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ABSTRACT 
This study explores how well Artificial Neural Networks (ANNs) can 

predict the spread of COVID-19 across Canadian health regions, 

focusing on the impact of socio-economic factors. By examining a wide 

range of demographic, economic, and social indicators, we identify which 

factors play the biggest role in accurately forecasting the pandemic’s 

spread. The trained ANN model underscores the critical role of 

urbanization, population density, and social behaviors in densely 

populated regions, such as Toronto and Montreal, where transmission 

rates were higher. Conversely, remote regions like the Keewatin Yatthé 

and Labrador-Grenfell Health Authorities saw lower transmission due to 

geographic isolation and community-based controls. Additionally, the 

study highlights disparities in healthcare infrastructure, especially in ICU 

bed availability, which were more pronounced in urban areas. 

Vaccination rates were also identified as key in controlling the spread, 

with proactive public health efforts leading to higher rates in regions like 

the Northwest Territories. Our findings show that these socio-economic 

factors vary in importance from one region to another, offering valuable 

insights for public health planning. These findings provide practical 

advice for improving how resources are allocated and how public health 

strategies are developed, emphasizing the need to consider socio-

economic differences in pandemic forecasting. This approach aims to help 

policymakers and health officials respond more effectively to current and 

future public health challenges. 

Keywords: SARS-Cov-2, COVID-19; Machine Learning; Artificial Neural 

Network; Canadian Health Regions. 
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1 Introduction 
The COVID-19 pandemic has upended lives around the 
world, forcing public health systems to confront 
challenges on a scale never seen before. This crisis has 
highlighted the urgent need for strong predictive models 
to guide decision-making and allocate resources 
effectively. As the pandemic unfolded, it became clear 
that the spread of the virus was not uniform, varying 
significantly across different regions and communities. 
These variations highlighted the need for localized 
forecasting models that account for regional socio-
economic disparities. Accurate predictions of how the 
virus spreads are crucial for shaping effective public 
health responses and making informed decisions about 
resource allocation. 
Incorporating socio-economic characteristics into 
modeling the spread of COVID-19 across Canadian 
health regions is essential because these factors play a 
pivotal role in determining how the virus affects different 
communities. Without accounting for these variables, 
models risk being incomplete, leading to ineffective 
public health interventions and misallocated resources. 
Socio-economic factors such as demographic data (e.g., 
population size and age group distributions), 
geographical characteristics (e.g., latitude, longitude, 
and health region size), health infrastructure (e.g., number 
of hospital beds and healthcare access), and vaccination 
data (e.g., number of doses administered) all contribute 
to a region's vulnerability to COVID-19. For example, 
densely populated regions with limited healthcare access 
may experience faster spread and higher mortality 
rates, while areas with better healthcare infrastructure 
and higher vaccination rates may be more resilient to the 
virus. Ignoring these factors could lead to inaccurate 
predictions and ineffective public health policies that fail 
to meet the specific needs of different regions. Therefore, 
incorporating elements like population size, geographic 
location, healthcare resources, and vaccination uptake 
into models is crucial for guiding effective interventions 
that are tailored to each region's unique characteristics. 
 
This study used a machine learning technique, specifically 
an artificial neural network, to model the spread of 
COVID-19 across Canadian health regions using a range 
of socio-economic indicators. Here are some advantages 
of using machine learning techniques to model the spread 
of COVID-19 across Canadian health regions using a 
range of socio-economic indicators: 

• Handling Complex Interactions: Machine 
learning can capture and model the complex 
interactions between various socio-economic 
factors and COVID-19 spread, which traditional 
models might miss. 

• Improved Prediction Accuracy: By analyzing 
large datasets and identifying patterns, machine 
learning algorithms can improve the accuracy of 
predictions, helping to better anticipate 
outbreak hotspots. 

• Adaptability to New Data: Machine learning 
models can be continuously updated with new 
data, allowing them to adapt to changing 
conditions and provide real-time insights. 

• Identification of Key Predictors: Machine 
learning can identify the most significant socio-

economic indicators that influence COVID-19 
spread, guiding targeted interventions. 

• Scalability Across Regions: These models can 
be applied to different health regions, offering 
scalable solutions that can be tailored to local 
socio-economic contexts. 

• Reduction of Human Bias: Machine learning 
techniques minimize human biases in model 
development, leading to more objective and 
data-driven predictions. 

• Efficient Resource Allocation: Accurate 
predictions enable better allocation of resources, 
such as vaccines and medical supplies, to areas 
that need them the most. 

 
Artificial Neural Networks are particularly well-suited for 
modeling the spread of COVID-19 across Canadian 
health regions using a range of socio-economic indicators 
due to their ability to handle complex, non-linear 
relationships within large datasets. Here’s why ANNs 
stand out and offer several advantages over other 
machine learning techniques: 

1. Ability to Capture Non-Linear Relationships: 
COVID-19 transmission and its impact on 
different regions are influenced by a multitude 
of socio-economic factors, such as population 
density, income levels, healthcare access, and 
education. These factors often interact in non-
linear ways that traditional statistical models 
may struggle to capture. ANNs, with their multi-
layered structure, excel at identifying and 
modeling these intricate relationships, leading to 
more accurate predictions. 

2. Automatic Feature Extraction: Unlike some 
machine learning methods that require extensive 
feature engineering, ANNs can automatically 
learn and extract relevant features from the 
input data. This capability is particularly 
advantageous when dealing with diverse and 
complex socio-economic data, as it reduces the 
need for manual intervention and ensures that 
critical patterns are not overlooked. 

3. Robustness Against Noise and Variability: 
Artificial Neural Networks are designed to be 
resilient to noisy data and can generalize well, 
even when faced with variability in the input 
data. In the context of COVID-19 modeling, 
where data can be noisy or incomplete, ANNs 
provide a robust approach to making reliable 
predictions. 

4. Scalability and Flexibility: Artificial Neural 
Networks can easily scale to accommodate large 
datasets, which is crucial when analyzing COVID-
19 data across multiple Canadian health 
regions. Their flexibility allows them to adapt to 
different types of input data, whether it’s 
demographic information, healthcare capacity, 
or economic indicators. 

5. Improved Prediction Accuracy: Due to their 
deep learning architecture, ANNs have the 
capacity to achieve higher prediction accuracy 
compared to simpler machine learning models. 
This is particularly important in a pandemic 
scenario, where accurate predictions can guide 
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effective public health interventions and resource 
allocation. 

6. Adaptability to Dynamic Data: Artificial Neural 
Networks can be continuously trained with new 
data, making them adaptable to the evolving 
nature of the COVID-19 pandemic. This 
adaptability ensures that predictions remain 
relevant and accurate over time as new 
information becomes available. 
 

1.1 CANADIAN HEALTH REGIONS 
Canadian health regions are geographically defined 
areas established by provincial and territorial 
governments to manage and deliver health services 
tailored to the local population. These regions serve as 
administrative units through which public health policies, 
programs, and services are implemented. The specific 
boundaries and organization of health regions vary by 
province and territory, reflecting differences in 
population distribution, geography, and governance. 
Each province and territory in Canada has its own method 
for defining health regions. For example, Ontario has 
Public Health Units (PHUs), while Alberta uses zones to 
organize its health services. Quebec has Integrated 
Health and Social Services Centres (CISSS) and 
Integrated University Health and Social Services Centres 
(CIUSSS), which further integrate healthcare delivery with 
social services. The number of health regions within each 
province or territory also varies significantly. For instance, 
British Columbia has five health authorities, Alberta has 
five health zones, and Ontario has 34 PHUs. 
 
Although Ontario has named health regions, we 
considered the public health regions as the health regions 
for our study. This approach allows us to include a 
greater number of regions by focusing on public health 
regions. Public Health Units (PHUs) in Ontario are 
geographically defined areas governed by local boards 
of health that are responsible for delivering public health 
services and programs to communities within their 
jurisdiction. Each PHU operates under the authority of the 
Ontario Ministry of Health and is tasked with 
implementing a wide range of public health initiatives, 
including disease prevention, health promotion, and 
health protection. The services provided by PHUs cover 
essential areas such as immunization programs, infectious 
disease control, sexual health services, nutrition, 
environmental health inspections, and emergency 
preparedness. Ontario is divided into 34 Public Health 
Units, each serving a specific population and geographic 
area. These units are typically organized based on 
municipal boundaries, which can include one or multiple 
municipalities. 
 
Quebec's health regions, known as "régions 
sociosanitaires," are administrative divisions established 
to organize and deliver healthcare and social services 
across the province. The province is divided into 18 health 
regions, each managed by an Integrated Health and 
Social Services Centre (CISSS) or, in urban areas with 
universities, an Integrated University Health and Social 
Services Centre (CIUSSS). These regions are responsible 
for providing a wide range of services, including primary 
and specialized healthcare, mental health support, social 
services, and community health initiatives. Their duties 
also include coordinating resource allocation, managing 

population health, promoting public health, and 
responding to emergencies. By tailoring services to the 
specific needs of their populations, Quebec's health 
regions play a vital role in ensuring accessible and 
comprehensive healthcare across the province. 
 
