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ABSTRACT 
Blood biomarkers have been widely used in medicine for the prevention, 

diagnosis, and treatment follow-up of many diseases. Age-related macular 

degeneration, the main cause of irreversible blindness in old age, does not 

benefit from these important indicators. In recent decades, technological 

advances have given us optical coherence tomography. Until a few years 

ago, this exam was used for the diagnosis, and treatment evaluation of age-

related macular degeneration. Currently, as part of multimodal fundus 

imaging, it has also been used in the prognosis of age-related macular 

degeneration. However, these exams are still not capable of predicting 

when individuals may trigger the degenerative macular disease, and 

consequently adopt preventive measures, such as changes in lifestyle and 

consumption of antioxidants. In this regard, this article aims to address the 

various blood biomarkers that may be useful in the early investigation of 

age-related macular degeneration, even before the appearance of drusen 

and retinal pigment epithelium changes in the macular region, the first 

ophthalmoscopic manifestations of age-related macular degeneration. 

Among these biomarkers analyzed, the blood count, lipid profile, some 

enzymatic and non-enzymatic antioxidants, as well as the main inflammatory 

biomarkers, stand out. 
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Introduction 
Studies have correlated age-related macular 
degeneration (AMD), the main cause of irreversible 
blindness in old age1, with an increase in the mortality 
rate in patients with Covid-19 and acquired 
immunodeficiency syndrome2-5. Diseases such as stroke 
and cardiovascular diseases (CVDs) also have a worse 
prognosis in patients with AMD6-7. The poor evolution of 
these systemic diseases may be associated to the increase 
in systemic inflammatory markers detected in patients 
with AMD2-5. It is known that systemic inflammation is 
associated with aging and an increased risk of many 
chronic diseases8, contributing to the onset and 
exacerbation of diseases such as obesity, type 2 
diabetes, and atherosclerosis9-11. As well as systemic 
diseases, the high systemic levels of cytokines and 
chemokines may also be involved in the triggering and 
progression of AMD12-24. Consequently, the detection of 
an increase in these inflammatory markers may allow 
more effective preventive measures, nullifying or 
attenuating the progression not only of systemic diseases, 
but also of AMD25.  
 
In 2014, Klein and colleagues published the relationships 
among serum markers of inflammation, oxidative stress 
and endothelial dysfunction, with the cumulative incidence 
of early AMD over 20 years. Twenty-three percent of the 
975 people who participated in the initial examination in 
1988-1990 developed early AMD. This fact was verified 
in the 1993-1995, 1998-2000, 2003-2005 and 2008-
2010 follow-ups. The study revealed modest evidence of 
relationships between incidence of early AMD and high-
sensitivity serum C-reactive protein, tumor necrosis factor-

α receptor 2, interleukin-6, and soluble vascular cell 

adhesion molecule-126. However, recent studies have 
been suggested that systemic inflammation may 
contribute to an increased risk of AMD, even knowing that 
AMD is a local disease with links to local inflammatory 
events24,27.  
 
Genetic, nutritional, environmental and cardiovascular 
factors, among others, are involved in the genesis of 
AMD28-29, frequently making it difficult to control. 
Neovascular age-related macular degeneration (nAMD), 
one of late forms of AMD, is currently treated with 
intraocular antiangiogenic injections, which are 
uncomfortable, periodic, continuous and expensive30-33. 
Furthermore, it does not prevent, in most cases, the 
progression of the disease and consequent loss of central 
vision34. Additionally, about a third of patients do not 
obtain the expected effects from anti-vascular 
endothelial growth factor (VEGF) therapy due to fibrosis 
or macular atrophy, which makes this disease a poor 
prognosis35. For geographic atrophy (GA), another late 
form of AMD, Food and Drug Administration (FDA) 
approved Pegcetacoplan intravitreal injection 
(complement C3-cleavage inhibitor). It was observed that 
monthly intravitreal injections of 15 mg Pegcetacoplan 
for 12 months significantly reduced the growth of lesions 
in GA36-37. In addition to not promoting improved vision, 
the treatment is also periodic, expensive and not 
completely free from complications36. In order to mitigate 
this bad evolution, a preventive approach must be 
initiated as early as possible. 
 

