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ABSTRACT

Artificial intelligence involves machines that can synthesize data on a scale
that exceeds human ability, the capacity to analyze, learn, predict, and reason
using algorithms that have the potential to improve over time. Artificial
intelligence is beneficial in accuracy, speed, ability to analyze vast amounts
of data, automating workflow, and reducing the need for repetitive tasks,
and reducing human error. These tasks are particularly important for speech
and image recognition, analyzing data, and creating predictive models. In
health care, artificial intelligence can help guide diagnosis, treatment options,
compliance, teaching, and administration activities. These activities have
been demonstrated in many areas of medicine including Ophthalmology
and in particular the retina and posterior segment subspecialty. This
paper is a comprehensive review of the current applications of artificial
intelligence in anterior segment specialties of Ophthalmology. This paper
will demonstrate the applications of artificial intelligence in 1) Glaucoma
to predict progression of disease, need for surgery, and who may develop
acute angle closure glaucoma, 2) Keratoconus to identify early or subclinical
keratoconus and predict who may experience progressive disease, 3)
Keratitis to predict causation and which cases are more prone to rapidly
progress, 4) Cataract to detect and give diagnostic objectivity, to calculate
IOL power with more precision, to create smart surgery operating theaters,

to aid in surgical training and to assess post-operative healing.
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Introduction
Artificial
enhancements to medicine by predicting how

intelligence (Al) has demonstrated

diseases may progress over time, predicting which
treatments may be most effective, enhancing
productivity, and improving patient outcomes. When
it comes to detecting early disease and improving
treatment algorithms, Al has been shown to beneficial
in medicine in general’ and within the field of
Ophthalmology.?® The field of retina has been
dominant in some of the early uses of Al given its
dependence on specialized image techniques
including fundus photography and OCT technology.
By utilizing machine learning (use of data to optimize
computer performance criteria) and Deep Learning
(building neural networks that simulate how the
human brain works to not only analyze but to learn
to interpret), Al is able to optimize data analysis and
guide disease diagnosis. Many practitioners are
realizing that Al offers opportunity in the anterior
segment of the eye including glaucoma detection
and progression, cataract imaging and predictive
models of IOL implantation, corneal diseases such
as keratoconus and endothelial disease. This paper
is a retrospective review of the current literature to
demonstrate the current applications of artificial
intelligence in the fields of glaucoma, keratoconus,
keratitis, and cataract and how this technology is
helping to improve efficiency, accuracy, safety, and

effectiveness in diagnosis, treatment, and teaching.

Glaucoma

Glaucoma is a group of eye conditions characterized
by an optic neuropathy that is often associated with
optic nerve cupping and visual field defects and
may be associated with elevated intraocular pressure.
For people over the age of 60, it is one of the
leading causes of blindness. All glaucomatous eyes
demonstrate loss of retinal ganglion cells and retinal
nerve fiber layer thinning.* Early diagnosis and
treatment are necessary to prevent progressive visual
impairment. Of the two major types of glaucoma
(primary open angle glaucoma (POAG) and angle
closure glaucoma (ACG), POAG is most common.

Due to POAG's gradual and painless development,
it may go unnoticed until advanced and irreversible
changes have occurred.”

Thus, early detection and timely intervention are key
to managing glaucoma and preventing visual loss.
Simple methods of intraocular pressure measurement,
tracking optic nerve cupping, and visual field testing
may miss initial diagnosis, determining who is most at
risk of progression, and subtle changes that indicate
disease progression is occurring. Artificial intelligence
has been demonstrated to detect longitudinal
progression with visual field (VF) testing significantly

earlier using a machine learning technique.®

Measurement of retinal nerve fiber layer (RNFL)
thickness has improved the detection of early changes
of glaucoma. There are many parts of the world where
this technology is not available or feasible for use.
In such cases, Al has been demonstrated by using
deep learning and a system algorithms to detect
glaucomatous optic neuropathy using fundus
photographs alone.”81