British Columbia (BC) is divided into five regional health 
authorities that are responsible for delivering and 
managing health services across the province. These 
regions, Fraser Health, Interior Health, Northern Health, 
Vancouver Coastal Health, and Island Health are 
geographically defined to cover the diverse populations 
and needs of BC's urban, rural, and remote areas. Each 
health authority is tasked with providing a full range of 
healthcare services, including primary care, hospital care, 
mental health services, public health initiatives, and 
specialized medical services. Their duties also involve 
health promotion, disease prevention, and ensuring 
equitable access to healthcare. Additionally, BC has a 
provincial health authority, the Provincial Health Services 
Authority (PHSA), which coordinates specialized health 
services across the region, including cancer care, 
emergency health services, and public health labs. 
Together, these health authorities ensure that residents of 
British Columbia receive comprehensive and coordinated 
healthcare tailored to their regional needs. 
 
In the Prairie Provinces of Canada; Alberta, 
Saskatchewan, and Manitoba; health regions are 
defined to effectively manage and deliver healthcare 
services tailored to their diverse populations. In Alberta, 
healthcare is organized under Alberta Health Services 
(AHS), which is divided into five zones: North Zone, 
Edmonton Zone, Central Zone, Calgary Zone, and South 
Zone. Each zone is responsible for providing a wide 
range of healthcare services, including hospitals, primary 
care, mental health services, and emergency medical 
services, to both urban and rural areas within its 
jurisdiction. Saskatchewan operates under a single health 
authority known as the Saskatchewan Health Authority 
(SHA), which consolidated Six (Far North, North, Central, 
Regina, South and Saskatoon) health regions into one 
province-wide organization. This centralized system is 
responsible for delivering healthcare services across the 
entire province, including hospitals, long-term care, public 
health programs, and mental health services, ensuring 
consistent and equitable access for all residents. 
Manitoba is divided into five regional health authorities: 
Winnipeg Regional Health Authority, Southern Health-
Santé Sud, Prairie Mountain Health, Interlake-Eastern 
Regional Health Authority, and Northern Regional Health 
Authority. Each authority manages healthcare services 
within its geographic area, overseeing hospitals, 
community health programs, and public health initiatives. 
 
The Atlantic Provinces of Canada; Newfoundland and 
Labrador, Prince Edward Island, Nova Scotia, and New 
Brunswick; each have healthcare services managed by 
regional health authorities tailored to their geographic 
and population needs. Newfoundland and Labrador is 
divided into four regional health authorities: Eastern 
Health, Central Health, Western Health, and Labrador-
Grenfell Health, each overseeing healthcare delivery in 
their respective regions. Prince Edward Island has a single 
health authority, Health PEI, responsible for managing all 
healthcare services across the island. Nova Scotia 
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operates under the Nova Scotia Health Authority (NSHA), 
which administers healthcare throughout the province, 
with four zones; Central, Eastern, Northern and Western. 
New Brunswick is divided into seven health Moncton, Saint 
John, Fredericton, Miramichi, Edmundston, Campbellton, 
and Bathurst which are managed by the two regional 
health authorities, Horizon Health Network and Vitalité 
Health Network. The health regions in the Atlantic 
Provinces are responsible for delivering comprehensive 
healthcare services, including hospital care, primary care, 
mental health, and public health programs, to ensure 
equitable access across their populations. They also 
manage healthcare facilities, respond to public health 
emergencies, and promote overall community health and 
well-being in their respective regions. 
 
The Northern Territories of Canada; Yukon, Northwest 
Territories, and Nunavut; each have unique health regions 
tailored to their vast and sparsely populated landscapes. 
Yukon is served by a single health region managed by 
the Yukon Health and Social Services, which oversees 
healthcare delivery across the territory, including 
Whitehorse and the remote communities. The Northwest 
Territories has a single health region, which is managed 
by the Northwest Territories Health and Social Services 
Authority (NTHSSA). Nunavut also has a single health 
region, which is managed by the Nunavut Department of 
Health. Although each Northern Territory could be 
divided into more health regions, the availability of 
information is very limited, so we may need to aggregate 
some regions to create health regions based on the 
available data. The health regions in the Northern 
Territories focus heavily on providing healthcare to 
remote and isolated communities, often requiring 
specialized approaches to deliver services across vast, 
sparsely populated areas. Their duties also emphasize 
culturally appropriate care for Indigenous populations, 
reflecting the unique demographic and geographic 
challenges of the region. 
 
1.2 SOCIO-ECONOMIC FACTORS IN CANADIAN 

HEALTH REGIONS 
Socio-economic factors play a crucial role in shaping the 
health and well-being of populations, influencing access 
to resources, health behaviors, and overall quality of life. 
In Canada, these factors include income levels, education, 
employment status, housing conditions, and access to 
healthcare, among others. Data on these socio-economic 
factors are meticulously collected and maintained by 
various governmental agencies, such as Statistics Canada 
and the Canadian Institute for Health Information (CIHI). 
These organizations gather data through national 
surveys, censuses, and administrative records, which are 
then disaggregated by health regions to provide a 
granular understanding of the socio-economic landscape 
across the country. This localized data is vital for public 
health planning, policy-making, and resource allocation, 
ensuring that interventions are targeted effectively to 
address the unique needs of different communities. 
 
When compared globally, Canada's socio-economic 
factors generally reflect a high standard of living, with 
strong social safety nets, universal healthcare, and 
relatively low levels of poverty and unemployment. 
However, these factors also reveal disparities when 
contrasted with other high-income countries. For instance, 

Canada's income inequality is more pronounced than in 
some European nations, though it remains less severe than 
in countries like the United States. Education levels in 
Canada are among the highest in the world, with a 
significant proportion of the population holding post-
secondary degrees. Additionally, Canada’s health 
infrastructure, including the number of hospital beds and 
healthcare access, varies by region, affecting healthcare 
outcomes during crises like the COVID-19 pandemic. The 
country's universal healthcare system ensures that all 
citizens have access to medical services, but the 
distribution of these services is uneven, particularly in 
remote areas. Disparities in vaccination rates across 
health regions also highlight regional differences in public 
health responses, with factors like population density and 
healthcare access playing a critical role. Challenges such 
as housing affordability, regional economic disparities, 
and the unequal distribution of healthcare resources 
continue to impact socio-economic outcomes, highlighting 
areas where Canada lags behind its global peers. 
 
Within Canada, socio-economic factors such as 
population size, age group distributions, geographic 
characteristics, health infrastructure, and vaccination 
efforts vary significantly across provinces and health 
regions, reflecting the country’s diverse population and 
geography. For instance, provinces like Ontario and 
British Columbia tend to have higher income levels, larger 
populations, and better access to healthcare compared 
to rural and remote regions, where physician shortages, 
limited healthcare infrastructure, and smaller populations 
create challenges for effective public health interventions. 
In areas like northern health regions, which include 
Indigenous communities, there are higher levels of 
poverty and limited access to healthcare, impacting 
COVID-19 vaccination rates and health outcomes. The 
geographic isolation of regions such as Nunavut and the 
Région des Terres-Cries-de-la-Baie-James has 
contributed to lower vaccination rates due to healthcare 
access issues and logistical challenges. Conversely, more 
urbanized regions like the City of Toronto and Montréal 
benefit from higher vaccination rates and robust health 
infrastructure, enabling better control over virus 
transmission. These disparities underscore the importance 
of targeted public health measures that account for the 
unique socio-economic challenges of different regions 
across Canada. 
 
This paper is structured as follows: Section 2 reviews the 
statistical and machine learning models previously 
employed to analyze the spread of COVID-19. In Section 
3, we present a methodology based on artificial neural 
networks. Section 4 applies the proposed methods to 
model the spread of COVID-19 across Canadian health 
regions, utilizing various socio-economic indicators. 
Section 5 provides a brief discussion of the results and 
methodologies presented in the paper, followed by the 
concluding remarks in Section 6. 

 

2 Literature Review 
The analysis of COVID-19 data has employed a variety 
of statistical models and machine-learning techniques, 
each tailored to address specific aspects of the 
pandemic's dynamics. Statistical methods and machine 
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learning methods both aim to analyze and interpret data, 
but they differ in their approaches and objectives. 
Statistical methods, rooted in classical statistics, often 
focus on understanding relationships between variables, 
hypothesis testing, and making inferences about 
populations based on sample data. These methods 
typically rely on well-defined models and assumptions, 
such as linear regression or ANOVA. In contrast, machine 
learning methods emphasize predictive accuracy and are 
designed to handle large and complex datasets. Machine 
learning techniques, such as neural networks or support 
vector machines, are often less concerned with the 
underlying statistical assumptions and more focused on 
optimizing predictive performance through iterative 
training on data. While statistical methods provide 
insights into the data's structure and significance, machine 
learning methods excel in making accurate predictions 
and discovering patterns in high-dimensional or 
unstructured data. First, we explore some statistical 
models that have been used to model COVID-19 data.  
 
