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ABSTRACT 
Introduction: Regression models for high-dimensional multivariate data 
curated from high throughput biological assays in omics, brain networks, 
medical imaging, and psychometric instruments contain network features. 
Multivariate linear regression is a standard model that fits these data as 
response variables and the participant characteristics as explanatory 

variables. More often, the number of variates of the response variables(𝑝) 

is larger than the number of observations (𝑛). To solve these problems, a 
structured covariance model is necessary to maintain the network feature of 
the response data, and sparsity induction will be advancing to reduce the 
number of unknown parameters in the large variance-covariance matrix.  
Method: This study investigated an approach to solving multivariate linear 
regression for multivariate-normal distributed response variables using a 
sparsity-induced latent precision matrix. The multivariate linear regression 
coefficients were derived from an algorithm that estimated the precision 
matrix as a plug-in parameter using different Gaussian Graphical Models. 
The developed Bioconductor tool “sparsenetgls” based on this algorithm was 
applied to case studies of real omics datasets. Data simulations were also 
used to compare different Gaussian Graphical Models estimation methods 
in multivariate linear regression.  
Results: The GGM multivariate linear regression (GGM-MLS) advances the 
multivariate regression. In the scenario when the number of observations is 

smaller than the number of response variates (𝑛 < 𝑝), GGM-MLS tackles this 
challenge using sparsity induction in the covariance matrix. Analytical proof 
suggests that the estimation of the response variable's precision matrix and 
the regression coefficient of GGM-MLS are two independent processes. 
Simulation studies and case studies also consistently suggested that the 
regression coefficient estimates of GGM-MLS are similar to the estimates 
using linear mixed regression with only the variance terms in the covariance 
matrix. Furthermore, GGM-MLS method reduces the variance (standard 

errors) of the regression coefficients in both 𝑛 < 𝑝 and 𝑛 > 𝑝 scenarios.  
Keywords: GGM in multivariate linear regression, network outcome 
responses, omics data analysis, sparsity induction in multivariate linear 
regression.  
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1. Introduction  
In regression models for Gaussian multivariate data 
curated from high-throughput (e.g., "omics") and other 
biomedical, imaging, and psychometrics instruments with 
high dimensionality, the response (outcome) variables 
have their latent graph structures presented by the 
precision matrix. The graph structure could be interpreted 
by the network of these response variables' related fields 
(e.g., expressions of genes and abundance of 
proteins/metabolites from their biological pathways, 
brain network1, EEG2, MRI3, and psychometrics 
measurements4 of different functionalities). The common 
question is to identify and estimate the impacts of the 
predictors on these responses (outcomes) variables 
presented in the study. The predictors could include 
experimental design, clinical design parameters, and 
other exposure variables. However, the challenge in the 
high-throughput omics and other high-dimensional 
outcome data is that the number of response variables is 
much larger than the number of observations. Although 
dimensional reduction in the response variables could be 
considered, the interpretation in its context without further 
validation could be complex in the multivariate linear 
regression. 
 
Our solution to the problem is to use a graphical model 
to induce the sparsity in the precision matrix and its 
variance-covariance matrix of the response variables to 
achieve better estimation in the multivariate regression 
while keeping the dimension of the response variable or 
the subset of the dimensions (e.g., responses in a 
biological pathway). We suggest a covariance selection 
method utilizing the graph structure—the adjacency 

matrix 𝐴 for the underlying graph of the precision matrix. 
This method considers the precision matrix of the response 
variables as a nuisance plug-in estimator from GGM 5 in 
deriving the fixed effect regression coefficients of the 
multivariate linear regression. We aim to improve the 
fixed effect coefficients utilizing the graph information 
related to the precision matrix of the response variables. 
The further development in this study uses the derived 
structure to select covariance terms and estimate the 
variance of the regression coefficients.  
 
1.1 MULTIVARIATE MODELS AND MULTILEVEL MODELS 
Goldstein 6 introduced a multilevel model that constructs 
the multivariate Gaussian distributed response variable 
as a special case of the two-level model. Under this 
multilevel model, the response variable constituted 
hierarchical levels, with first level (level one) units 
representing the primary sampling units (PSU). These 
could be, for example, omics platforms, trial participants, 
hospital wards, and clinical centres. The second level 
comprised the measure of each variate of the response, 
such as the protein quantity constructed by multiple-ions 
abundance 7,8, expression of multiple genes from the 
same biological network, and brain network signatures 
measured from the same cluster 1. The identification 
vector, representing the first level unit (e.g., protein, trial 
participant) of the multivariate distributed response, is 
included in the model as a random effect. To estimate the 
variance-covariance matrix of the random effect, 

Pinheiro and Bates 9 used a relative precision factor Δ as 

the function of the precision matrix Σ−1 of the random 
effect: 

𝜎2Σ−1 = ΔΔ𝑇 , 
One simple form of the Δ, is the relative precision ratio 
(a scalar) between the variance of unexplained random 

errors and the variance between 𝑝 groups in the 

estimation √
𝜎2

𝜎𝑝
2. Standard errors of fixed effect 

regression coefficients β are estimated from the variance 

𝜎2[∑ 𝑋𝑖
𝑇𝑀

𝑖=1 Σ𝑖
−1𝑋𝑖 ]−1, where 𝑀 represents the number 

of multidimensional response variables; 𝑋𝑖 , is the 𝑖𝑡ℎ 

data matrix and Σ𝑖
−1 its inverse variance-covariance 

matrix. The approximated variance-covariance matrix Σ 
of the multiple responses is estimated using the relative 

precision factor Δ. Goldstein 6 suggested an alternative 
approach, using the Jackknife method 10 to estimate the 
standard error. Few methods use the Gaussian Graphical 
Model (GGM) to estimate the precision matrix or the 
variance-covariance matrix within multilevel and mixed-
effect regressions.  
 