More recently, spectal-domain optical coherence
tomography (SD-OCT) has allowed a more three-
dimensional analysis of the optic nerve structure
and has been useful to evaluate the optic nerve for
structural damage."! Detecting glaucoma by analyzing
optical coherence tomography (OCT) is important
as ganglion cell loss and thinning of the RNFL most
often occurs before functional loss is detected by
VF testing.’? By measuring the nerve fiber layer and
the ganglion cell-inner plexiform layer, SD-OCT, very
subtle changes can be detected with an accuracy
comparable or better to glaucoma specialists with
years of training.”> A Meta-analysis looking at 20
studies and 51 models found a high accuracy in the
performance of Al in detecting glaucoma with SD-
OCT images.™

One of the most promising applications of Al in
glaucoma is the prediction of glaucoma progression
and future visual field loss. With more advanced
stages of glaucoma, VF defects which measure
functional visual loss are more predictive of further
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progression.’ Neural networks have been successfully
developed than can automatically differentiate
glaucomatous from non-glaucomatous VF's."® Deep
learning models have been utilized to generate visual
field predictions based on large datasets of VF testing.
Yousefi used Al to identify longitudinal progression of
glaucoma earlier than global mean deviation, region
wise deviation and point-wise deviation in over 1200
subjects.” In addition, by merging visual field data
with clinical longitudinal datasets, a machine learning
model has demonstrated enhanced diagnostic
capabilities.”® Combined approaches without VF input,
but only using history, intraocular pressure, refractive
error, cup-disc ration, RNFL defects and employing an
artificial neural network have been shown to predict

open angle glaucoma with an accuracy of 84%."

Artificial intelligence has also been utilized to help
identify individuals with narrow angles who are at
risk of developing angle closure glaucoma. A deep
learning program analyzed anterior segment OCT
images from over 2100 patients and achieved
sensitivity and specificity better than qualitative
features measured by clinicians. ?° Algorithms are
being developed to screen for angle closure by
processing images for angle structure measurements
and segmentation.?’ Niwas demonstrated an accuracy
of 89.2% using an fully automated model classifying
angle closure from anterior segment OCT scans.?

Additional uses of Al for glaucoma include modeling
data from electronic health records to predict the
probability of a patient needing advanced treatment
or surgery and integrating parameters to predict
the best individual progression of treatment for a
given patient. Al is making advances in robotic
surgical procedures and Al guided surgical platforms
to improve outcomes of glaucoma surgery.” In
addlition, surgical training can be enhanced by artificial
intelligence by providing real-time feedback and
guidance. Artificial intelligence is being tested to
support patient education and improve adherence

and compliance with treatment.?*

The advancements in Al are creating many benefits
for detecting and diagnosing glaucoma, monitoring

disease progression, optimizing treatment options,
and improving surgical outcomes. The algorithms
and interaction between Al and the treating physician
need to continue to develop the best options for
this new technology. Challenges remain especially
regarding clinical integration, data diversity, and

ethical considerations.

Keratoconus

Keratoconus is a progressive and asymmetric corneal
ectasia characterized by abnormal thinning and
bulging of the central or paracentral stroma with
corneal protrusion and the potential for severe
visual impairment due irregular corneal astigmatism
or loss of corneal transparency.? Early identification
of keratoconus, especially in its subclinical form, and
subsequent treatment such as corneal crosslinking
and intrastromal corneal ring segments are crucial
to stabilizing the disease and improving visual
prognosis.?¢?” In addition, missing the diagnosis of
keratoconus in patients considering refractive
corneal surgery can lead to corneal weakness and

ectasia.®

Advanced keratoconus can be detected through
classic clinical signs (e.g., Vogt's striae, Munson'’s
sign, Fleischer ring) during slit-lamp examination,
or via corneal topographical characteristics such as
increased corneal refractive power, steeper radial
axis tilt, and inferior-superior (I-S) corneal refractive
asymmetry from comeal topographical maps.
However, detecting subclinical keratoconus remains

a significant challenge.?