The statistical models can broadly be categorized into 
traditional epidemiological models, regression models, 
time series forecasting models and spatial models. One 
of the foundational models used in the analysis of 
infectious diseases, including COVID-19, is the 
Susceptible-Infected-Recovered (SIR) model. This model 
helps in understanding the spread of the virus by 
categorizing the population into three compartments: 
susceptible, infected, and recovered. discussed the 
application of the SIR model in evaluating the 
effectiveness of large-scale anti-contagion policies 
during the pandemic. Cooper et al.6 discuss the 
application of the Susceptible-Infectious-Recovered (SIR) 
model to predict and analyze the spread of COVID-19 
across various communities, focusing on the impact of 
different parameters on the outbreak dynamics. Liu et 
al.18 explore the COVID-19 epidemic using a modified 
time-dependent SIR model that incorporates 
nonextensive statistics to better represent the dynamic 
societal impacts and control measures. Next, we will focus 
on exploring regression methods for modeling COVID-19 
data. 
 
Regression models, including count regression models, 
have been instrumental in analyzing the relationship 
between various predictors and COVID-19 outcomes. 
Specifically, count regression models like the negative 
binomial distribution have been applied to effectively 
analyze COVID-19 data. Chan et al.5 presented a 
statistical study on modeling and analyzing the daily 
incidence of COVID-19 across eighteen countries, 
demonstrating that count regression models, particularly 
the negative binomial distribution with a log link function, 
are effective for short-term predictions of new daily 
cases. Oztig and Askin21 examine the relationship 
between human mobility and the spread of COVID-19 
using negative binomial regression analysis, providing 
insights into how movement patterns contribute to the 
pandemic's dynamics. Kremer et al.14 emphasize the 
importance of accurately modeling the distribution of 
secondary COVID-19 cases caused by an infectious 
individual. While the negative binomial distribution is 
frequently used, the study suggests that alternative 
distributions like the Poisson-lognormal may provide a 
better fit for data with considerable heterogeneity. These 

models are well-suited for handling count data, such as 
the number of confirmed cases or deaths, and allow for 
the incorporation of multiple covariates to enhance 
predictive accuracy, providing valuable insights into the 
factors influencing the spread and impact of the virus. 
Next, we will shift our focus to examining time series 
models for analyzing COVID-19 data. 
 
Time series models, particularly the Autoregressive 
Integrated Moving Average (ARIMA) model, have been 
extensively used to predict the future trajectory of 
COVID-19 cases. Kumar and Susan15 discuss the use of 
ARIMA and Prophet time series forecasting models to 
predict the spread of COVID-19 across various countries, 
demonstrating that the ARIMA model is more effective for 
forecasting COVID-19 prevalence, which can aid 
governments in planning policies to contain the virus. 
Somyanonthanakul et al.27 explore the use of advanced 
time series models combined with association rule mining 
techniques to predict future COVID-19 cases, aiming to 
enhance the accuracy and reliability of pandemic 
forecasting efforts. These models are particularly 
valuable for short-term forecasting and understanding 
trends over time. Next, we will direct our attention to 
exploring spatial models for analyzing COVID-19 data. 
 
Spatial models have been used to understand the 
geographical spread of COVID-19. Cordes and Castro7 
use a spatial model to identify clusters with low testing 
and high positivity rates, often correlated with lower 
income, less education, and minority populations, while 
areas with higher income and predominantly white 
populations had more testing and lower positivity rates. 
Thomas et al.28 explore how geographically detailed 
diffusion models, which account for the spatial distribution 
of interpersonal networks and declining interaction 
probabilities with distance, reveal significant impacts on 
the timing and severity of local COVID-19 outbreaks, 
demonstrating the limitations of standard SIR models that 
assume uniform local mixing. Next, we will address some 
of the complex structures in the data relevant to modeling 
COVID-19. 
 
Analyzing COVID-19 data with statistical models varies 
in complexity depending on data characteristics like 
sparsity. Wickramasinghe et al.29 proposed a Bayesian 
shrinkage-type estimator to estimate COVID-19 age-
region-specific counts by borrowing information across 
other populations and categories, which is particularly 
beneficial for addressing data sparsity in smaller health 
regions with limited observations. Hadley et al.10 use 
Bayesian methods to handle the complexity of agent-
based models by incorporating aggregated hospital 
data to account for factors like comorbidities and testing 
status, thereby enhancing the interpretability and 
accuracy of predictions in scenarios with limited 
information. Next, we explore some Machine learning 
methods that have been used to model COVID-19 data. 
 
Clustering techniques, such as k-means and hierarchical 
clustering, have been utilized to analyze COVID-19 data 
by grouping similar cases based on various features. For 
example, Zarikas et al.32 introduce a novel clustering 
analysis that groups countries based on active COVID-19 
cases, adjusting for population and area, providing 
valuable insights for policymakers across multiple 
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disciplines using Johns Hopkins epidemiological data. The 
advantages of clustering include its ability to uncover 
natural groupings within the data, which can inform 
targeted interventions and resource allocation. Clustering 
is particularly valuable in epidemiological studies, where 
identifying subgroups of patients can lead to more 
personalized treatment approaches. While clustering 
focuses on grouping data points based on similarity, the 
next technique, natural language processing (NLP), 
analyzes unstructured text data, showcasing a different 
dimension of machine learning applications in the context 
of COVID-19. 
 
Deep learning is another powerful machine learning 
technique that has been extensively applied to COVID-
19 data analysis, particularly in image classification 
tasks. Deep learning models, such as convolutional neural 
networks (CNNs), have shown remarkable success in 
distinguishing between COVID-19 and other types of 
pneumonia from chest X-rays and CT scans. Shorten et 
al.25 highlight the significant role of Deep Learning in 
combating the COVID-19 pandemic, covering its 
applications across Natural Language Processing, 
Computer Vision, Life Sciences, and Epidemiology, while 
also addressing key limitations such as interpretability 
and data privacy. The advantages of deep learning 
include its ability to automatically learn hierarchical 
features from raw data, which reduces the need for 
manual feature extraction and allows for the processing 
of large datasets efficiently. This capability is 
particularly beneficial in the context of COVID-19, where 
rapid and accurate diagnosis is crucial. While both 
radiomics and deep learning leverage imaging data, 
deep learning's reliance on end-to-end learning contrasts 
with radiomics' feature extraction approach, leading to 
different methodologies in handling the data. 
 
One prominent machine learning technique used to 
analyze COVID-19 data is Convolutional Neural 
Networks (CNNs), particularly in the context of medical 
imaging. Convolutional Neural Networks have been 
effectively employed for the automatic detection of 
COVID-19 from X-ray images, as demonstrated by 
Apostolopoulos and Mpesiana3. Their study utilized 
transfer learning with CNN architectures, achieving an 
impressive accuracy of 97.82% in distinguishing COVID-
19 cases from other conditions. The primary advantage 
of CNNs lies in their ability to automatically extract 
features from images, reducing the need for manual 
feature engineering. This capability is particularly 
beneficial in medical imaging, where subtle patterns can 
indicate disease presence. Furthermore, the use of 
transfer learning allows models to leverage pre-trained 
weights from large datasets, making it feasible to 
achieve high performance even with limited COVID-19 
image data. However, while CNNs excel in image 
classification, they require substantial amounts of 
labelled data to train effectively, which can be a 
limitation in early pandemic stages when data 
availability is scarce. 
 
In contrast to CNNs, Decision trees offer a non-linear 
approach to classification and regression tasks. Decision 
trees partition the data into subsets based on feature 
values, creating a model that is easy to visualize and 
interpret. They have been employed in various COVID-

19 studies to classify patients based on symptoms and 
risk factors, providing clear decision rules for healthcare 
professionals. For instance, Yoo et al.31 demonstrate the 
feasibility of a deep learning-based decision-tree 
classifier for detecting COVID-19 from chest X-ray 
images, achieving an accuracy of 95% and providing a 
rapid, effective tool for pre-screening and triage before 
RT-PCR results are available. The primary advantage of 
decision trees lies in their ability to capture non-linear 
relationships and interactions without requiring extensive 
data preprocessing. However, they can be prone to 
overfitting, especially with small datasets, which may 
lead to less generalizable models. 
 