1.2 METHODS AND ALGORITHMS USED IN GAUSSIAN 
GRAPHICAL MODELS (GGM) 
In the large-dimensional data problem, sparse induction 
is a general approach for estimating the precision matrix. 
There are two streams of GGM estimation for the sparse 
precision or variance-covariance matrix. Yuan and Lin 11, 
Friedman, Hastie, Simon and Tibshiran 12, Friedman, 

Hastie and Tibshirani 13 used the 𝑙1 penalized Maximum 
likelihood of the precision matrix and utilized Maxdet 
and blockwise-coordinate-descent algorithm, 
respectively, to estimate the graph structure under 
positive-definite constraints. Meinshausen and Buhlmann 
14, Friedman, Hastie and Tibshirani 13, and Peng, Wang, 

Zhou and Zhu 15 used the 𝑙1 penalized linear least-
squares regressions among response variables to 
approximate the covariance and partial correlation 
coefficient matrix. Meinshausen and Buhlmann also 
included neighbourhood selections in the penalized linear 
regression. The maximum likelihood method estimates all 
unknown edges of the graph simultaneously. The linear 
regression method assumes conditional dependence 
among the response variables and regresses each data 
matrix's column on the rest of the other columns. It has 
been proved that the linear regression approximation is 
the second-order Taylor series approximation of the 
maximum likelihood solution. 
 
In addition to these GGM methods, motivated by the 
covariate effects arising from the genetic genomic 
problem, Cai, Li, Liu, and Xie 16 included covariates in the 
estimation of the response variables' sparse precision 
matrix using a two-stage constrained minimization. A 
recent development in a similar stream modelled the 
covariate effects on the precision matrix of the response 
variables 17 and a 2-step selection of the covariance term 
in the block diagonal covariance matrix 18.  
 
In the opposite direction of solving the covariate-effect 
problem16, we utilized the graphical structure of the 
response variables to improve the estimation of 
regression coefficients in multivariate regression. We 
studied different GGM estimation methods to derive the 
graph structure of the response variables and, based on 
the estimated graph structure, to derive the fixed 
regression coefficients and their variance in MLS. This 



Gaussian Graphical Model Estimations in Multivariate Linear Regression 

© 2024 European Society of Medicine 3 

solution can be applied to estimate the attribute and 
treatment effect and identify significant exposure factors 
on a group of genes’ expressions, proteins’ abundances, 
brain connectivity network fMRI measures, and other 
high-dimensional outcome responses.  
 

2. Method 
2.1 CONSTRUCT A MULTIVARIATE REGRESSION MODEL 
VIA A TWO-LEVEL MODEL WITH PRECISION AND 
VARIANCE-COVARIANCE MATRIX 
A multivariate regression model with only fixed effects 
can be expressed as a two-level mixed-effect model with 
one random effect, an identification variable, for each 

variate of the 𝑝 -dimensional multivariate response. The 
configurations of this two-level model, when the response 
is multivariate normal, are as follows: 
 
𝒚 = 𝑋∗𝛽 + 𝑍𝝁 + 𝒆;  𝒖 ∼ 𝑁(0, Σ); 𝒆 ∼ N(0, δ2)        (1) 
 

where, 𝒚 = (𝒚𝟏, 𝒚𝟐, … 𝒚𝒏)𝑻, 𝑋 = {𝟏, 𝑥𝑖𝑗}, 𝑖 = 1 … 𝑛; 𝑗 =

1 … 𝑝 

𝑋∗ = (𝑋, … 𝑋)𝑇
(𝑞+1)×(𝑛∗𝑝)

 

𝒖 = (𝑢1, … 𝑢𝑗 … 𝑢𝑝), 𝑍 = {𝒛𝟏 … 𝒛𝒋 … 𝒛𝒑}
𝑇
, 𝒛𝒋 = {

𝟎
𝟏

 

 

Let 𝐲 be the stacked vectorized format of the response 

variable matrix 𝑌𝑛×𝑝, where 𝑝 equals the number of 

dimensions of the response variable 𝑌 , 𝑛 is the number 
of subjects. 
 

{𝒚𝒊} is a 𝑝-element column-vector, where 𝒚𝒊 =
(𝑦𝑖,1, … 𝑦𝑖,𝑝)𝑇 , 𝑖 = 1 … 𝑛. 

𝑋 is the design matrix of 𝑞 fixed effects, and 𝑋∗ is the 

(𝑛𝑝) × 𝑞 matrix stacking 𝑋 for 𝑝 times.  

𝑍 represents the (𝑛𝑝) × 1 identification matrix of the p -

dimensional response, Σ is the variance-covariance 

matrix of 𝑌𝑛×𝑝.  

The profile log-likelihood function of (𝛃, Ω) is 𝐿(𝛃, Ω) =
− log|Ω−1| − 𝑡𝑟(ΩS), where Ω = Σ−1 is the precision 

matrix of 𝑌.  
Substituting the sample variance-covariance matrix 𝑆 =
 (𝑌 − 𝑋β)𝑇(𝑌 − 𝑋β) , into the profile log-likelihood thus 

is 𝐿(β, Ω) = − log|Ω−1| − (𝑌 − 𝑋β)𝑇Ω𝑇(𝑌 − 𝑋β)    (2).  
 

Let the estimation function w.r.t β derived from the 
derivative of (2) be:  

 
𝜕𝐿

𝜕𝛽
|

β,Ω
= 𝜓β,Ω = (−𝑋𝑇)Ω(𝑌 − 𝑋β) , the next 

derivative w.r.t β is 

 
𝜕𝜓

𝜕𝛽
|

β,Ω
= 𝜓̇β,Ω = 𝑉𝛽,Ω = (𝑋𝑇Ω𝑋).  

