parameters were estimated based on prior 

experience and adjusted to align with real-world 

epidemic data. 

 

In model simulations, we set the total population size to N 

= 5000 and adjusted the model parameters to reflect 

the Omicron SARS-CoV-2 epidemic29-31. Without 

prevention and control measures, the epidemic dynamics 

reach a stable state in 30 days, with approximately 80% 

individuals infected (Fig. 3a). The peak of new daily 

infections occurs one week after the outbreak begins (Fig. 

3b). This study evaluates the effectiveness of different 

control measures using consistent parameter sets. 
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Figure 3: Cases without prevention and control measures. (a) Cumulative cases. (b) Daily new cases. Here, N = 5000, and 

there are 7 initial infectious individuals at t = 0. 

 

Results 
IMPACT OF WEARING MASKS ON THE EVOLUTION OF 

EPIDEMIC 

To examine the impact of mask-wearing on the epidemic 

size, we performed model simulations with varying mask-

wearing rates. We fixed other parameters at their 

default values as listed in Table A.2 and Table A.3 and 

did not consider the measures of contact tracing and 

isolation. Figure 4a shows the dependence of the final 

cumulative infection fraction on the mask-wearing rates. 

The 0 mask-wearing rate corresponds to the scenario 

without any control measures, as shown in Figure 3. As the 

mask-wearing rate increased from 0 to 20%, 40%, 60%, 

and 80%, the cumulative infections decreased from 80% 

to 60%, 46%, 35% and 28%, respectively. If the mask-

wearing rate increases to an extreme level of 100%, 

meaning that all individuals wear masks whenever they 

are in close contact, the cumulative infection fraction 

would reduce to an extremely low level of 1%. 

Additionally, increasing the mask-wearing rate 

significantly reduces daily new infections and postpones 

the time to reach the peak of daily new cases (Fig. 4b). 

These results highlight the importance of mask-wearing in 

preventing the spread of disease. 

 

Figure 4: Dependence of  cumulative infections on the mask-wearing rate. (a) Cumulative infection fractions versus mask-

wearing rate. (b) Evolution of daily new cases under different mask-wearing rates. 

 

EFFECTS OF CLOSE CONTACT ISOLATION MEASURES 

To evaluate the effectiveness of tracing and isolation, we 

varied the isolation rates for the first and the second-level 

close contacts and examined the final level of cumulative 

infections. When the isolation rates for the first and te 

second-level close contacts were set at 60% and 20%, 

respectively, the final cumulative infection percentage 

decreased from 80% (in the absence of prevention 

measures) to 36%. The percentage further decreased to 

31% when the isolation rates were increased to 80% for 

the first-level and 60% for the second-level contacts (Fig. 

5a). If the second-level contact isolation rate was fixed 

at 20% and the first-level isolation rate was varied, the 

cumulative infections percentage increased to 41% when 
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only 30% close contacts were isolated. However, there 

was no significant difference in the cumulative infection 

percentage when the isolation rate increased from 60% 

to 80%. We also fixed the first-level contact isolation 

rate at 60% and varied the second-level isolation rate at 

0%, 30%, and 60%. The resulting cumulative infections 

were 39%, 37%, and 33%, respectively. 

 

We also analyzed the dynamics of daily new infections 

under different isolation rates. Compared to the scenario 

without control measure, as shown in Figure 3, the 

application of tracing and isolation measures resulted in 

distinct dynamics of daily new infections. Figure 5b shows 

two peaks in the number of daily new infections. The first 

peak occurs at approximately one week, similar to the 

scenario without control measures, but with a lower 

maximum value of daily new infections. Interestingly, 

there is a second peak in the daily new infection numbers 

around two weeks after the disease outbreak (Fig. 5b). 

The magnitude of the second peak mainly depends on 

the second-level isolation rate, with higher rates resulting 

in a more pronounced second peak and a reduced first 

peak. 

 

These results indicate that the tracing and isolation 

program can significantly reduce infection numbers. 

Second-level close contact isolation plays a role in 

shaping the daily dynamics of new infections. 

 

 

Figure 5: Influence of isolation measures on COVID-19. (a) Cumulative infection fractions under different tracing and 

isolation rates for the first and the second-level close contacts. (b) Evolution of daily new infections under different tracing 

and isolation rates. 