Naive Bayes is a probabilistic machine learning technique 
based on Bayes' theorem, which assumes independence 
among predictors. This method has been employed in 
analyzing COVID-19 data, particularly in sentiment 
analysis of social media posts or news articles related to 
the pandemic. Mansour et al.19 introduce the Feature 
Correlated Naïve Bayes (FCNB) strategy to enhance the 
detection of COVID-19 cases, achieving 99% accuracy 
by incorporating a feature selection phase, feature 
clustering, master feature weighting, and a modified 
Naïve Bayes algorithm that accounts for feature 
correlations. The advantages of Naive Bayes include its 
speed, ease of implementation, and effectiveness in 
handling large datasets with many features. Additionally, 
it performs well even with a relatively small amount of 
training data, making it a practical choice in scenarios 
where labeled data is scarce. While Naive Bayes is less 
complex than Random Forest, Support Vector Machines, 
or deep learning, its probabilistic nature allows for 
straightforward interpretation of results. This contrasts 
with the more intricate models discussed earlier, 
highlighting a trade-off between interpretability and 
predictive power. Following Naive Bayes, K-Nearest 
Neighbors (KNN) is another straightforward machine-
learning technique that can be utilized for classification 
tasks in COVID-19 data analysis. 
 
K-Nearest Neighbors (KNN) is another machine learning 
technique that has been applied to COVID-19 data 
analysis, particularly for classification tasks. K-Nearest 
Neighbors operate on the principle of proximity, 
classifying a data point based on the majority class of its 
k-nearest neighbors in the feature space. Shaban et al.24 
introduce an enhanced K-Nearest Neighbor (EKNN) 
classifier for detecting COVID-19 from chest CT images, 
which improves upon the traditional KNN by 
incorporating heuristics to select only the most relevant 
neighbors for classification, thereby increasing accuracy 
and reducing the time required for detection. The primary 
advantages of KNN include its simplicity and 
effectiveness in scenarios where the decision boundary is 
irregular. Additionally, KNN does not require a training 
phase, making it computationally efficient for smaller 
datasets. However, KNN can struggle with high-
dimensional data due to the curse of dimensionality, 
which can lead to decreased performance. This limitation 
contrasts with the next technique, Random Forest, which 
excels in handling high-dimensional datasets and 
provides robust predictions. 
 
Random Forests represent a different approach to 
machine learning that is particularly useful for analyzing 
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structured data, such as patient demographics and 
clinical features. Random Forests are ensemble learning 
methods that build multiple decision trees and aggregate 
their predictions to improve accuracy and control 
overfitting. Galasso et al.9 use random forests that can 
handle a wide range of input features, including non-
linear interactions, without requiring strong parametric 
assumptions, making them well-suited for complex and 
diverse datasets like those used in predicting COVID-19 
cases. Additionally, random forests are less susceptible to 
overfitting and can provide robust predictions even when 
the underlying data is noisy or incomplete, as 
demonstrated by their performance in forecasting 
COVID-19 case numbers at the county level during the 
pandemic. 
 
Another machine learning technique that has gained 
traction in COVID-19 research is Support Vector 
Machines (SVM), which are particularly effective for 
classification tasks in high-dimensional spaces. Support 
Vector Machines are a supervised learning algorithm that 
excels in classification tasks by finding the optimal 
hyperplane that separates different classes in the feature 
space. Batista et al.4 developed an SVM to predict 
COVID-19 diagnosis in emergency care patients, 
demonstrating its potential to enhance early detection 
and triage during the pandemic. In the context of COVID-
19, SVMs have been utilized to classify patients based 
on clinical and demographic data, helping to identify 
those at higher risk for severe disease. The primary 
advantage of SVMs is their effectiveness in high-
dimensional spaces, where they can perform well even 
with a limited number of samples. Additionally, SVMs are 
robust to overfitting, especially when using kernel 
functions to transform the input space. While CNNs and 
Random Forests focus on different types of data, SVMs 
provide a powerful alternative for classification tasks, 
particularly when dealing with complex, high-dimensional 
datasets. 
 
Gradient Boosting Machines (GBM) represent another 
powerful ensemble learning technique that has been 
employed to analyze COVID-19 data. GBMs build 
models in a stage-wise fashion, where each new model 
attempts to correct the errors made by the previous ones. 
This method has been particularly useful for predicting 
COVID-19 outcomes and understanding the impact of 
various risk factors. Shrivastava and Jha26 investigate the 
impact of meteorological parameters on COVID-19 
transmission in India, finding that a gradient boosting 
model (GBM) accurately predicts active and recovered 
cases based on factors such as temperature and humidity. 
The advantage of GBMs lies in their ability to handle 
various types of data and their flexibility in modeling 
complex relationships. They often outperform other 
models in terms of predictive accuracy, making them a 
popular choice in competitive machine learning scenarios. 
While SVMs focus on finding optimal hyperplanes for 
classification, GBMs enhance predictive performance 
through iterative learning, showcasing the diversity of 
machine-learning techniques available for COVID-19 
analysis. 
 
XGBoost (Extreme Gradient Boosting) is another machine 
learning technique that has been effectively utilized for 
COVID-19 data analysis. Extreme Gradient Boosting is 

an ensemble learning method that builds upon decision 
trees, optimizing them through gradient boosting 
techniques to enhance predictive performance. Its 
advantages include high accuracy, speed, and the ability 
to handle missing data and outliers effectively. Fang et 
al.8 use XGBoost to predict the trend of COVID-19 in the 
USA, and its performance was compared with the ARIMA 
model to assess which provided more accurate forecasts 
of the outbreak's progression. Extreme Gradient 
Boosting’s regularization techniques help prevent 
overfitting, making it a robust choice for modeling 
COVID-19 outcomes where data can be noisy and 
variable. Moreover, XGBoost provides insights into 
feature importance, similar to Random Forest, allowing 
researchers to identify key factors influencing COVID-19 
spread. While Neural Networks excel in capturing 
complex patterns, XGBoost offers a more interpretable 
and computationally efficient alternative, bridging the 
gap between model complexity and usability in public 
health contexts. 
 
In the next section, we propose an artificial neural 
network model that utilizes socio-economic indicators to 
predict the spread of COVID-19 in Canadian health 
regions. 
 

3 Methods 

A neural network is a computational model inspired by 
the way biological neural networks in the human brain 
process information. It consists of interconnected nodes, or 
neurons, organized in layers: an input layer, one or more 
hidden layers, and an output layer. Each connection 
between neurons has an associated weight that adjusts as 
learning proceeds, allowing the network to learn complex 
patterns and relationships within data. Neural networks 
are particularly effective for tasks such as image and 
speech recognition, natural language processing, and 
time-series forecasting due to their ability to model non-
linear relationships and capture intricate data structures. 
In recent years, deep artificial neural networks, including 
recurrent networks, have achieved significant success in 
pattern recognition and machine learning, Schmidhuber23 

provides a concise summary of the historical development 
and key concepts in deep learning, including supervised, 
unsupervised, and reinforcement learning, as well as 
evolutionary computation. 
 
Neural networks differ from traditional machine learning 
techniques primarily in their architecture and learning 
capabilities. Unlike linear models, which assume a direct 
relationship between input and output, neural networks 
can learn complex, non-linear mappings through multiple 
layers of processing. This allows them to excel in tasks 
involving high-dimensional data, such as images and 
audio. Additionally, neural networks automatically 
extract features from raw data, reducing the need for 
manual feature engineering, which is often required in 
other machine learning methods. Their ability to 
generalize well to unseen data, especially when trained 
on large datasets, further enhances their performance 
compared to simpler models like logistic regression or 
decision trees. Sarker22 highlights the critical role of deep 
learning, particularly neural networks, in analyzing 
large-scale data from various sectors like cybersecurity, 
healthcare, and smart cities, showcasing its potential to 
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significantly enhance the intelligence and capabilities of 
automated applications. 
 
An Artificial Neural Network (ANN) is a specific type of 
neural network that mimics the structure and function of 
biological neural networks. Artificial Neural Networks 
consist of interconnected nodes (neurons) that process 
input data and produce output through a series of 
transformations. Each neuron applies an activation 
function to its input, determining whether it should be 
activated based on the weighted sum of its inputs. 
Artificial Neural Networks can be shallow (with only one 
hidden layer) or deep (with multiple hidden layers), with 
deep learning being a subset of machine learning that 
focuses on training deep neural networks. Artificial 
Neural Networks are widely used in various applications, 
including image recognition, natural language 
processing, and predictive analytics1. Jain et al.11 discuss 
the development of artificial neural networks (ANNs), 
their architecture, learning processes, and commonly used 
models, highlighting their successful application in 
character recognition. 
 
The terms “neural network” and “artificial neural 
network” are often used interchangeably; however, there 
is a subtle distinction. “Neural network” is a broader term 
that encompasses both biological neural networks and 
artificial implementations. In contrast, “artificial neural 
network” specifically refers to the computational models 
designed to simulate the behavior of biological neurons. 
While both types of networks share similar principles of 
information processing, artificial neural networks are 
explicitly designed for machine learning tasks and are 
implemented using algorithms and computational 
frameworks, whereas biological neural networks are 
naturally occurring systems in living organisms. 
 