 
In the multilevel framework, the estimation function and its 

derivative function w.r.t 𝛃 can be notated using the vector 

𝒚 and stacked matrix 𝑋∗ and Ω∗:  

 

 𝜓β,Ω∗ = (−𝑋∗𝑇)Ω∗(𝒚 − 𝑋∗β); 𝜓̇β,Ω = 𝑉𝛽,Ω =

(𝑋∗𝑇Ω∗𝑋∗), where Ω∗ =  Ω ⊗ I𝑝×𝑝 , ⊗ is the Kronecker 

product and 𝐼 represents the identity matrix.  
 
Thus, the regression coefficient in its multilevel format is: 
 

 𝛃 = (𝑋∗𝑇Ω∗𝑋∗)−1(𝑋∗𝑇Ω∗𝑌)                               (3) 
 

The variance of β is: 

 

(𝑋∗𝑇Ω∗𝑋∗)−1(𝑋∗𝑇Ω∗)Σ∗(𝑋∗𝑇Ω∗)𝑇(𝑋∗𝑇Ω∗𝑋∗)−1, 
where Σ∗ =  Σ ⊗ I𝑝×𝑝                                                (4).  

 
2.2 THE ALGORITHM- SPARSENETGLS OF MULTIVARIATE 
LINEAR REGRESSION WITH SPARSITY-INDUCTION IN 
THE PRECISION AND VARIANCE-COVARIANCE MATRIX 
In the topological structure of a graph representing the 
precision and covariance matrix, the graph's connectivity 
represents all links via nonzero positions in its unique 
adjacency matrix. According to the interpretation of the 

power 𝑑 of the graph's adjacency matrix 𝐴, the non-

negative integer (i, j) entry of the 𝐴𝑑  represents the 

number of paths with length 𝑑 (distance) from node i to j 
in the graph. The power of its adjacency matrix can 
identify the longest distance between any two nodes in 
the graph if the graph is primitive (connected). If the 
graph is not primitive, the increasing power of its 
adjacency matrix cannot result in a matrix with all entries 
being positive; there will always be some zero entries in 
the derived matrix. However, the power of the adjacency 
matrix that reaches a matrix with the most nonzero entries 
will provide an approximate distance measure for 
indirectly connected nodes 19. Time-series data is a 
special case of the connected graph because every 
adjacency node is connected, and its adjacency matrix is 
a band diagonal matrix. The graph feature of the 
adjacency matrix provides us with a method to 
approximate the graph structure. 
 
To implement this GGM multivariate GLS method, we 
propose an algorithm "sparsenetgls” which utilizes 
existing GGM penalized algorithms and a new tuning 
parameter for deriving the precision and variance-
covariance matrix, respectively. There are two tuning 
parameters introduced in "sparenetgls". One is a tuning 

parameter λ , included in the existing penalized 
estimation algorithms of the precision matrix. The other is 

a second fine-tuning parameter, 𝑑, included in estimating 
the variance-covariance matrix additionally, providing 

the selected structure of the precision matrix. 𝑑 is the 

power operator value of the adjacency matrix 𝐴 of the 

graph (i.e., 𝐴𝑑). Increasing the value of 𝑑 will increase 

the number of edges in the network graph of 𝐴. 
 

Let 𝐿(λ) = (𝑋∗𝑇Ω̂∗(λ)), where λ is a tuning parameter 
included in the penalized estimation of the precision 

matrix Ω̂. The variance-covariance matrix of β is: Γ̂ =

(𝐿(λ)𝑋∗)−1𝐿(λ)Σ̂(𝑑)𝐿(λ)𝑇(𝐿(λ)𝑋∗)−1, where 𝑑 is the 

second tuning parameter in the estimation of Σ̂. 
 
The proposed algorithm of sparsenetgls uses the power 
value of the adjacency matrix as a second fine-tuning 
parameter (d), with the first standard penalization 

parameter (λ) in GGM algorithms. The sparsenetgls adds 

nonzero terms in a large covariance matrix converted 
from an initial approximated graph structure of the 
response variables, using a selected estimated precision 
matrix in the lasso GGM.



Gaussian Graphical Model Estimations in Multivariate Linear Regression 

© 2024 European Society of Medicine 4 

The "sparsenetgls" algorithm of the multivariate GLS utilizes a sparse network graph structure following these steps: 

Algorithm 1. sparsenetgls 

1. Standardize response and explanatory variables.  

2. Derive the series of precision matrices using a range of the penalized parameter λ between 
0 and 1 for the response variable. 

3. Identify the maximal value of the second fine-tuning integer parameter 𝑑 to select the 
covariance terms of the covariance matrix for a given precision matrix. It includes the following 
substeps: 

3.1 Choose a starting graph structure based on one of the standard methods for precision 
matrix. 
3.2 Function poweradj() Input an adjacency matrix linked with the current network 
graph 

↓ 
Output the powered adjacency matrix as input to function add_connect 
 
3.3  Function add_connect() 

↓ 
Update the adjacency matrix by adding nodes with new edges according to the updated 

adjacency matrix with the next larger 𝑑 in the power operation (𝐴𝑑 → 𝐴𝑑+1).  
 
3.4 convert_cov() 

↓ 
Derive a new covariance matrix based on the updated adjacency matrix  
  
3.5 If there are more edges to be added in the adjacency matrix, return to 3.1; 
otherwise, move to 4 

 

4. Derive 𝛽̂ based on the series of the precision matrix; and Γ̂ based on a selected precision 
matrix and the series of the covariance matrix.  