 

IMPACT OF SOCIAL RESTRICTION CONTROL MEASURES 

To evaluate the impact of social restrictions on epidemic 

dynamics, we varied the probability of individuals 

entering the public network. The public network 

represents public places where people congregate, 

forming dynamic contact networks. Decreasing the 

probability of entering the public network can reduce the 

size of contact networks and help prevent disease spread. 

Figure 6a shows the dependence of the peak value of 

daily new infections on the probability of entering the 

public network. Here, we set the mask-wearing rate as 0, 

and no tracing or isolation measures were applied for 

close contacts. Hence, a probability of 1 represents the 

situation without control measures. As shown in Figure 6a, 

when the probability decreased from 0.7 to 0.5, the peak 

value of daily new infections significantly decreased from 

600 to 339. The peak value further continued to 

decrease with lower probabilities of entering the public 

network. These results indicate that implementing social 

restrictions can effectively reduce the number of 

infections and help control the spread of the epidemic. 

 

We further examined the influence of social restrictions 

on the time required to achieve zero new infections. To 

quantify this “zero clearing” time, we only considered new 

infections occurring within the public network. The 

epidemic was considered to have cleared if there were 

zero new public cases for five consecutive days. Figure 

6b shows the temporal dynamics of daily new public 

infections for different probabilities of public network 

entry. The results indicated that as the probability 

decreased, both the peak value of daily new infections 

decreased, and the time to reach this peak was 

postponed. These findings suggest that decreasing the 
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probability of entry into public networks can reduce the 

epidemic size and slow its spread. The dependence of 

the zero-clearing time on the public network entry 

probability is depicted in Figure 6c, showing that stricter 

restrictions on public networks result in a shorter zero 

clearing time. 

 

 

Figure 6: Influence of  social restriction on the epidemic dynamics. (a) Dependence of the peak value of daily new infections 

on the probability of entering the public network. (b) Temporal dynamics of daily new public infections. (c) Dependence of 

the zero clearing time on the public network entry probability. All results were obtained from 10 independent runs 

 

INFLUENCE OF DYNAMIC CONTACT NETWORK 

STRUCTURE 

While social restrictions can effectively reduce the 

epidemic size and shorten the time to zero new infections, 

they may also cause significant inconvenience in daily life. 

Alternatively, reducing the number of contacts in public 

networks can help prevent the spread of the epidemic. To 

evaluate the effects of reducing public contacts, we 

adjusted the structure parameters (K, P) in defining the 

public contact networks. Here, the contact degree K refers 

to the average number of close contacts per individual, 

and P represents the reconnection probability. 

 

First, we compared the results of two network structures 

with different parameter sets for K across the 8 public 

networks. The first network used values from the default 

parameters (K1 in Table A.4), corresponding to the 

situation without control measures. In contrast, the second 

network assumed that social restrictions were 

implemented starting on the 15th day after the epidemic 

outbreak, leading to a reduction in the parameters K (K2 

in Table A.4). Model simulations showed that when the 

contact degree changed from K1 to K2 , the fraction of 

cumulative infections decreased from 79% to 25% 

(Figure 7a). 

 

Next, we fixed the average contact degree at K2 and 

varied the reconnection probability P for different public 

subnetworks (Table A.4). The cumulative infection numbers 

are shown in Figure 7b. The cumulative number of 

infections increases with the standard reconnection 

probability. These results indicate that the structure of the 

close contact network in public settings significantly 

impacts the final epidemic size. Measures such as 

reducing the average contact degree and the standard 

reconnection probability can effectively prevent the 

spread of the epidemic. 
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Figure 7: Influence of  dynamic network parameters on the epidemic size. (a) The cumulative infection fractions under different 

average contact degrees, with the standard reconnection probability set as P3. (b) Cumulative infectious fractions using 

different standard reconnection probabilities, with the average contact degree set at K2. 

 

INFLUENCE OF MULTIPLE CONTROL MEASURES 

In the previous discussions, we examined different control 

measures individually. Now, we assess the effectiveness 

of implementing multiple measures in combination. The 

control measures we considered include close contact 

isolation, mask-wearing, and social restriction. We 

assumed the isolation rates for the first and the 

secondary-level close contacts to be 80% and 60%, 

respectively, a mask-wearing probability at either a low 

(40%) or a high (80%) level, and a public network 

entering probability of 0.8. 