Artificial neural networks have been effectively utilized 
to analyze COVID-19 data across various domains, 
including medical imaging, epidemiological modeling, 
and clinical decision support systems. For instance, 
Niazkar and Niazkar20 use ANNs effectively to predict 
the COVID-19 outbreak by modeling the confirmed cases 
based on historical data, with models incorporating a 14-
day period showing the highest accuracy in forecasting 
daily cases. Additionally, neural networks have been 
employed to predict infection rates and assess the 
severity of COVID-19 cases based on clinical features. 
Their ability to learn complex patterns and relationships 
from large datasets makes them a valuable tool in 
understanding the dynamics of the COVID-19 pandemic 
and informing public health responses. 
 
Figure 1 outlines the process for training an Artificial 
Neural Network (ANN) for predicting the spread of 
COVID-19. 
 
Here's a detailed description of each step tailored to 
COVID-19 prediction: 
1. Start: The process begins by initiating the design and 

training of the ANN model to predict the spread of 
COVID-19 across different regions. 

2. Define input and output parameters: Input 
parameters, such as demographic data, 
geographical data, health metrics, and vaccination 
rates, are defined. The output parameter would be 

the predicted spread of COVID-19 cases or infection 
rates. 

3. Extract training, validation, and test datasets from 
experimental results: The dataset is divided into 
three parts—training, validation, and test sets. These 
sets consist of COVID-19-related data collected from 
Canadian health regions, ensuring the model can 
learn, validate its predictions, and test its 
performance accurately. 

4. Define learning algorithm: An appropriate learning 
algorithm is selected to train the ANN. For COVID-
19 predictions, a backpropagation learning 
algorithm could be used, enabling the network to 
minimize errors in predicting infection rates by 
adjusting weights. 

5. ANN training and network optimization: This step 
involves initiating the training of the neural network 
by feeding the input data and adjusting network 
parameters such as weights and biases. The network 
learns the relationship between input data (e.g., 
population density, and healthcare resources) and 
the spread of COVID-19 through this process. 

6. Weights and biases are selected randomly: Initially, 
the weights and biases for the neural network nodes 
are selected randomly. These values are updated as 
training progresses to optimize the network’s 
predictions. 

7. Changing of parameters for training of the 
network: During training, different network 
parameters are adjusted to optimize performance. 
These include: 
o Number of hidden layers: The number of hidden 

layers is tuned to ensure the model can capture 
the complex relationships between inputs like 
socio-economic factors and the virus's spread. 

o Number of neurons in hidden layers: The 
number of neurons in each hidden layer is varied 
to enhance learning. 

o Momentum factor: This parameter controls the 
speed of learning and helps to avoid getting stuck 
in local minima during optimization. 

o Transfer function: The transfer (or activation) 
function is chosen, determining how input is 
transformed into output at each node in the 
network. 

8. Validation of the network: After training, the model 
is validated using the validation dataset. This checks 
whether the model generalizes well to unseen data, 
ensuring that it can predict the spread of COVID-19 
in different health regions. 

9. Update parameters: The weights and biases are 
updated during training using backpropagation and 
gradient descent to reduce the error between 
predicted and actual COVID-19 case numbers. 

10. Error goal reached: This decision point checks if the 
model has reached a predefined error threshold. If 
the error is still above the target, the network 
parameters are updated and training continues with 
another iteration. 

11. Increase iteration: If the error goal is not reached, 
the number of training iterations is increased, and the 
model undergoes further optimization. 

12. Error goal reached (Yes): Once the error threshold is 
met, the training is considered successful. 

13. Obtain the best neural network architecture and 
training parameters: At this stage, the best-
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performing neural network architecture is selected, 
along with the optimal training parameters that have 
been tuned through the previous steps. 

14. Network is ready for performance prediction: The 
trained and optimized ANN model is now ready to 
predict the future spread of COVID-19 in Canadian 
health regions based on the input factors like 

demographics, vaccination data, and health 
infrastructure. 

15. Stop: The process concludes once the network is 
ready to predict and is deployed for forecasting 
COVID-19 cases, helping inform public health 
decisions. 

 

 
Figure 1: Flowchart for Training and Optimization of an Artificial Neural Network (ANN) for Predicting the Spread of 

COVID-19 in Canadian Health Regions 
 

 
Figure 2: Architecture of an Artificial Neural Network (ANN) for Predicting COVID-19 Spread Using Socio-Economic 

and Health Data in Canadian Health Regions 
 
This flowchart demonstrates a systematic approach to 
building an effective ANN model, ensuring that the 
network is well-optimized and capable of accurate 
predictions of COVID-19 spread in Canadian health 
regions. 
 
Figure 2 represents the architecture of an Artificial 
Neural Network (ANN) used for predicting the spread of 
COVID-19. It consists of three main components: the input 

layer, two hidden layers, and the output layer. Here’s a 
detailed description of each layer in relation to the 
datasets and flowchart (Figure 1) provided earlier. 
The input layer represents the initial data fed into the 
neural network. In this context, the input nodes (N1, N2, 
N3, etc.) correspond to various features of the COVID-19 
datasets we discussed earlier, such as: 

• Demographic data (e.g., population size, age 
group distributions) 
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• Geographical data (e.g., latitude, longitude, and 
area of health regions) 

• Health infrastructure data (e.g., number of 
hospital beds, healthcare access) 

• Vaccination data (e.g., number of doses 
administered) 

 
Each node (N1, N2, N3, etc.) represents a different 
feature from these datasets, and collectively they 
provide the network with crucial inputs about the socio-
economic and health characteristics of Canadian health 
regions. 
 
The two hidden layers (Hidden Layer 1 and Hidden Layer 
2) contain nodes (N1-N5) that perform the intermediate 
computations. These layers enable the network to learn 
complex patterns in the input data. For example, they 
might capture non-linear relationships between factors 
like population density, healthcare availability, and 
COVID-19 case spread. Here’s the role of each hidden 
layer: 
 
Hidden Layer 1: This layer captures basic interactions 
between the input features (e.g., how population density 
and vaccination rates jointly impact transmission). 
 
Hidden Layer 2: This layer refines the learned patterns 
from Hidden Layer 1 and adds complexity, helping the 
network improve its predictive power by recognizing 
deeper associations (e.g., how health infrastructure and 
vaccination data together influence outcomes across 
regions). 
 
As indicated in the earlier flowchart, the training process 
involves adjusting the weights and biases associated 
with these layers. These parameters are optimized 
through iterations, allowing the network to minimize errors 
in predictions. 
The output layer represents the final predictions made by 
the neural network, based on the features provided in the 
input layer and the transformations applied by the 
hidden layers. In this case, the output nodes (N1, N2) 
would predict: 

• COVID-19 case numbers or infection rates for a 
given health region 

• Potential hotspots based on demographic and 
geographical inputs 

 
This prediction is key for forecasting the spread of the 
virus across Canadian health regions, providing 
actionable insights for public health interventions. The 
importance of each layer is given below: 

• Input Layer: It ensures that all relevant data (socio-
economic, geographic, and health infrastructure) is 
considered for accurate predictions. 

• Hidden Layers: These layers enable the model to 
capture the intricate patterns and relationships 
between the inputs, which is critical for accurately 
predicting how the virus spreads. 

• Output Layer: Provides actionable insights into 
COVID-19 spread, enabling authorities to deploy 
interventions based on predicted hotspots and 
high-risk areas. 

 

More technical details about the ANN architecture can be 
found in Wickramasinghe and Jain30. This ANN 
architecture helps create a model capable of learning 
from multiple data sources and improving its ability to 
predict the spread of COVID-19 in Canadian health 
regions by leveraging various socio-economic and 
geographical factors that is discussed in Section 4. 
 

4 Results 
4.1 DATASETS 
To predict the spread of COVID-19 across Canadian 
health regions, we combine several datasets that provide 
different types of information. By integrating data on 
COVID-19 cases, demographics, geography, health 
infrastructure, and vaccinations, we can analyze the 
multifaceted impact of socio-economic factors on the 
pandemic's spread. Combining these datasets allows us 
to identify key socio-economic characteristics that may 
correlate with higher infection rates, deaths, or 
vaccination disparities. This approach helps build a 
comprehensive model, enabling targeted public health 
responses and resource allocation to mitigate the 
pandemic's impact across various health regions in 
Canada. 
 
The COVID-19 Data serves as the geographical 
foundation for tracking the virus across Canadian health 
regions. Although it does not contain direct data on cases 
or outcomes, it offers a structural framework for aligning 
other datasets and conducting spatial analyses. The 
ability to link health regional data is vital for examining 
the pandemic's spread at health region levels, providing 
a clearer view of how COVID-19 moves across regions. 
 