5. Select lambda λ and distance 𝑑 for 𝛽̂ and its variance. 

 
The model firstly uses the lasso penalization method 
"glasso", neighbour selection method "mb" or "enet" 
method to estimate the precision matrix of the response 
variables; and secondly selects the covariance terms from 
the sample variance-covariance matrix based on an 
estimated graph structure of the precision matrix and a 
fine-tuning parameter. According to graph theory, the 
fine-tuning parameter d is based on the power of the 
initial adjacent matrix to estimate and infer the final 
structure of the estimated variance-covariance matrix. 
The fine-tuning parameter is selected when the 
complexity of the structure cannot be further improved. 
The Bioconductor package "sparsenetgls" implements the 
above algorithm includes multivariate linear  regression 
coefficients and their variance estimators on different 

lambda (λ) values of the penalization path.  
 
When we studied the asymptotic property of GGM-MLS 

regression coefficient β , the estimation function for GGM-

MLS regression coefficients β and the response variable’s 

precision matrix Ω are shown to be independent 
(supplementary document). Therefore, asymptotically (or 
when n is sufficiently large), we expect that the estimation 

of the precision matrix Ω will not affect the estimation of 
the MLS regression coefficients. Nevertheless, both the 
precision and variance-covariance matrix are included in 
deriving the variance of the MLS regression coefficients. 
Thus, the approximation of the response variables' 
covariance matrix will affect and only affect the variance 
of regression coefficients. To better understand how these 

two matrices (precision and variance-covariance matrix) 
impact the variance of MGLS regression coefficients, we 
used simulations to illustrate these effects in the following 
sections 4.  
 

3. Simulations 
3.1 PENALIZATION IN PRECISION-MATRIX (Ω) 
COMPARED TO PENALIZATION IN VARIANCE-

COVARIANCE MATRIX (Σ) IN GGM MULTIVARIATE 
LINEAR REGRESSION  
Simulated datasets with different dimensions p of 
multivariate normal distributed response Y, number of 
observations n, and five predictors were generated. The 
case presented in Figure 1 a-d is data with dimension 
p=200, n=100, and no of edge = 31. The other cases 
with different p, n and number of edges were presented 
in the in supplementary information .  

 
Figures 1a-1c presented the graphical profiling of the 
relationships between different MLS variance estimates 

𝜽̂ of β based on GGM graph structure across different 

penalty parameter λ in one of the simulation cases. These 
variance estimates used either a penalized precision 
matrix or a penalized variance-covariance matrix of the 
multivariate response variable Y, in a range of the 

penalty tuning parameter λ. All the graphs present the 

ratio (𝜽̂ 𝛉⁄ ) of a derived β’s variance 𝜽̂ to the known 

population variance θ of β.  

 

 
 
 

https://files.fm/f/6p5jzhm22f
https://files.fm/f/6p5jzhm22f
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Figure 1: graphical profiling, GGM-MLS variance estimates and the penalty parameter λ in one simulation case 
Case of p=200 n=100 no edge = 31 (figure 1a, 1b, 1c) 

(a) graph structure 
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(b) The estimated GGM-MLS variance using penalized precision matrix compared to the true variance  

X axis is the lambda (λ) used in the penalization GGM algorithm. Y axis is the ratio (𝜽̂ 𝛉⁄ ) between the GGM-MLS variance of 𝜽̂𝑏 of β to the known population variance θ. 
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(c) The estimated GGM-MLS variance using penalized covariance matrix compared to the true variance  

X axis is the lambda (λ) used in the penalization GGM algorithm. Y axis is the ratio (𝜽̂ 𝛉⁄ ) between the GGM-MLS variance 𝜽̂𝑐 of β to the known population variance θ. 
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Graph A presented the known graph structure and the 
adjacency matrix of the variance-covariance matrix of 
the multivariate response variable.  
 

In graph b., the MLS variance estimate 𝜽̂𝑏 were derived 

using a penalized precision matrix estimate (Ω̂) and the 

known population variance-covariance matrix (Σ); their 

ratios to the known variance θ were presented with 

different penalty parameter λ values at the x-axis. In all 

simulation cases, ratios have reached the value of 1 (the 

midline), where the MLS variance estimator 𝜽̂𝑏 equals the 

actual value at one or more penalty parameters λ values.  
 

In graph c., the MLS variance estimator 𝜽̂𝑐  were derived 

using a penalized covariance matrix estimate (Σ̂) and the 
known population precision matrix (Ω); their ratios to the 

known variance θ were presented at the y-axis across 

different λ values at the x-axis. In contrast to the results 

of 𝜽̂𝑏 using a penalized precision matrix, this set of results 
did not have concave or plateau in the ratios. There was 

no single value of λ that could derive an estimated GGM 

variance close to the actual value. These indicated that 

the MLS estimator 𝜽̂𝑐  from using the penalized 
covariance matrix is not adequate.  
 
Although these profiles were only limited to random 
networks and specific scenarios, they provided evidence 
that penalization of the precision matrix effectively 
improved the variance estimations of the MLS regression 

coefficient β in all scenarios. There exists a penalty 

parameter λ that produces an optimal estimate. 
Penalizing the variance-covariance matrix is not 

adequate for estimating β’s variance in all the 

simulations.  
 
3.2 SIMULATIONS TO COMPARE FUNCTIONS: 

sparsenetgls() , lm() (linear regression) and lmer() 
(mixed effect linear regression) 

3.2.1 Design and measures for model comparison 

Multivariate response data 𝐘 with different p (number of 
dimensions), n (number of subjects), and explanatory 
variables X with different q (number of dimensions) were 

simulated given a known regression coefficient vector 𝜷. 
Simulations were conducted using R huge package 20 to 
provide different graph structures (block, cluster, band 
diagonal, random) of the precision matrix for the 

response variable Y.  
 