Recent advancements in artificial intelligence have
shown promise in improving the diagnosis of
subclinical keratoconus.®3'32 Most Al diagnostic
studies use Scheimpflug-based corneal topography
scans or indices for their input.®* A study by Yousefi
utilized deep feature fusion of Al models (Xception
and InceptionResNetV2) to diagnose subclinical
keratoconus with an area under the curve (AUC) of
0.99 and an accuracy of 97-100%.# Similarly, Haque
developed a DenseNet201-based deep learning
model which achieved 89.14% accuracy in detecting
normal eyes, and

keratoconus, suspected
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keratoconus.?? A meta analysis and systematic
review of artificial intelligence articles by Afifah
found that neural networks were not only the most
used Al model in diagnosing keratoconus, but also
had the highest accuracy with a sensitivity of 1.00.3
These advancements demonstrate the power of Al
in early diagnosis, especially for the more elusive

subclinical forms.

In another significant development, Al-Timemy
introduced a hybrid deep-learning construct based
on anterior and posterior eccentricity, anterior and
posterior elevation, anterior and posterior sagittal
curvature, and corneal thickness maps and utilizing
an EfficientNet-BO (a convolutional neural network
from the ImageNet database) for keratoconus
detection. This model, trained on a large dataset
of corneal topographic images, achieved accuracy
rates as high as 99%.% The robustness of Al models
like this makes them valuable tools for clinicians
dealing with keratoconus patients.

Early and accurate prediction of keratoconus
progression is critical for treatment considerations,
especially with regards to performing prophylactic
corneal cross-linking to strengthen corneal integrity.
Artificial intelligence has been used to help predict
keratoconus progression. Kindu used Al model
involving the random forest algorithm using ocular
surface and clinical factors to predict progressive
keratoconus.* Garcia proposed a time-delay neural
network to predict keratoconus progression by
analyzing sequential tomography data and identifying
significant baseline variations, with predictive values
between 71.4% and 80.2%.%” Additional Al studies
are investigating multimodal data: corneal images,
demographics, and environmental risk factors to

predict disease progression.®

Future applications of Al in keratoconus include
identifying genetic susceptibility, timing of therapeutic
options, and surgical planning. Artificial intelligence
has the potential to revolutionize keratoconus
diagnosis and management by providing clinicians
with precise, data-driven insights into disease
detection and progression.

Kerititis

Keratitis, especially microbial keratitis, is a major
cause of corneal blindness that is often mis-
diagnosed in areas of the world with limited
availability of ophthalmic care. Many types of keratitis
can progress rapidly leading to permanent visual
impairment and corneal perforation. Early detection
using Al and corneal images can lead to more timely
management of keratitis and have been helpful to
distinguish viral, fungal, and bacterial keratitis.

Artificial intelligence utilizing a deep learning
system has been established to detect keratitis and
microbial keratitis biomarkers from slit lamp
images®3 and confocal microscopy.® A deep
learning system using ResNet50 combined with a
cost-sensitive deep attention mechanism by Jiang
et al, achieving an area under the curve (AUC) of
0.91 and an accuracy of 92.5% in detecting bacterial
and fungal keratitis from slit-lamp images.*' Sarayar
et al conducted a systematic review that consolidated
findings from multiple studies, revealing that Al
models, particularly CNNs like DenseNet121 and
Inception-v3, consistently outperform traditional
diagnostic methods.*? Their review reported AUCs
ranging from 0.988 to 0.997 in differentiating

between various types of infectious keratitis.