The Demographic Data is crucial in understanding the 
distribution of COVID-19's effects on different 
population groups. By providing information on age and 
gender demographics, it allows us to analyze how various 
population segments; such as older adults or specific 
gender groups; are more vulnerable to the virus. This 
data helps in evaluating the pandemic’s demographic 
patterns, which are essential for tailoring health policies 
and prioritizing vulnerable populations. 
 
The Geographical Data enhances spatial analysis by 
offering details about the size, location, and population 
density of different Canadian health regions. 
Geography plays a critical role in understanding how the 
virus spreads across Canadian health regions, as highly 
populated cities within these regions and their proximity 
to urban centers or neighboring areas can significantly 
influence transmission patterns. This data aids in mapping 
potential hotspots and regions at higher risk, enabling 
more targeted and efficient public health interventions. 
 
The Health Data offers key insights into the preparedness 
of different Canadian health regions to handle COVID-
19 outbreaks. By analyzing healthcare access, hospital 
bed availability, and overall health infrastructure, we can 
predict which health regions may struggle to contain the 
virus due to inadequate resources. This data is essential 
for identifying health regions that may require additional 
healthcare support or investment to manage pandemic-
related challenges effectively. 
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Finally, the Vaccination Data is pivotal in understanding 
how vaccination efforts are influencing the course of the 
pandemic. Analyzing vaccination rates, doses 
administered, and the distribution of vaccines across 
Canada helps to assess the relationship between 
immunization levels and COVID-19 case reductions. This 
dataset is vital for identifying health regions where low 
vaccination rates may contribute to ongoing transmission, 
guiding vaccination campaigns to reach underserved 
areas. 
4.2 DATA PREPROCESSING 
Data preprocessing is a crucial step in preparing the 
datasets for predicting the spread of COVID-19 across 
Canadian health regions. Effective preprocessing ensures 
that the data is clean, consistent, and appropriately 
scaled, enabling accurate predictions and minimizing the 
risk of biased or erroneous results. For this study, the 
preprocessing tasks included handling missing data and 
applying scaling techniques, both of which were essential 
for creating a robust predictive model. 
 
Missing Data Handling involved addressing gaps in key 
columns, particularly in age group breakdowns and 
gender-based population data. Missing values were 
filled using the median of each column, which is a reliable 
method in scenarios where data exhibits large variations 
across different health regions. By using the median, the 
preprocessing avoided the pitfalls of mean imputation, 
which can be skewed by outliers in population data17. This 
approach ensures that no region or group was excluded 
from the analysis due to incomplete data, maintaining the 
integrity of the model and ensuring that the predictions 
reflect the diverse socio-economic conditions across 
Canadian health regions. Handling missing data is critical 
for COVID-19 modeling, as missing or inaccurate 
demographic information can lead to flawed predictions, 
particularly in regions with distinct age distributions or 
healthcare needs. 
 
Scaling of the data was performed using Standard 
Scaler, which normalizes the input features to have a 
mean of zero and a standard deviation of one. This step 
is especially important when feeding the data into 
machine learning models, such as neural networks, that 
are sensitive to the relative magnitude of input features. 
For instance, variables like population size, age group 
distribution, and vaccination numbers can differ vastly in 
their numerical ranges. Without scaling, larger values 
could disproportionately influence the learning process, 
making it harder for the model to capture the nuanced 
relationships between smaller-scale features and the 
spread of COVID-19. Scaling ensures that all features 
contribute equally, allowing the model to learn efficiently 
and make more accurate predictions16. 
 
The importance of these preprocessing steps cannot be 
understated when it comes to predicting the spread of 
COVID-19. Data quality directly affects the model’s 
ability to accurately capture trends and forecast future 
cases. In a highly complex situation like the pandemic, 
with vast differences in socio-economic factors across 
health regions, ensuring the data is complete, unbiased, 
and properly scaled is fundamental for providing 
actionable insights for public health decision-making. 
 

4.3 MODEL ARCHITECTURE 
In this study, an Artificial Neural Network (ANN) was used 
to model the spread of COVID-19 across Canadian 
health regions by analyzing demographic and socio-
economic factors. The selected model architecture aimed 
to capture the non-linear relationships between 
population characteristics and regional vulnerability to 
COVID-19 outcomes. The analysis was designed to 
leverage the available population data and predict the 
potential spread of the virus across different health 
regions based on these inputs. 
 
The input features selected for the model included key 
population-related variables: total population, male 
population, female population, and population 
distribution across age groups (e.g., 0-11, 12-19, 20-29, 
etc.). These features were chosen because they capture 
the overall size of the population as well as its structure 
in terms of age and gender. Population size and 
demographic breakdowns are critical factors influencing 
health outcomes and the transmission dynamics of 
infectious diseases, as younger and older age groups 
may experience different levels of susceptibility and 
exposure to the virus. Additionally, geographical 
features such as total area size, urban and rural area 
proportions, and the latitude and longitude of each 
region are included to account for location-based 
variations that could affect transmission patterns. Also, 
health data and vaccination data have been 
incorporated into the model. This combination of 
demographic, health, and geographic data helps the 
model capture the complex interactions between 
population characteristics and spatial factors, which is 
crucial for modeling COVID-19 spread across Canadian 
health regions. 
 
The ANN model was designed with two hidden layers to 
facilitate deep learning of the complex patterns in the 
input data. The first hidden layer contained 64 neurons 
with the Rectified Linear Unit (ReLU) activation function2. 
Rectified Linear Unit was chosen because it introduces 
non-linearity into the model while avoiding the vanishing 
gradient problem, thereby enabling the network to learn 
intricate relationships in the data. The second hidden 
layer comprised 32 neurons, also utilizing the ReLU 
activation function. This layer aimed to further refine the 
feature representations learned by the first layer, 
improving the model’s predictive power by capturing 
more abstract patterns in the data. 
 
The output layer consisted of a single neuron with a linear 
activation function. Since the task was to predict a 
continuous variable; such as regional population or other 
health-related outcomes—a linear activation function 
was appropriate to ensure the output matched the 
continuous nature of the target variable. 
 
To evaluate the performance of the model, the Mean 
Squared Error (MSE) loss function was employed. MSE is 
a standard loss function for regression tasks, measuring 
the average squared difference between the predicted 
and actual values33. Minimizing MSE helps ensure that the 
model's predictions closely align with the observed data, 
which is critical in predicting population characteristics 
that influence the spread of COVID-19. 
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The model training process used the Adam optimizer13, 
which combines the benefits of both RMSprop and 
Stochastic Gradient Descent (SGD). Adam was chosen for 
its ability to handle sparse gradients and noisy data, 
making it a robust choice for optimizing neural networks. 
The optimizer adaptively adjusted the learning rate 
during training, leading to faster convergence and more 
efficient learning. This ensured that the model could 
effectively capture the relationships between the input 
features and the target outcomes without overfitting or 
underfitting. 
 
The ANN model was trained for 50 epochs with a batch 
size of 32, allowing the network to iteratively refine its 
weight adjustments and reduce error on the training data. 
This approach ensured that the model gradually learned 
the relationships between the input features and the 
target variable—population density, which was used as 
a proxy for understanding the spread of COVID-19 
across different regions. The use of a moderate batch size 
allowed for balanced training, avoiding overfitting and 
helping the model generalize better to new data. By the 
end of the training phase, the model achieved a 
reasonable Mean Squared Error (MSE) on the test set, 
indicating that it successfully captured the underlying 
patterns in the data. 
 
To assess the model's ability to generalize to new and 
unseen regions, the dataset was split into 80% training 
data and 20% test data12. This approach ensures that 
the model is trained on a majority of the data while 
preserving a separate portion for evaluation. By 
withholding 20% of the data for testing, we can better 

mimic real-world scenarios where predictions are made 
on regions not included in the training phase. This method 
allows for a more accurate assessment of the model’s 
performance and its potential to generalize well to 
unseen cases, which is critical when applying the model to 
predict the spread of COVID-19 across different 
Canadian health regions. The test data serves as a 
benchmark to ensure that the model is not overfitting to 
the training data and can reliably make predictions on 
new data. 
 
To assess the model's performance, it was evaluated on 
the test set, consisting of unseen data representing various 
regions. Predictions made by the ANN were compared to 
the actual population density values, and the results 
demonstrated good generalization capabilities. The low 
MSE on the test set indicated that the model was able to 
make accurate predictions, even for regions not included 
in the training phase. This performance suggests that the 
ANN effectively learned the complex relationships 
between the input demographic features and population 
density, offering valuable insights into how socio-
economic factors might influence the spread of COVID-
19 across Canadian health regions. 
 
4.4 DATA ANALYSIS 
Canada confirmed its first COVID-19 case in Toronto, 
Ontario, on January 25, 2020. For this study, we 
considered a dataset of COVID-19 cases reported up 
until July 20, 2024, with a total of 4.5 million cases. Table 
1 presents the top five health regions with the highest and 
lowest predicted COVID-19 cases, providing insight into 
regional variations in case numbers. 