 

Figure 8 presents the fractions of the cumulative number 

of infections and the maximum daily new infections under 

various scenarios: no control measures, single control 

measures (close contact isolation, mask-wearing, social 

restriction), and the combination of multiple control 

measures. The results indicate that the fraction of the 

cumulative number of infections is the highest when no 

prevention and control measures are in place. 

Implementing social restrictions significantly reduces the 

cumulative infections. Similarly, close contact isolation and 

mask-wearing also notably reduce the cumulative 

infections. Notably, increasing the mask-wearing rate has 

a substantial impact on the epidemic, significantly 

lowering the cumulative number of infections (as shown in 

Figure 8a). Furthermore, these measures have similar 

effects on both the cumulative number of infections and 

the maximum daily new infections (as depicted in Figure 

8b). 

 

Implementing multiple prevention and control measures 

simultaneously has the most significant and effective 

impact on the epidemic, reducing both the cumulative 

number of infections and the maximum daily new 

infections to very low levels (Figure 8). 

 

Figure 8: Impact of  multiple control measures on the epidemic. (a) Fractions of the cumulative infections number under various 

prevention and control measures. (b) Maximum number of daily new infections under various prevention and control measures.  
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Discussion 
This study introduces an individual-based computational 

model with dynamic contact networks to simulate the 

transmission dynamics of local infectious disease 

outbreaks. Specifically, model evaluates the  impact of 

the test-trace-isolate program on the evolution of an 

epidemic by analyzing key indicators such as cumulative 

infection numbers, peak infection rates, and daily new 

infections under various prevention and control measures. 

 

In the absence of any preventive interventions, the 

simulations show a rapid rise in infections following the 

emergence of a local outbreak. The peak in daily new 

infections typically occurs within approximately one week, 

underscoring the swift escalation of transmission in such 

scenarios. However, the introduction of the test-trace-

isolate program markedly slows the rate of infectious 

spread, resulting in a substantial reduction in both the 

final epidemic size and the number of daily new cases. 

Specific measures--including reducing interpersonal 

contact, effectively tracing and isolating close contacts, 

and implementing broader social restrictions--

demonstrated a significant impact on curbing the overall 

scale of the epidemic. 

 

This model offers valuable quantitative insights into the 

effectiveness of preventive strategies against COVID-19, 

particularly in relation to more transmissible variants such 

as the Omicron strain. Beyond COVID-19, the framework 

developed here is adaptable for the evaluation of 

prevention and control measures for other infectious 

diseases, allowing for comparative assessments across 

different pathogen characteristics and epidemic settings. 

By simulating individual behaviors and network 

interactions, this approach can be expanded to 

incorporate diverse public health interventions, such as 

vaccination campaigns, population-level behavior 

modifications, and varying levels of public adherence to 

guidelines. 

 

One notable feature of this study is its approximation of 

individual contact relationship within public networks 

using a small-world network model. While this offers a 

useful abstraction for modeling local interactions, it does 

not fully capture the complexity of real-world contact 

patterns. Real-life social networks are dynamic and 

heterogeneous, with varying degrees of clustering, multi-

layered interactions, and shifts in contact rates over time 

due to behavioral, social, and policy-related changes. 

Accurately modeling these complex dynamics in future 

iterations remains a challenge, but is crucial for improving 

predictive power and precision in assessing outbreak 

responses. 

 

Moreover, the model assumes a level of consistency in the 

effectiveness of interventions such as contact tracing and 

isolation. However, in real-world applications, these 

interventions are often hampered by factors such as 

delays in testing, incomplete tracing, non-compliance with 

isolation orders, and the varying availability of resources 

across different regions. Future modeling efforts should 

incorporate these real-world inefficiencies to provide 

more nuanced predictions and improve public health 

planning.  

 

As infectious diseases continue to evolve, the next frontier 

in epidemic modeling will likely involve the integration of 

real-time data streams, such as mobile health data, 

geolocation tracking, and population mobility patterns. 

These data sources can help to more accurately simulate 

contact networks and adjust intervention strategies 

dynamically as new data emerge. Additionally, machine 

learning techniques could be employed to refine 

predictions and optimize the allocation of resources 

during an outbreak. 