Currently, an evaluation with retinography, fluorescein 
angiography, indocyanine green and optical coherence 
tomography (OCT), alone or combined as in multimodal 
ocular evaluation (multimodal fundus imaging), are 
capable to identifying the onset and progression of AMD, 
providing a more appropriate classification, detecting its 
activity and serving as a guide to evaluate the treatment 
effectiveness. Additionally, important AMD biomarkers 
such as macular pigment optical density (MPOD), drusen 
volume and pigmentary abnormalities can be measured 
by those exams38-39. Other risk factors for disease 
progression to advanced stages, such as reticular 
pseudodrusen, hyperreflective foci and drusen 
subphenotypes, can be identified by combining those 
tests40-41. Other structural biomarkers such as the 
reflectivity of the ellipsoid zone and the characteristics of 
the choriocapillaris flow, analyzed by multimodal fundus 
imaging, can also contribute to a better understanding of 
AMD pathogenesis and prognosis42. 
 

However, as it is a chronic disease, often with decades of 
evolution, the success of preventive measures in AMD, with 
the use of antioxidants and lifestyle changes, are not very 
significant, as they are introduced after the appearance 
of the initial changes of the disease, such as drusen or 
pigmentary changes of the retinal pigment epithelium 
(RPE) in the foveolar region43-44. It is worth noting that 
these initial changes occur in elderly people, often 
presenting systemic inflammatory components 
(inflammaging)45, changes in serum cholesterol levels46, 
smokers47, unhealthy diets48, obesity49, sedentary life50, 
cardiovascular diseases51, among other 
comorbidities29,52. As it is a tissue with a very high 
metabolism, the retina is drastically impacted by such 
chronic changes, frustrating, in most cases, any preventive 
and/or treatment measures53-54. Therefore, the objective 
of this review is to define the main blood biomarkers that 
have the potential to suggest the adoption of preventive 
measures, even before the appearance of initial changes 
in AMD. 
 

Blood Biomarkers 
BLOOD COUNT  
Considering that inflammatory and immunological factors 
participate in AMD pathogenesis25,55-59, changes in the 
blood count may indicate the beginning of systemic 
imbalance that may induce degenerative macular 
disease. Even though some studies showed conflicting 
results regarding white blood cells (monocytes and 
neutrophils), platelets and mean platelet volume (MPV)60-

62, the increase in the neutrophil-lymphocyte ratio (NLR) 
associated with neovascular AMD has been 
demonstrated63. Corroborating this finding, another 
study demonstrated that in addition to the increase in 
NLR, there was also a significant increase in the 
platelet/lymphocyte ratio (PLR) in patients with 
neovascular AMD. This study also demonstrated that NLR 
and PLR levels were inversely proportional to best 
corrected visual acuity and directly proportional to 
central macular thickness64. Finally, a cross-sectional study 
with 7,719 participants detected the association of a 
higher peripheral monocyte count with a higher 
prevalence of AMD. Individuals with a monocyte count 
≥0.5 × 109/L compared to participants with monocytes 
of 0.1-0.4 × 109/L had a 1.45-fold increased risk of 
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any AMD (early, intermediate, and late) and 1.58-fold 
increase in the risk of intermediate/late AMD65.  

 
LIPID PROFILE  
The lipids are organic compounds with essential functions 
for the human body which include energy storage, 
membrane integration and structure (phospholipid 
bilayer), in the biosynthesis process of substances such as 
prostaglandins, and as an enzyme cofactor66,67. The lipids 
represent the main target for the reactive oxygen species 
(ROS), especially the glycolipids, phospholipids, and 
cholesterol68. Cross-sectional and cohort studies have not 
reported significant associations between serum 
lipoprotein profiles and AMD69,70. Although one study 
associated higher serum levels of total cholesterol (TC), 
low-density lipoprotein (LDL), and triglycerides (TG) with 
a decreased risk of AMD71, another study demonstrated 
that male participants who had levels higher high-density 
lipoprotein (HDL) and lower TG levels were associated 
with greater odds of having early AMD, whereas female 
participants who had higher TC and LDL levels were 
associated with an increased risk of developing early 
AMD72. Another study demonstrated that elevated TC in 
early middle age may play a role in the early 
development of AMD73. In addition, it was found that 
alterations in serum lipid profiles, as a reflection of 
systemic dyslipidemia, have been associated with AMD74. 
Corroborating the association between serum lipoprotein 
levels and AMD, a systematic review and meta-analysis 
as well as other population studies identified a 
significantly increased risk of AMD associated with higher 
serum HDL levels46,71,75-80.  