The simulated response and explanatory variables were 
included in the sparenetgls GGM- MLS. The sparsenetgls 

𝛃̂ was a weighted estimate of a precision matrix (Ω̂) 
derived from different penalized GGM methods. The 

estimation of β’s variance-covariance matrix 𝛤̂, was using 

the penalized Ω̂ with the minimal informatic criteria and 

the penalized covariance matrix Σ̂ (λ) with the graph 
complexity, selected through the second tuning 
parameter d. The penalized covariate matrix of the 

multivariate responses Y was initially converted from the 
mid-point solution of the network graph structure series 

represented by the precision matrix series. Σ̂ was further 
derived through the second tuning parameter d. The 

variance-covariance matrix 𝛤 used in the trace 

comparison was derived based on the known 𝐘 ‘s 

variance-covariance matrix Σ and the limiting distribution 
of the penalized precision matrix Ω

λ
.  

 
The measures we used to compare the different estimates 
to the known values were the average absolute deviation 

(mean absolute error: MAE) in 1

𝑞
∑  

𝑞
𝑗

∑ |(𝛽𝑖,𝑗̂−𝛽𝑗)|𝑖𝑡𝑒𝑟𝑛𝑜
𝑖

𝑖𝑡𝑒𝑟𝑛𝑜
. 

Mean square error (MSE), and the absolute trace 
difference where q was the number of explanatory 
variables, j represented the jth explanatory variable, 

and i was the ith iteration. The average deviation from 𝛽 
was calculated by averaging the deviation of each 

element 𝛽𝑗 in the repetitions and then averaged across q 

elements. The trace difference was derived between 𝛤 

and the 𝛤̂ (i.e., 𝛽̂ ‘s sample variance-covariance matrix) 
from sparsenetgls.  
 

|𝒕𝒓(𝜞̂) − 𝐭𝐫(𝜞|Ω𝛌,
𝚺

 
) |; 

 
In the simulations, the edge-to-density ratio, defined as 
the ratio between the number of edges to graph density, 
was used to measure the sparsity of the network graph. 
There is no universally defined sparsity for a network. The 
general agreement is that if the number of edges is on 
the same linear scale as the number of all possible links 
(p*p/2), it is a dense network 21. The cases in the 
simulation studies have included both sparse (with edge-
to-density ratio of less than 0.10) and dense networks. All 
the results presented in Table 1 were generated from 
100 repetitions.  
 

3.2.2 Impact of the number of observations 
Different simulation cases suggested that when n 

increased, the deviation between the estimated 𝛽̂ and 

actual value 𝜷 decreased in all estimation methods. The 

differences between the trace of 𝛤 ̂ and the limiting 

distribution (actual) 𝛤 were also smaller when n increased 
in all methods.  
 

3.2.3 Comparing regression coefficient estimates of 
GGM-MLS (via sparsenetgls) and their variance to lm 
and lmer 

The deviations between the sample estimate 𝜷̂ and actual 

𝜷 varied across different patterns of the graph structure. 
The MAE in the regression coefficients between 
sparsenetgls, lm and lmer have both directions (smaller or 
larger) with trivial differences, with similar estimates 
between sparsenet and lmer. However, the MSE and abs 
(Trace difference) were smaller in sparsenetgls than lm 
and lmer in all simulations.  
 

In summary, compared to the actual value 𝛽, the 
deviations in the GGM-MLS regression coefficient 
estimates were trivial in all the simulated cases; they were 
all less than 3.0 % of the actual values. Using GGM in 

the estimation of MLS regression coefficients 𝛽 could 
improve the estimation in networks with smaller variance 
(i.e., improve the precision).  
 

The simulation results were consistent with the asymptotical 

orthogonality feature of Ω and β (presented in in 

supplementary information), i.e., the estimation of the 

precision matrix Ω does not affect the estimation of the 

 

https://files.fm/f/6p5jzhm22f
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MLS regression coefficients when n is sufficiently large; 
they are two independent processes. The variance and 
standard errors derived from the GGM-MLS were 
smaller than those derived from lm and lmer.  
 
3.2.4 Prediction accuracy in the graph structure: 
Before utilizing the GGM approach in MLS, simulations 
were also used to compare the prediction accuracy in 
graph structure using glasso, and elastic-net methods. 
Figure four (in supplementary information) demonstrated 
four different scenarios when p and n differed. All three 
cases showed that glasso had a higher AUC (better 
accuracy) than the other approximation approaches. 
However, the lasso and elastic methods were better when 
n was much larger than p in the second case.  
 

4. Case studies: 
4.1 CASE STUDY ONE AND TWO 
The two case studies used Copy Number Alteration 
information from 77 breast cancer patients to predict the 
related proteins’ abundance. The proteins were chosen 
according to an immune response association network 
from the publication of the same study 22. The first 
network has 29 proteins corresponding to immune 
response, and the Copy Number Alterations (CNA) 
information was chosen from 8 genes reported to be 
clinically relevant and related to breast cancer 22. The 
second network has 69 proteins of the calcium ion binding 
network.  
 
The analytical methods: Firstly, the developed 
“sparsenetgls” function was used to derive the GGM-MLS 

regression coefficient 𝛃. The precision matrix of the graph 
structure was estimated using the glasso method, the 
covariance matrix was determined by the penalty 

parameter λ and the tuning parameter d. The selection of 

𝛃 was based on the information criteria (i.e., solution I) 
and the minimal variance (i.e., solution II). Secondly, 
multilevel model through Linear mixed effect models 
(lmer), with only variance information included, were used 
to derive the fixed effect coefficients. These results were 
compared in terms of regression coefficients and their 
standard errors.  
 