 

Conclusion 
This study provides a robust framework for evaluating the 

effectiveness of the test-trace-isolate program and other 

non-pharmaceutical interventions in managing infectious 

disease outbreaks. While the model offers valuable 

insights, future efforts must focus on addressing the 

limitation associated with the complexity of human 

contact networks and real-world intervention constraints. 

Enhancing the fidelity of these models will play a critical 

role in improving public health responses to future 

pandemics, helping to mitigate their impact more 

effectively. 
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Supporting information 
APPENDIX A. MODELS PARAMETERS 

Table A.1: Variable to define the small-world network 

Parameters Description 

N Number of nodes 

K Average contact degree of each node 

P Standard reconnection probability of nodes 

 

Table A.2：Default parameter values of the contact network and COVID-19 infection 

Parameter Description Value Unit Resource 

N 

Maximum number of individuals 

considered  

5000 - Estimated 

pu Number of public networks 8 - Estimated 

sa Initial vacancy percentage 0.08 - Estimated 

we Mask-wearing rate of individuals 0.6 - Estimated 

va Coverage of individual vaccination 

coverage  

0.897 - Estimated 

ve Effectiveness of the vaccination 0.3 - [32] 

IR The maximum infection probability 0.9 - Estimated 

MAIR Infectiousness factor of susceptible 

individuals wearing masks 

0.33 - Estimated 

MBIR Infectiousness factor of infectious 

individuals wearing masks 

0.11 

 

Estimated 

MCIR Infectiousness factor when both 

susceptible and infectious individuals 

wear masks 

0.017 - Estimated 

MDIR Infectiousness factor that neither 

susceptible nor infectious wear masks 1  

Estimated 

pu_update Public network update status 0,0,0,1,1,1,1,1(a) - Estimated 

ne_update Individual update probability in public 

network 

0,0,0,0.8,0.8,0.8,0.7,0.7 - Estimated 

min Minimum number of family members 1 - Estimated 

max Maximum number of family members 6 - Estimated 

(a) A value pu_update = 0 indicates that corresponding public network is not updated, while pu_update = 1 indicates 

that it is updated. 

 

Table A.3：Parameters of individual status 

Parameter Description Value Unit Resource 

pre_wear Individual's preference for wearing masks daily 0.8 - Estimated 

activity Probability of entering the public network 0.8  Estimated 

inf_num Number of initial infections 7 - Estimated 

θ Recovery rate of infected individuals 0.02 day−1 [33] 

λ Recovery rate of confirmed cases 0.1029 day−1 [33,8] 

δ Confirmed rate of infectious 0.15 day−1 Estimated 

ϕ Death rate of infected individuals 0.0007 day−1 [33] 

φ Death rate of confirmed cases 0.00008 day−1 [33] 

iso_time1 Days of isolation for close contacts 7 days control measures 

find_nei1 Probability of finding close contacts of 

confirmed cases 

0.8 - Estimated 



Evaluation of infectious diseases control using an individual model under the test-trace-isolate program 

© 2024 European Society of Medicine 15 

Parameter Description Value Unit Resource 

find_nei2 Probability of finding secondary close contacts 

of confirmed cases  

0.6 

- 

Estimated 

ET Effective contact time between individuals 2 day Estimated 

nuc_res Positive rate of nucleic acid test for infectious 

individuals  

0.8 - Estimated 

inf_total_time Average total time individuals are infected 5 days Estimated 

 

Table A.4: Parameters for average contact degree and standard reconnection rate of public networks 

Parameters  Description 
  

Net-1 

 Net-

2 

 Net-

3 

 Net-

4 

 Net-

5 

 Net-

6 
 Net-7  Net-8 

𝐾1 

Average contact 

degree without travel 

control 

39 39 39 34 34 34 42 42 

𝐾2 

Average contact 

degree without/ with 

travel control  

39/8 39/8 39/8 34/4 34/4 34/4 42/10 42/10 

𝑃1 

The standard 

reconnection 

probability 

0.2 0.2 0.2 0 0 0 0.05 0.05 

𝑃2 

The standard 

reconnection 

probability  

0.3 0.3 0.3 0.1 0.1 0.1 0.15 0.15 

𝑃3 

The standard 

reconnection 

probability  

0.4 0.4 0.4 0.2 0.2 0.2 0.25 0.25 

𝑃4 

The standard 

reconnection 

probability 

0.5 0.5 0.5 0.3 0.3 0.3 0.35 0.35 

 