 
ANTIOXIDANT ENZYMATIC AND NON-ENZYMATIC 
SYSTEM 
The variation in the activity of antioxidant enzymatic 
system suggests a response to oxidative stress which is 
involved in the pathogenesis of AMD81-82. The enzymatic 
system have the function of counterbalancing the damage 
caused by ROS and reactive nitrogen species (RNS) in the 
biomolecules of lipids, proteins, and DNA contained in the 
sensory retina and in the RPE, maintaining the retinal 
homeostasis and attenuating the installation and AMD 
progression83-85. 
 

Glutathione Redox cycle and enzymes  
Glutathione, or L-y-glutamyl-L-cysteinyl- glycine, is 
ubiquitous tripeptide that participates in biological 
processes such as protein and DNA synthesis, transport, 
enzymatic activity, metabolism and cellular protection. 
Glutathione is synthesized intra- cellularly and can be 
found in the body in its reduced (GSH) and oxidized 
(GSSG) forms86. Free GSH is present mainly in its 
reduced form, being considered a potent ROS scavenger. 
Glutathione may be converted into the GSSG by the 
glutathione peroxidase (GPx) during oxidative stress. 
The oxidized form (GSSG), in turn, may be reverted into 
its reduced form by glutathione reductase (GR)87. While 
the concentration of GSH in cells varies from 1 to 10 
mM88, the level of GSH within extracellular fluids and 

blood plasma reaches only several μM89. It is important 

to point out that a high level of GSH can be explained 
by an enhanced GSH biosynthesis and a higher 
conversion of GSSG into GSH by GR. On the other hand, 
under conditions of marked toxicity or oxidative stress, 
intracellular GSSG increases substantially87.   

Glutathione 
Glutathione, the major water-soluble antioxidant, acts 
primarily in the cytoplasm and mitochondria and is 
considered the most important antioxidant in the eye86,90. 
With age, the efficiency of the GSH redox system 
decreases, predisposing the RPE to increased damage 
mediated by oxidative stress90-93.  Some studies have not 
demonstrated changes in GSH concentrations in the 
plasma of patients with AMD81,94. On the other hand, a 
study demonstrated higher serum GSH concentrations in 
AMD patients in relation to control group95, while most 
studies showed decreased GSH levels in AMD patients as 
normal control96-99. Consequently, GSH has been 
considered a non-specific parameter when analyzing the 
development of AMD90.  
 
Glutathione peroxidase  
Glutathione peroxidase controls hydrogen peroxide and 
lipid hydroperoxide levels, resulting from an attack of 
ROS86. This enzyme is present in a number of tissues, 
including the inner layers of the retina and RPE100 -102. Its 
concentration is greatest in the posterior pole, which is 
constantly exposed to light101. Selenium (Se), an essential 
nutrient, is part of the composition of GPx100, and Se-
deficient animals have markedly decreased GPx 
activity103. In addition to GPx protecting RPE cells in 
models of oxidative damage-induced retinal 
degeneration, it plays an important role in the maturation 
of photoreceptor cells104. A population-based, cross-
sectional study on cataracts and AMD and their risk 
factors (2584 participants) showed that the high plasma 
level of GPx plasma was associated with a nine-fold 
increase in the prevalence of late AMD105. An increase in 
GPx activity in AMD patients has been associated with 
the activity of RPE cells, which attempt to eliminate a huge 
amount of H2O2 produced during the course of the 
disease83.  On the other hand, many studies have 
reported a significant reduction in GPx activity in patients 
with AMD106-110. 
 
Oxidized glutathione  
Oxidative stress promotes the conversion of GSH to 
GSSH by GPx enzyme87. A report showed that GSSG 
level is elevated in patients with early AMD as compared 
to those of healthy control111.  
 
Glutathione reductase 
Although glutathione reductase is not directly an 
antioxidant, its function is essential for the maintenance 
of available reduced GSH87. This enzyme is highly 
expressed in the retina and RPE112-114.  Several studies 
have demonstrated significantly lower GR activity values 
in the group of AMD patients as compared those of 
control group; being associated with a decreasing in GSH 
levels85,107,115.  In fact, lower GR activity is associated 
with weaker antioxidant abilities85.   
 