In case study one, the regression coefficients of the 
significant genes GATA6, TP53BP1, TP53L11 from 
solution II in GGM-MGLS were not much different from 
the results of lmer (Table 3.). Nevertheless, the regression 
coefficients from solution I showed larger differences than 
the results of lmer. Based on the 95% confidence intervals 
of the regression coefficients, Gene TP53BP1 was 
significantly associated with the protein abundance of the 

immune response network in both GGM-MLS solutions but 
only indicated marginal significant in the lmer results.  
 

In the second case study, we used the same dataset but 
a more extensive network of 64 calcium ion binding 
proteins; the protein abundance predictors are copy 
number alteration (CNA). Similarly, the regression 
coefficients of the significant genes GATA6, PGR, 
PIK3CA, TP53BP1, TP53IL1, and TP53INP1 from 
solution II were also not much different from lmer when 
the precision matrix was selected using the minimal 
informatic criteria (Table 3. Solution II), but presented 
larger difference from the solution I.  
 

The other findings were that CNA of gene PIK3CA and 
TP53INP1 were significantly associated with the 
abundance of proteins in the calcium ion network in the 
GGM-MLS results solution I (Table 4.). However, the 
association was not significant in solution II and was 
marginally significant in lmer.  
 

In both cases, the standard errors of the regression 
estimate in solution I (minimal beta variance) were smaller 
than in solution II (minimal-informatic criteria) and lmer.  
 

When the number of observations is sufficiently large, we 
expect the regression coefficients from these functions to 
converge to the population estimates. The standard error 
derived from GGM-MLS with the minimal variance option 
is more sensitive; as such, the results could be more prone 
to type I errors. However, GGM-MLS and lmer solutions 
help derive comparative regression coefficients, with 
smaller standard errors from GGM-MLS.  
 

4.2 The case study three: a large protein network of 
CBNT case 
Fifty patients diagnosed with brain tumour 
Ependymomo’s Gene expression data of Kallisto 
quantified transcript abundance and RSEM quantified 
gene expression were selected from 282 patients’ 
sample (PedcBioPortal KidsFirst (kidsfirstdrc.org)).  
 
Gene expression of 100 candidates was included as 
predictors of 200 selected gene’s transcript abundance, 
principal component analysis was conducted and 
reduced the data dimensions to 20 significant principal 
components (PCs); the first PC explained 30% variance 
of the gene expressions. Using sparsenetgls, the first PC 
of gene expression presented significant associations with 
the multivariate distributed abundance data. Twenty 
genes had high negative loadings within the first principal 
component on the first PC, indicating their potential 
impacts on protein quantifications (Figure 2. and table 
5.).  

 

https://files.fm/f/6p5jzhm22f
https://pedcbioportal.kidsfirstdrc.org/study/summary?id=pbta_all
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Table 1. Results of case studies using simulations utilizing the MLS GGM estimation algorithm – sparsenetgls 

a. 𝑞 = 8 

Number of 
predictors: q=8 

Network 
density 
measures 

Graph 
structure 

 Utilized 
Sparsenetgls() 
-glasso 

Utilized 
Sparsenetgls() 
-elastic 

Lm() Lmer() 

P nodes No of  
Edges (Ne) 
Edge- 
density- 
ratio (EDR) 

 N MAE of 

𝛽𝑖,𝑗̂

− 𝛽𝑗 

MSE ABS (Trace 
difference) 

MAE of 
of 

𝛽𝑖,𝑗̂

− 𝛽𝑗 

MSE ABS (Trace 
difference) 

MAE of 
of 

𝛽𝑖,𝑗̂ − 𝛽𝑗 

MSE ABS (Trace 
difference) 

MAE of 
of 

𝛽𝑖,𝑗̂

− 𝛽𝑗 

MSE ABS (Trace 
difference) 

 
1. 50 

Ne=49 
EDR= 0.04 

Block 
diagonal 

 
200 

 
0.013 

 
0.009 

 
8.5e-04 

 
0.012 

 
0.005 

 
2.6e-05 

 
0.023 

 
0.013 

 
3.78 

 
0.016 

 
0.005 

 
0.076 

 

1B. 120 

Ne=49 

EDR= 0.04 

Block 

diagonal 

 

50 

 

0.025 

 

0.020 

 

0.007 

 

0.028 

 

0.025 

 

0.0004 

 

0.036 

 

0.062 

 

18.4 

 

0.032 

 

0.018 

 

0.15 

 
4. 50  

Ne=49 
EDR=0.04 

Band 
Diagonal 

 
200 

 
0.006 

 
0.003 

 
1.4e-04 

 
0.006 

 
0.003 

 
0.0001 

 
0.005 

 
0.003 

 
0.33 

 
0.005 

 
0.003 

 
0.007 

 
9. 300 

Ne=24102 
EDR=0.54 

Band 
diagonal 

 
100 

 
0.012 

 
0.005 

 
0.0002 

 
0.012 

 
0.004 

 
6.6e-05 

 
0.012 

 
0.006 

 
0.71 

 
0.011 

 
0.005 

 
0.002 

 
 