A deep learning approach by Kuo et al. has also
been shown to diagnose fungal keratitis versus
corneal photographs with an AUC of 0.65 based on
288 corneal photgraphs® and another by Hung et
al. using deep learning model achieved an AUC of
0.85* and finally Ghosh et al. using convolutional
neural network achieved an AUC of 0.90.%° Redd et
al. was able to use a convolutional neural network
to differentiate bacterial keratitis from fungal keratitis
with an AUC of 086.% Artificial intelligence has been
used to aid in the diagnosis of Acanthamoeba
keratitis using in vivo confocal microscopy images.
Lincke et al.’s deep learning model demonstrated
an accuracy of 88.3% in detecting Acanthamoeba
cysts, which is a significant improvement over
traditional methods and highlights the potential of
Al in managing complex keratitis cases.”’
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In summary, Al has been demonstrated to be
particularly effective in identifying keratitis early via
imaging modalities, which is crucial for preventing
severe complications especially in regions where
immediate access to an ophthalmologist may be
limited. In addition, Al is helping to distinguishing
between bacterial, fungal, and viral keratitis based

on ocular imaging.

Cataract

Cataracts remain a leading cause of reduced visual
acuity and blindness, affecting over 90 million people
worldwide.*®® With a disease of this magnitude and
frequency, Al offers innovative methods to diagnose,
improve surgical outcomes, train Ophthalmic
residents, and improve post-operative care.

Cataract can be detected and objectively quantified
by Al-based image analysis using slit lamp photos.*
In addition the support vector machine regression
used in this study can grade the cataract and thus
improve grading objectivity when assessing cataracts
and help surgical planning.***° In addition, Al can

recognize any pre-exiting dislocation of the lens.*

Calculating of intraocular lens power is being
improved by Al by combining the best aspects of
modern intraocular formulas and 3-dimentional
surface computation to create super formulas to
maximize accuracy.”’ Other Al generated IOL
calculation formula use both biometric parameters
and complex nonlinear ocular parameters to increase
accuracy.®?*® Artificial intelligence has been used in
cataract surgery video analysis, tracking, and
instrument detection as a method to increase
efficiency, improve workflow, enable feedback, and
enhance training.>**>* Smart operating theaters using
artificial intelligence will enhance connectivity,
integrate different equipment and diagnostic tools,
and offer higher level functionality.”” Artificial
intelligence will likely increase the role of automation
in cataract surgery. Currently, semi automation with
OCT guidance is employed in femtolaser cataract
surgery to aid in corneal incisions, capsulorhexis,
astigmatism correction, and nuclear softening

techniques.”

Avrtificial intelligence has been utilized to help with
post-operative care to identify and prioritize
patients after cataract surgery who need additional
Ophthalmic care. This was accomplished by an
autonomous telemedicine care (Dora, version R1)
in detecting patients who need further in-person
management, potentially reducing the burden on

healthcare systems and improving patient outcomes.*®

These Al-driven advancements in the field of cataract
have the potential to improve diagnosis, surgical
treatment, and enhance cataract surgery outcomes.
These measures should increase the global
accessibility of cataract screening and treatment,
especially in underserved regions and help decrease
the incidence of this treatable cause of blindness.

Conclusion

Artificial intelligence is creating a technology
revolution for many industries including health care.
By improving image recognition, data analysis,
creating predictive models, stratifying risk, enhanced
data exchange, this technology can improve accuracy,
safety, effectiveness, accessibility, and efficiency. The
technology has shown benefit in many medical arenas
which include Ophthalmology. Historically, posterior
segment disease and retina subspecialty areas which
are heavily image dependent have been initial areas
to benefit from Al. This paper has also described how
the anterior segment areas of glaucoma, keratoconus,
keratitis, and cataract are benefitting from the
technological advances of Al. Future studies and
research to provide safeguards are needed prior to
fully deploying artificial intelligent systems. For Al
to be successful, we need not only quality, uniformly
accepted data, but ethical uses of these systems that
protect human autonomy, ensure transparency, and
foster responsibility.>” Even with all these technological
tools, we cannot forget the importance of continuing
to involve both the patient and the treating physician
in the decision-making process. Robots may be very
helpful in future healthcare decisions, but we cannot
overlook the importance of personal touch and
empathy, that only human medical care providers
are currently capable of providing.
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