Superoxide dismutase (SOD) 
Superoxide dismutase plays a key defense role against 
ROS. By removing superoxide (O2-) and forming O2 and 
H2O116, it plays an important role in diseases related to 
oxidative stress, including aging117. In eukaryotic systems, 
one can find SOD linked to copper and zinc (CuZn)-SOD, 
present mainly in the cytosol, as well as SOD-2, 
dependent on manganese (Mn-SOD), and found mainly 
in mitochondria118. Mn-SOD is present in RPE cells and the 
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inner rod segment119, and reduced levels are associated 
with AMD progression120. Some studies demonstrated 
that high erythrocyte SOD activity was not associated 
with late AMD and early signs of AMD82,105,108,121. This 
finding has been attributed to compensatory mechanisms 
against oxidative stress122. However, other studies report 
lower values of SOD antioxidant parameters were 
significantly associated with AMD85,109,110,115. Although in 
vitro studies consistently indicate the role of SOD in 
responses to oxidative stress, they do not clearly show its 
association with AMD83. 
 

Catalase 
Catalase, a homotetrameric protein, is present in many 
types of cells, with the highest concentration in 
erythrocytes and liver123, and is found mainly in 
peroxisomes, mitochondria and the nucleus. This enzyme 
decomposes H2O2 into water and molecular oxygen, an 

extremely important process to prevent the formation of 
the hydroxyl radical (•OH)124. In the retina, catalase is 
located within RPE peroxisomes, playing its important 
role in preventing lipid peroxidation and inhibiting 
lysosomal enzymes through the removal of H2O2 from 
the phagosome125,126.  Decreased catalase activity in RPE 
cells has been reported from the sixth to ninth decade of 
human life92. Corroborating this study, a decrease in 
catalase immunoreactivity with age was observed in the 
cytoplasm and lysosomes of macular RPE cells from 
normal eyes and eyes affected by AMD127. Although a 
study (32 early-AMD patients, 25 late-AMD patients, 50 
healthy controls) did not establish a correlation between 
serum catalase activity and AMD108, another study (39 
early-AMD patients, 100 intermediate-AMD patients, 
191 late-AMD patients, and 121 controls) revealed that 
AMD is associated with lower erythrocyte catalase 
activity82. Other study (240 AMD patients and 270 
controls) also reported a reduction in erythrocyte 
catalase activity in patients with AMD110.  

 

Total Oxidant Status (TOS) and Total Antioxidant Status 
(TAS) 
Total oxidant status and total antioxidant status are 
parameters used to evaluate the overall oxidative stress 
status in the body128. An imbalance between TOS and 
TAS has been proposed to be responsible for the 
increased lipid, protein and DNA damage observed in 
AMD patients129. Serum (or plasma) concentrations of 
different oxidant species can be measured in 
laboratories separately, but the measurements are time-
consuming, labor-intensive and costly and require 
complicated techniques130.  
 

Total oxidant status may also be named total peroxide 
(TP), serum oxidation activity, reactive oxygen 
metabolites or some other synonyms131. A study (156 
early-AMD patients, 80 wet-late AMD, 72 dry-late AMD 
and 207 healthy controls) reported that a significantly 
increased oxidative damage was associated with AMD 
patients. Both early- and late-AMD patients presented 
higher TOS levels than healthy controls109. Corroborating 
these findings, other studies also observed a significant 
increase in TOS levels in the sera of AMD patients when 
compared to controls109,129,132-133.   
 

Total antioxidant status, in turn, expresses the free 
radical scavenging capacity and reflects the residual 

antioxidant capacity after ROS neutralization134-135. 
Total antioxidant status was shown to be reduced in 
patients with AMD compared to control85,115,129. Another 
study (32 early-AMD patients, 25 late-AMD patients and 
50 healthy subjects) demonstrated that low TAS is 
associated with AMD and that the combined values of 
GPx activity and TAS are significant determinants of 
AMD status108.   
 