6. 250 

 
Ne=13864 
EDR=0.45 

 
Arbitrary 
network 

 
50 

 
0.018 

 
0.012 

 
7.0e-04 

 
0.018 

 
0.013 

 
0.003 

 
0.011 

 
0.014 

 
1.58 

 
0.012 

 
0.011 

 
0.006 

 
7. 142  

Ne=40 
EDR=0.004 

Arbitrary 
sparse 
network 

 
50 

 
0.018 

 
0.012 

 
0.003 

 
0.018 

 
0.012 

 
0.0009 

 
0.013 

 
0.016 

 
2.59 

 
0.013 

 
0.012 

 
0.017 

 
2. 50  

Ne=40 
EDR=0.03 

 
Cluster 

 
200 

 
0.006 

 
0.003 

 
1.3e-04 

 
0.006 

 
0.003 

 
0.0001 

 
0.004 

 
0.003 

 
0.33 

 
0.005 

 
0.003 

 
0.007 

 
8. 200 

Ne=1302 
EDR=0.07 

 
cluster 

 
50 

 
0.021 

 
0.013 

 
0.002 

 
0.020 

 
0.013 

 
0.0003 

 
0.017 

 
0.016 

 
2.17 

 
0.014 

 
0.012 

 
0.011 

*MAE: mean absolute errors. MSE: mean square errors. ABS (Trace difference): absolute value of trace difference 
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𝑏. 𝑞 = 20 

Number of 
predictors: q=20 

Network density 
measures 

Graph 
structure 

 Utilized 
Sparsenetgls() 
-glasso 

Utilized 
Sparsenetgls() 
-elastic 

Lm() Lmer() 

P nodes No of  
Edges (Ne) 
Edge- density- 
ratio (EDR) 

 N ABE of 

𝛽𝑖,𝑗̂

− 𝛽𝑗 

MSE ABS 
(Trace 
difference) 

ABE of 
of 

𝛽𝑖,𝑗̂

− 𝛽𝑗 

MSE ABS 
(Trace 
difference) 

ABE of 
of 

𝛽𝑖,𝑗̂

− 𝛽𝑗 

MSE ABS 
(Trace 
difference) 

ABE of 
of 

𝛽𝑖,𝑗̂

− 𝛽𝑗 

MSE ABS 
(Trace 
difference) 

1. 50  Ne=49 
EDR= 0.04 

Block diagonal  
200 

 
0.009 

 
0.008 

 
0.002 

 
0.009 

 
0.008 

 
0.002 

 
0.015 

 
0.014 

 
25.1 

 
0.009 

 
0.005 

 
0.51 

1B. 120 Ne=49 
EDR= 0.04 

Block diagonal  
50 

 
0.017 

 
0.022 

 
0.028 

 
0.019 

 
0.047 

 
0.13 

 
0.030 

 
0.085 

 
162.9 

 
0.017 

 
0.018 

 
1.32 

 
4. 50 

Ne=49 
EDR=0.04 

Band 
Diagonal 

 
 
200 

 
0.006 

 
 
0.003 

 
4.0e-04 

 
0.006 

 
 
0.003 

 
0.0003 

 
0.005 

 
 
0.003 

 
2.23 

 
 
0.005 

 
 
0.003 

 
 
0.04 

 
9. 300 

Ne=24102 
EDR=0.54 

Band diagonal  
100 

 
0.011 

 
0.005 

 
6.1e-04 

 
0.011 

 
0.007 

 
0.099 

 
0.009 

 
0.006 

 
5.09 

 
0.009 

 
0.005 

 
0.02 

 
6. 250 

Ne=13864 
EDR=0.45 

Arbitrary 
sparse 
network 

 
 
100 

 
0.007 

 
 
0.005 

 
8.4e-04 

 
0.007 

 
 
0.006 

 
0.004 

 
0.008 

 
 
0.006 

 
5.08 

 
 
0.005 

 
 
0.005 

 
 
0.02 

 
7. 142 

Ne=40 
EDR=0.004 

Arbitrary 
sparse 
network 

 
 
50 

 
0.018 

 
 
0.012 

 
0.008 

 
0.018 

 
 
0.013 

 
0.013 

 
0.011 

 
 
0.017 

 
23.0 

 
 
0.012 

 
 
0.011 

 
 
0.15 

 
2. 50 

Ne=40 
EDR=0.03 

 
Cluster 

 
200 

 
0.006 

 
0.003 

 
3.3e-04 

 
0.006 

 
0.003 

 
2.8e-04 

 
0.004 

 
0.003 

 
2.23 

 
0.004 

 
0.003 

 
0.04 

 
8. 200 

Ne=1302 
EDR=0.07 

 
cluster 

 
50 

 
0.016 

 
0.013 

 
0.007 

 
0.031 

 
0.125 

 
0.91 

 
0.014 

 
0.018 

 
18.6 

 
0.012 

 
0.012 

 
0.09 

*MAE: mean absolute error. MSE: mean square errors. ABS (Trace difference): absolute value of trace difference 
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Table 2. The results of case study 1: sparsenetgls MLS is compared to the multilevel regression result using the R function lmer(). 
Capture: + and * indicate the 95% confidence interval of the regression coefficient either above or below 0.  

  
 
Solution from lmer () 

 
 
Solution I from sparesenetgls() 

 
 
Solution II from sparesenetgls() 

genes Predictor Beta  
 

Se  Beta**  Se 
 

Beta  
& 

(max λ) 

Se 
 

EGFR -0.024 0.021 -0.032+ 0.007 -0.023 0.021 

ERBB4 0.007 0.044 -0.040+ 0.015 0.011 0.042 

GATA6 -0.139* 0.040 -0.213 + 0.015 -0.143+ 0.04 

PGR 0.058 0.040 -0.074+ 0.014 0.055 0.04 

PIK3CA 0.089* 0.040 0.225 + 0.014 0.087+ 0.04 

TP53BP1 -0.107. 0.055 -0.111 + 0.020 -0.117+ 0.053 

TP53I11 0.094* 0.029 0.121 + 0.011 0.094+ 0.028 

TP53INP1 -0.022 0.018 -0.017+ 0.007 -0.016 0.019 

 
 
Table 3. The results of case study 2: sparsenetgls MLS is compared to the multilevel regression result using the R function lmer(). 
Capture: + and * indicate the 95% confidence interval of the regression coefficient either above or below 0.  