 
Table 1: Top five health regions with the highest and lowest predicted COVID-19 cases 

Highest Lowest 

City of Toronto Health Unit Keewatin Yatthé Regional Health Authority 

Région de Montréal Région du Nord-du-Québec 

Calgary Zone Labrador-Grenfell Regional Integrated Health Authority 

Peel Regional Health Unit Western Regional Integrated Health Authority 

Edmonton Zone Région des Terres-Cries-de-la-Baie-James 

 
In many health regions, predicted COVID-19 case rates 
between males and females were relatively balanced. 
For example, the City of Toronto Health Unit has similar 
predicted COVID-19 cases among males and females. 
However, females may have had slightly higher infection 
rates in some regions. For example, Peel Regional Health 
Unit, which includes cities like Mississauga and Brampton, 

had a higher proportion of predicted COVID-19 cases 
among women, particularly in the early stages of the 
pandemic. In remote and rural regions with smaller 
populations such as Keewatin Yatthé Regional Health 
Authority (North Saskatchewan), gender differences in 
COVID-19 cases were less pronounced. 
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Figure 3: COVID-19 cases by gender and age group 

 
Figure 3 illustrates the distribution of COVID-19 cases by 
age group and gender (male and female) across 
different age categories in Canada. For younger age 
groups (0-11, 12-19), the distribution of cases is 
relatively balanced between males and females, with 
females slightly surpassing males in the 12-19 age group. 
As age increases, the proportion of female cases tends to 
dominate, particularly in the older age brackets (40-49, 
50-59, and above). The 80+ age group shows the 
highest female proportion of cases, reflecting the 
increased vulnerability of elderly women to the virus. The 
chart highlights that while males generally have a higher 
percentage of cases in some age groups (20-29, 30-39), 
females dominate in the older age brackets. 
 
Figure 4 provides the distribution of COVID-19 cases 
across different age groups. The highest proportion of 

cases is observed in the 20-29 age group, accounting for 
16.63% of total cases, followed closely by the 30-39 
age group with 16.10%. These two groups represent the 
peak of COVID-19 infections, likely due to higher levels 
of social interaction and mobility. The 40-49 and 50-59 
age groups also have significant case proportions, 
contributing 14.13% and 12.40%, respectively. Younger 
age groups, such as those between 0-11 and 12-19, 
exhibit lower proportions of 9.46% and 7.30%, 
respectively, while older age groups, particularly 70-79 
and 80+, show relatively lower case proportions at 
6.40% and 8.98%, respectively. This trend reflects how 
exposure and severity may vary across age groups, with 
younger adults experiencing higher infection rates 
compared to children and the elderly.

 
 

 
Figure 4: COVID-19 cases by age groups 
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Table 2: Predicted COVID-19 Cases by Age Group a rate of population in Canadian Health Regions Rate per 
100,000) 

Age Group Health Region with Highest Cases Health Region with Lowest Cases 

0-9 years City of Toronto Health Unit Keewatin Yatthé Regional Health Authority 

10-19 years Peel Regional Health Unit Région des Terres-Cries-de-la-Baie-James 

20-29 years Région de Montréal Labrador-Grenfell Regional Integrated Health Authority 

30-39 years Peel Regional Health Unit Keewatin Yatthé Regional Health Authority 

40-49 years City of Toronto Health Unit Région du Nord-du-Québec 

50-59 years Région de Montréal Labrador-Grenfell Regional Integrated Health Authority 

60-69 years Edmonton Zone Région des Terres-Cries-de-la-Baie-James 

70-79 years Calgary Zone Keewatin Yatthé Regional Health Authority 

80+ years City of Toronto Health Unit Western Regional Integrated Health Authority 

 
Table 2 outlines the Canadian health regions with the 
highest and lowest predicted COVID-19 cases rate for 
each age group. In most health regions, younger age 
groups, particularly those between 20-39 years, tend to 
show the highest infection rates as seen in regions like the 
Peel Regional Health Unit, Région de Montréal, and the 
City of Toronto Health Unit. However, older adults, 
particularly those aged 60 and above, remain the most 
vulnerable to severe outcomes, including hospitalization 
and death, as observed in urban regions like Région de 
Montréal. Also, Regions like the City of Toronto Health 
Unit and Peel Regional Health Unit had the highest 

hospitalization rates, particularly among older age 
groups (60+). 
 

The City of Toronto Health Unit, with its high population 
density of 2.8 million people, experienced a rapid 
spread of COVID-19, with case numbers significantly 
surpassing those of more rural areas. Similarly, the Peel 
Regional Health Unit, located in the Greater Toronto 
Area, faced high transmission rates due to its large 
population. In contrast, remote regions like the Keewatin 
Yatthé Regional Health Authority in northern 
Saskatchewan, with low population density and 
geographic isolation, saw much lower case numbers.  

 

 
Figure 5: COVID-19 cases (a). Hospital admission (b). ICU admission 

 
Figure 5 shows the COVID-19 cases by hospital and ICU 
admission. Individuals aged 80+ represent the largest 
share of hospitalizations at 33.30%, followed by the 70-
79 age group, which accounts for 22.13% of admissions. 
Younger adults (20-29) and children (0-11) contribute to 
smaller proportions, with 3.84% and 3.07% of 
hospitalizations, respectively. Adolescents (12-19) have 
the lowest hospitalization rate at 1.08%. The 60-69 and 
70-79 age groups account for the highest proportions of 

ICU admissions, with 24.73% and 24.43%, respectively. 
This highlights the increased vulnerability of these age 
groups to severe illness. In contrast, younger adults and 
children exhibit lower ICU admission rates. The 20-29 
and 30-39 age groups account for 2.95% and 5.52%, 
respectively, while children aged 0-11 and adolescents 
aged 12-19 have the lowest proportions of ICU 
admissions, at 2.23% and 0.87%, respectively.  
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Figure 6: Distribution of fully vaccinated individuals and additional vaccine doses by provinces and territories. 

 
One hundred seven million COVID-19 vaccines have 
been administered, and about 81% of people in Canada 
have received at least one dose. Figure 6 shows the 
distribution of individuals who have completed both 
required doses of the COVID-19 vaccine, as well as those 
who have received additional doses (third or fourth 
doses), across various provinces and territories in 
Canada. Ontario leads with the highest number of fully 
vaccinated individuals (12.14 million) and additional 
doses (7.68 million), followed by Quebec with 7.25 
million fully vaccinated and 4.77 million receiving 
additional doses. British Columbia and Alberta also 
report significant numbers, with British Columbia having 
4.46 million fully vaccinated and 2.99 million additional 
doses, while Alberta has 3.45 million fully vaccinated and 
1.83 million additional doses. Smaller provinces such as 
Manitoba, Saskatchewan, and the Atlantic provinces 
(Nova Scotia, New Brunswick, Newfoundland and 
Labrador, Prince Edward Island) show fewer fully 
vaccinated individuals and additional doses, with 
numbers decreasing further in the territories (Northwest 
Territories, Yukon, Nunavut). Despite the smaller 
population sizes, there is consistent uptake of additional 
doses across regions, particularly in Yukon (20,672) and 
Northwest Territories (20,278). Nunavut has the lowest 
numbers of both fully vaccinated (29,021) and additional 
doses (14,519). The highest percentage of fully 
vaccinated people based on population is in the Northern 
Territories, at about 96%, while Nunavut has the lowest. 
The highest percentage of people with a 3rd and 4th 
booster dose, based on population, is in British Columbia 
at around 59%, while Nunavut has the lowest. 
 
In our approach, we employed Mean Squared Error 
(MSE) as the loss function for training an Artificial Neural 
Network (ANN) to improve the predictive modeling of 
COVID-19 cases. This ANN integrates preprocessing and 
regression capabilities into a unified workflow, 
streamlining the predictive process. To enhance training 

efficiency and robustness, we implemented an Early-
Stopping callback, which monitors validation loss and 
halts training when no improvement is observed. 
Additionally, it restores the weights of the best-
performing iteration to prevent overfitting. The model's 
performance was evaluated using the R2 score, 
calculated between predicted and actual COVID-19 
cases from the test set. With an R2 of 0.74, the ANN 
effectively captured complex and nonlinear relationships 
in the data. 
 

5 Discussion  
Based on the trained Artificial Neural Network (ANN) 
model, several key insights were derived about the role 
of geographical and demographic factors in shaping the 
spread of COVID-19 across Canadian regions. These 
findings provide a critical understanding of the spatial 
and population dynamics that influenced the transmission 
and impact of the virus. 
 