Protein carbonyl (PC) 
Protein carbonyls are indicators of the amount of protein 
that has been oxidized by highly reactive free radicals 
and are the most studied protein oxidation markers135,136.  
Reactive carbonyl species are important cytotoxic 
mediators produced from oxidative damage of 
biomolecules (lipids and sugars), leading to alterations in 
the cell signaling mechanisms to the nucleus, positively 
regulating redox-sensitive transcription factors, and 
inducing irreversible structural modification in important 
molecules [proteins, peptides (cysteine, lysine, histidine), 
lipids, DNA]137,138. Studies have demonstrated that the 
values of protein carbonyl groups were higher in patients 
with exudative AMD than in the control group85,129. In 
another study, both patients with late AMD and those with 
early AMD had higher levels of PC when compared to 
healthy controls109. 
 
INFLAMMATORY BIOMARKERS 
Pro-inflammatory cytokines and chemokines 
Several studies have demonstrated inflammation and 
dysregulation of inflammatory responses play an 
important role in the development and progression of 
AMD to the final stages, which include choroidal 
neovascularization (CNV) and geographic atrophy 
(GA)27,139, 140. Systemically, studies have demonstrated 
elevated plasma levels of these inflammatory markers in 
patients with AMD as compared to those without AMD13-

14, 16-22,141-142. Considering these facts, inflammatory 
cytokines and chemokines gain relevance from a physio 
pathogenesis and therapeutic perspective in AMD. 
 

Cytokines are water-soluble, extracellular polypeptides 
or glycoproteins, ranging from 8 to 30 kDa, generally 
produced in response to antigenic stimulation, functioning 
as a chemical messenger to regulate the adaptive and 
innate immune system. These proteins are produced by 
all cells involved in antigen response and presentation. 
They are synthesized when needed or when a cell in the 
immune system is “activated”143-144. Chemokines, in turn, 
are a large family of small cytokines and their molecular 
weight varies from 7 to 15kDa. Chemokines play a 
central role in the physiology of leukocytes and other 
inflammatory cells, by controlling basal and 
inflammatory trafficking. There are two major subfamilies 
of chemokines based on the position of cysteine residues: 
CXC and CC. As a general rule, members of the CXC 
chemokine family are chemotactic of neutrophils, and CC 
chemokines are chemotactic of monocytes and 
lymphocyte subtypes144.  
 

Interleukin-6 (IL-6) 
sInterleukin-6 is a cytokine that, among its multiple 
functions, mediates inflammation and the immune 
response, acting on several cells, including RPE cells145-147. 
IL-6 levels in adults are not expected to exceed 20 
pg/mL148. Several studies have reported that IL-6 is an 



Challenges and Opportunities in Systemic Biomarkers for Age-related Macular Degeneration 

© 2024 European Society of Medicine 5 

important regulator of CNV and has correlated this 
cytokine with VEGF expression149-152. While one study 
found no significant association between plasma IL-6 
levels and AMD26, another study considered this 
interleukin an important marker for the progression of 
AMD16. Recently, a prospective study (42 GA patients, 
41 nAMD patients, and 27 healthy controls) 
demonstrated that plasma IL-6 has predictive capacity 
for progression and constitutes the first known plasma 
biomarker of disease activity in GA. These findings 
highlight its important role of chronic inflammation in the 
pathogenesis of this disease17. Finally, a meta-analysis 
involving 3,586 individuals (1,865 controls and 1,721 
with AMD) suggests that an increase in systemic IL-6 in 
patients with AMD may be a phenomenon more closely 
related to late AMD subtypes153.  
 

Interleukin-1β (IL-1β) 

Interleukin-1β, produced primarily by monocytes and 

macrophages, has been associated with mediating acute 

and chronic inflammation154-155.  Interleukin-1β is secreted 

as an inactive form and requires proteolytic cleavage by 
the enzyme caspase-1 to be released into an active 
form156. The caspase-1 activation platform, known as the 
inflammasome, has been associated with the 

pathophysiology of AMD157-158. Addictionally, IL-1β is 

capable of inducing reactive oxygen species (ROS) in RPE 
cells159.  Analysis of plasma inflammation markers in 
patients with polypoidal choroidal vasculopathy (PCV), 
patients with neovascular AMD and a healthy control 

group showed a significant increase in plasma IL-1β in 

patients with neovascular AMD as compared to those of 
healthy controls17.  Furthermore, this chemokine was found 
to be elevated in patients who progressed from the 
intermediate to the advanced stage of AMD24.  
 