 Solution from lmer () Solution I from sparesenetgls() Solution II from sparesenetgls() 

Predictor genes (CNA) Beta  
 

Se  Beta**  Se 
 

Beta  
& 

(max λ) 

Se 
 

 
EGFR -0.022  0.016 -0.0006 + 0.003 

 
-0.018 

 
0.016 

 
ERBB4 -0.047 0.033 -0.109+ 0.006 

 
-0.036 

 
0.034 

 
GATA6 -0.068*  0.031 -0.027 + 0.005 

 
-0.071+ 

 
0.032 

 
PGR -0.069*  0.031 -0.002  0.005 

 
-0.063+ 

 
0.031 

 
PIK3CA -0.051. 0.028 -0.107+ 0.005 

 
-0.050 

 
0.030 

 
TP53BP1 0.314 * 0.043 0.392 + 0.007 

 
0.286 + 

 
0.043 

 
TP53I11 0.076 * 0.023 0.052 + 0.004 

 
0.079 + 

 
0.022 

 
TP53INP1 -0.027.  0.014 -0.036 + 0.002 

 
-0.023 

 
0.014 
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Figure 2: The factor loadings of genes in the first principal (PC1) 
*Larger loading refers to larger variation the gene contributing to the first principal.  
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Table 5. Factor loadings of the first component from the 
most influential genes (>0.15).  

Genes Factor loadings 

ANKIB1 -0.150 

1RBM5 -0.151 

ST7 -0.153 

GCFC2 -0.153 

CREBBP -0.154 

VPS50 -0.154 

POLR2J -0.156 

CDC27 -0.156 

RBM6 -0.159 

SCYL3 -0.159 

LIG3 -0.161 

SARM1 -0.161 

POLDIP2 -0.161 

KRIT1 -0.163 

NFYA -0.163 

NDUFAF7 -0.163 

KDM1A -0.164 

ALS2 -0.164 

RPAP3 -0.164 

ARF5 -0.165 
 

5. Discussion  
Gaussian Graphical Model multivariate linear regression, 
including the graphical estimations of the precision and 
variance-covariance matrix of multivariate response 
data, improves the estimations in multivariate regression. 
In the scenario of n<p, GGM-MLS is more advantageous 
because sparse induction in the covariance matrix 
becomes necessary. 
 

The first case study using the suggested model found 
significant association between Copy number alternation 
of gene TP53BP1 (Tumor Protein P53 Binding Protein 1) 
and the abundance of immune response proteins. 
TP53BP1 gene encodes a protein that has multiple roles 
in DNA damage response (National library of 
medicine)23. The second case study discovered significant 
associations between copy number alternation of genes 
GATA6, PGR, PIK3CA, TP53BP1, TP53IL1, TP53INP1 and 
the abundance of proteins in calcium ion binding network. 
Gene GATA6 is in the small family of zinc finger 
transcription factors that play an important role in the 
regulation of cellular differentiation and organogenesis 
during vertebrate development. Gene PGR encoded 
protein that mediates the physiological effects of 
progesterone, which plays a central role in reproductive 
events associated with the establishment and 
maintenance of pregnancy23. Gene PIK3 is an important 
oncogene that most recurrently mutated  in breast cancer 
and its mutation will contribute to cancer cell growth. The 
other TP genes are related to tumour cells ; and gene 
TP53INP1 is a tumor cell depressor24 which was found to 
downregulate the abundance of proteins in calcium ion 
network.  
 

Simulation studies and analytical evidence suggest that 
the influence of penalized precision matrix of the 

response variables on regression coefficient estimates of 
multivariate gls (MLS) is trivial when n (the number of 
observations) is sufficiently large and greater than p (the 
number of dimensions of the response variable). The 
influence of the graph structure (i.e., non-zero covariance 
term) is nontrivial on the variance estimates of the 
regression coefficients. When n < p, the penalization of 
the precision matrix is efficient and necessary to derive 
the MLS regression coefficients and their variance. 
 
Based on the uniqueness of the precision matrix property 
described in Dempster (1972), the network graph 
structures estimated from the precision matrix and the 
variance-covariance matrix should be the same. 
However, according to empirical evidence, penalization 
of the precision matrix was shown to be more effective 
than using penalization of the variance-covariance matrix 

in deriving the variance-covariance matrix 𝛤 ̂ of the MLS 
regression coefficients.  
 
Limitations of the study included the computation capacity 
restricted the number of observations in the simulations to 
less than 1000 but reflective of most studies in omics and 
high throughput studies. The simulations only presented 
results of the “glasso” and "enet" options in 
“sparsenetgls”. More studies are required to test other 
GGM approaches in the future.  
 
Future studies that use GGM for deriving regression 
coefficients of mixed model regression with different 
covariance structures in correlated predictors and with 
large categorical network-linked outcome data will be 
promising.  
 

6. Conclusion 
Integrating Gaussian graphical model estimator in high-
dimensional outcome analysis using multivariate linear 
regression provide an unbiased solution with better 
precision. Implications of the GGM-MLS method in 
medical research include an expansion of evaluating 
outcome measurements in the large dimensional space, 
and allowing latent patterns of the high-throughput 
outcomes included in treatment evaluations, diagnosis 
testing and prediction. These latent patterns, which 
potentially present the biological, physiological and 
psychological functionality and connections, could enrich 
information of the outcome measures in the analysis.  
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