The City of Toronto Health Unit, as part of Canada’s 
largest urban center, faces high COVID-19 case rates 
due to its dense population, significant social interactions, 
and diverse demographics that complicate public health 
messaging. Similarly, the Région de Montréal is 
characterized by high urban density and a multicultural 
community, which can facilitate rapid virus transmission, 
especially during large gatherings. The Calgary Zone 
experiences elevated case numbers owing to its rapid 
population growth and increased connectivity, with many 
residents engaging in high-contact activities. The Peel 
Regional Health Unit serves a diverse population marked 
by socioeconomic disparities, where crowded living 
conditions and essential workers contribute to higher 
vulnerability to infection. Finally, the Edmonton Zone, with 
its growing population and urban dynamics, faces 
challenges in controlling the spread of COVID-19, 
particularly in high-density areas and during periods of 
increased social interaction. Collectively, these health 
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regions experience high COVID-19 cases due to a 
combination of urbanization, social behaviors, and 
systemic public health challenges. 
 
These health regions; Keewatin Yatthé Regional Health 
Authority, Région du Nord-du-Québec, Labrador-
Grenfell Regional Integrated Health Authority, Western 
Regional Integrated Health Authority, and Région des 
Terres-Cries-de-la-Baie-James are located in remote 
and sparsely populated areas of Canada. Their 
geographic isolation and lower population densities 
contribute to reduced human interaction, which limits the 
spread of COVID-19. Additionally, these regions often 
have smaller, close-knit communities with controlled 
access points, allowing for stricter monitoring of travel 
and public health measures. The low case numbers can 
also be attributed to the quick implementation of 
preventive measures and fewer large-scale gatherings 
compared to urban centers. 
 
In health regions with high numbers of healthcare and 
essential workers often dominated by women, the number 
of predicted female COVID-19 cases has been slightly 
higher. For example, in Peel Region, women were more 
likely to work in healthcare, long-term care facilities, and 
other essential services, increasing their exposure to the 
virus. However, males typically experienced more severe 
outcomes, including higher hospitalization and mortality 
rates, due to higher rates of underlying health conditions 
like hypertension and diabetes, making them more 
vulnerable to severe illness. In contrast, in remote regions 
such as Keewatin Yatthé Regional Health Authority, 
COVID-19 case numbers were relatively low, and 
gender differences were less pronounced. The region’s 
sparse population, along with swift containment 
measures, helped keep infection rates low and balanced 
between genders. 
 
In analyzing COVID-19 cases across Canadian health 
regions by age groups (e.g., 0-9, 10-19, 20-29, etc.), 
distinct patterns emerge that highlight both the 
transmission dynamics and vulnerability to severe 
outcomes. The highest infection rates among those 
between 20-39 years, are largely due to their increased 
mobility, social interaction, and participation in the 
workforce, as seen in regions like the Peel Regional 
Health Unit and the City of Toronto Health Unit. However, 
older adults, particularly those aged 60 and above, 
remain the most vulnerable to severe outcomes, including 
hospitalization and death, as observed in urban regions 
like Région de Montréal. While younger individuals might 
contract the virus more frequently, their symptoms tend to 
be milder compared to older adults who have higher 
rates of comorbidities, such as cardiovascular disease 
and diabetes. This was especially evident in regions with 
older populations and limited healthcare access, where 
the burden of severe illness and mortality 
disproportionately affected the elderly. The variation in 
case severity by age underscores the need for region-
specific public health strategies, emphasizing protection 
for older populations while also addressing the high 
transmission rates among younger adults. 
 
The model revealed that regions with a higher proportion 
of urban areas and smaller rural zones exhibited 
significantly higher population densities. This is a key 

factor in the rapid spread of infectious diseases such as 
COVID-19. In urban settings, higher contact rates 
between individuals, increased reliance on public 
transportation, and crowded living conditions create an 
environment where the virus can spread more easily. For 
example, cities like Toronto and Montreal which are 
heavily urbanized, likely experienced more intense 
COVID-19 transmission due to these higher densities. This 
highlights the need for stronger public health interventions 
in urban centers, where social distancing and containment 
measures are more challenging to implement effectively. 
 
Conversely, the model indicated that rural regions with 
lower population densities experienced fewer COVID-19 
cases. While the spread was slower in these areas, rural 
regions often face significant challenges in terms of 
healthcare infrastructure and access to medical services. 
Although transmission rates were lower, the ANN model 
emphasized that rural areas are still vulnerable during 
pandemics due to limited medical resources. This insight 
underscores the importance of targeted healthcare 
support in rural regions, particularly during times of crisis 
like the COVID-19 pandemic. 
 
Geographical location, captured through latitude and 
longitude, was also a significant predictor of population 
density and, consequently, regional vulnerability to 
COVID-19. Regions situated closer to major economic 
hubs or transportation centers, such as those in southern 
Ontario, were more likely to experience higher 
transmission rates. This can be attributed to increased 
mobility and higher population densities in these areas. 
The proximity to large urban centers and interregional 
travel played a crucial role in shaping the spread of 
COVID-19 across Canada. 
 
The model found an inverse relationship between total 
area size and population density. Larger regions tended 
to have lower population densities, which generally led 
to lower transmission rates. However, these regions, often 
characterized by vast rural expanses, faced unique 
challenges related to healthcare access. During the 
pandemic, these sparsely populated areas struggled with 
limited healthcare resources, making it difficult to 
manage the crisis despite their lower infection rates. This 
points to the need for healthcare system improvements in 
expansive rural areas to better handle future pandemics 
or health crises. 
 
The model found that the spread of COVID-19 and 
hospitalization rates across Canadian health regions 
show significant disparities, largely driven by population 
density and healthcare infrastructure. Despite housing, 
some of the largest hospitals in Canada, such as Hamilton 
General Hospital and The Ottawa Hospital - Civic 
Campus, Ontario has the second lowest number of 
hospital beds per 100,000 people, at around 125, just 
above Quebec, which has approximately 80 beds per 
100,000. Quebec, however, leads in the number of 
critical care beds available. The availability of hospital 
beds, particularly ICU beds (with over 400 in Ontario), 
fluctuated across different waves of the COVID-19 
pandemic. To manage the rising hospitalizations, the 
government took steps to redeploy and train healthcare 
workers, while actively seeking new staff. Additionally, 
acquiring essential medical equipment, such as ventilators 
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and personal protective equipment, became a top 
priority to support the healthcare system's response to the 
crisis. 
 
Vaccination plays a crucial role in curbing the spread of 
COVID-19 by building immunity within populations, 
reducing transmission rates, and preventing severe 
outcomes like hospitalizations and deaths. Province with 
the highest vaccination rates, such as Northwest 
Territories, reports high uptake due to proactive public 
health measures, smaller populations, and a strong focus 
on community-wide vaccination efforts. In contrast, 
regions like Nunavut have lower vaccination rates due to 
factors such as geographic isolation, limited healthcare 
access, and vaccine hesitancy within certain communities. 
For example, the high vaccination rates in British 
Columbia can be attributed to effective vaccination 
campaigns and easier healthcare access. These 
disparities highlight the importance of tailored strategies 
to reach underserved regions and promote vaccine 
confidence. 
 
One limitation of the analysis was the use of median 
imputation to handle missing data, particularly for 
demographic features like population and area sizes. 
While this method ensures no data is excluded, it may 
reduce the accuracy of the model for certain regions. 
Median imputation assumes that missing values are 
centrally distributed, which might not accurately reflect 
the true variability of the population across different 
regions. For example, regions with extreme population 
sizes or unique demographic distributions may have been 
poorly represented in the model due to this approach, 
potentially leading to less precise predictions for areas 
with significant outliers. This challenge underscores the 
need for more robust imputation techniques that account 
for regional diversity. 
 

6 Conclusions 
In conclusion, the trained Artificial Neural Network (ANN) 
model provides valuable insights into the geographical 

and demographic factors that influence the spread of 
COVID-19 across Canadian health regions. Our findings 
emphasize the significant role of urbanization, population 
density, and social behaviors in shaping transmission 
patterns, particularly in densely populated regions such 
as the City of Toronto Health Unit and Région de 
Montréal. In contrast, remote and sparsely populated 
areas, such as the Keewatin Yatthé Regional Health 
Authority and Labrador-Grenfell Regional Integrated 
Health Authority, experienced lower transmission rates 
due to geographic isolation and tighter community 
controls. The ANN model further highlighted the 
importance of vaccination in curbing the spread, with 
higher vaccination rates observed in regions like 
Northwest Territories, driven by proactive public health 
measures. In contrast, lower rates in Nunavut underscore 
the need for targeted strategies to overcome challenges 
related to healthcare access and vaccine hesitancy. 
Additionally, the model revealed disparities in healthcare 
infrastructure, particularly in terms of hospital and ICU 
bed availability, which were more pronounced in urban 
regions. Future research could focus on joint predictive 
modeling of COVID-19 cases and deaths using advanced 
machine learning techniques to further enhance our 
understanding of pandemic dynamics and improve public 
health preparedness. 
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