C-reactive protein (CRP) 
C-reactive protein is predominantly produced in the liver, 
although, under certain conditions, it can also be secreted 
by smooth muscle cells and endothelial cells160,161. The 
Centers for Disease Control and Prevention and the 
American Heart Association have estimated 
cardiovascular risk in healthy individuals as follows: 
low-, medium-, and high-risk values defined as < 10, 10 
– 30, and > 30 mg/L162. 
 
CRP is released into circulation upon stimulation by IL-6 
and other cytokines163, and a link with AMD has been 
suggested16,115, 164-167.  However, a meta-analysis 
involving 53 studies with 60,598 participants (10,392 
patients and 38,901 controls) revealed that early age-
related macular degeneration was not associated with 
systemic C-reactive protein, whereas late AMD was 
associated with a small-to-moderate increase in systemic 
C-reactive protein168. On the other hand, another meta-
analysis (41,690 participants) showed that high serum 
CRP levels (> 3 mg/L) were associated with a twofold 
greater likelihood of late AMD, compared with low levels 
(< 1 mg/L)169. Furthermore, evidence that elevated high-
sensitivity C-reactive protein (hsCRP) levels predict future 
AMD risk was demonstrated in pooled analysis of 
prospective case-control data20. The association of CRP 
with AMD was also found in a study that analyzed 
inflammation plasma markers from patients with PCV and 
neovascular AMD19, as well as in GA17.  

Tumor Necrosis Factor Alpha (TNF-α) 

Tumor necrosis factor alpha is a low molecular weight 
protein, produced predominantly by activated 
macrophages, potentially involved in the production and 
expression of VEGF170-172. Interestingly this cytokine also 
has the potential to inhibit the formation of neovessels173-

174. This fact may be linked to its receptors, a member of 
the tumor necrosis factor receptor 1A (Tnfrsf1a) 
superfamily and a member of the tumor necrosis factor 
receptor 1B (Tnfrsf1b) superfamily, which act 
antagonistically by inhibiting endothelial migration or 
promoting its activation173-175.   Additionally, it was 

observed that pre-exposure of TNFα in the primary RPE 

and ARPE19 induces to increased complement activation 
and membrane attack complex (MAC) deposition, which 
may represent an early event in the pathogenesis that 
leads to the development of AMD176.  A case-control 
study showed significantly increased plama levels of 
soluble receptor for tumor necrosis factor type II (sTNFRII) 
in patients with early or nAMD and was considered a 
significant predictor for the prevalence of AMD177. 
Another study that analyzed serum levels of CRP, pro-

inflammatory cytokines (TNF-α, IL-1β, IL-2, IL-6 and IL-8) 

and complement pathway activity in the clinical response 
to growth factor inhibition vascular endothelial cell in 
nAMD demonstrated that only lower serum levels of TNF-

α were associated with an increase in visual acuity after 

anti-VEGF therapy178. In a prospectively study (42 GA 
patients, 41 nAMD patients and 27 healthy controls) was 
observed that patients with GA showed an increase in the 
pro-inflammatory plasma marker (TNF receptor 2) as 
compared to those of healthy controls17.  Investiganting 

the role of TNF-α on AMD, a recent systematic review (24 

studies) showed measurement of systemic and local levels 

of TNF-α has not produce consistent results on the role of 

anti-TNF-α agents in the remission of symptoms caused 

by the disease. That review suggested the role of TNF-α 

in nAMD is not clear and not all anti-TNF-α agents were 

considered safe179.  Corroborating this study, no 
association was demonstrated between plasma levels of 
TNF-R2 among patients with PCV, patients with nAMD 
and a healthy control group19.  
 
Interleukin-8 (lL-8) 
Interleukin-8 or CXCL8 is a member of the CXC 
chemokine family originally identified as a chemotactic 
factor for neutrophils, being released by phagocytes and 
a wide variety of tissue cells after exposure to 
inflammatory stimuli180-181. In addition to activating 
neutrophils, IL-8 also increases the expression of adhesion 
molecules by endothelial cells182. Some studies have not 
demonstrated a correlation between plasma IL-8 levels 
and nAMD and/or PVC19,183.  On the other hand, a 
significant increase in the IL-8 secretion profile of 
peripheral blood mononuclear cells and serum from 
patients with nAMD was demonstrated181,184. 
Additionally, this chemokine was found to be elevated in 
patients who progressed from the intermediate to the 
advanced stage of AMD24. Finally, a recent meta-
analysis suggested that the IL-8 +781 C/T polymorphism 
affects the predisposition to dry AMD and wet AMD. 
Furthermore, patients with dryAMD and nAMD also have 
elevated levels of IL-8185, which could be considered a 
new genomic biomarker of AMD susceptibility186.  
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Monocytic chemotactic protein 1(MCP-1) or Chemokine C-
C motif ligand 2 and its receptor CCR2  
Monocytic chemotactic protein 1, also referred to 
as chemokine C-C motif ligand 2 (CCL2), is encoded by 
the CCL2 gene which is located on chromosome 
17q11.2187. CCL2 is a low molecular weight (810 kDa) 
chemotactic cytokine that is involved in the recruitment of 
monocytes to the inflammation site188- 190. Chemokine C-
C motif ligand 2 can be secreted by numerous cell types, 
including endothelial cells, activated monocytes, and EPR 
cells191-193. Several studies have correlated CCL2 with 
AMD. Firstly, oxidized lipids in the retina, arising from 
phagocytosis of the outer segments of photoreceptor 
cells, stimulate the expression of chemotactic factors, such 
as IL-8 and CCL2 by RPE cells, justifying the increase in 
intraocular CCL2 concentrations in nAMD eyes194. 
Consequently, the recruitment of macrophages promoted 
by CCL2 would help explain the presence of these cells 
at sites of CNV195-198. Additionaly, macrophages express 
proangiogenic VEGF, which contributes to CNV 
formation199-200. It was demonstrated that intravitreal 
injections with a CCR2 antagonist reduce the size of laser-
induced CNV in mice, as well as in the number of 
macrophages infiltrating the choroid and a decrease in 
VEGF expression201. However, CCL2 is not only involved 
in the pathogenesis of nAMD. Experimental models have 
shown that CCR2 and its ligand CCL2 are involved in 
drusen formation and in RPE changes seen in the early 
stages of AMD202-203. Chemokine C-C motif ligand 
2 activated monocytes are also involved with apoptosis 
in the RPE, contributing to the progression of the 
disease204. Furthermore, the level of CCL2 and CCR2 + 
inflammatory infiltrating monocytes are increased 
in patients with GA205. However, controverse results have 
been found regarding serum CCL2 levels in patients with 
AMD. A study involving 150 participants found no 
association between CCL2 plasma levels and AMD206. A 
cross-sectional study (16 nAMD patients, 18 PCV 
patients, and 50 controls) did not observe significant 
differences in CCl-2 in plasma samples between cases 
and controls, corroborating the previous study183. On the 
other hand, analysis of peripheral blood mononuclear 
cells, in particular monocytes from patients with nAMD, 
revealed that higher levels of CCL2 may be associated 
with the development of CNV181. Corroborating with 
these findings, an increase in serum CCL2 levels in 
patients with nAMD as compared to those of healthy 
participants has been observed207. Another study 
demonstrated that plasma CCL2 concentrations are not 
only elevated in nAMD, but also in PCV208. An increase in 
CCL2 plasma concentrations was also observed in 
patients with intermediate age-related macular 
degeneration (iAMD)209, and early AMD210. Similarly, the 
expression of CCR-2 levels was increased on a sub-type 
of monocytes in peripheral blood in patients with 
neovascular AMD211. Additionally, it was observed that 
patients with nAMD had a significantly increased 
proportion of non-classical CCR2+ monocytes, whereas 
PCV type 1 was associated with a significant increase in 
CCR2+ in all monocyte subsets when compared to PCV 
type 2212. A prospective observational study (41 GA 
patients, 51 nAMD patients, and 30 healthy control) 
demonstrated that GA was associated with greater 
monocytic CCR2 expression compared to nAMD21. 
Finally, a significant increase in urinary CCL2 levels was 
observed in patients with early AMD and GA as 

compared of those controls. This study concluded that 
analysis of this urinary biomarker could provide a 
practical tool for detecting early AMD, monitoring 
progression and evaluating treatment efficacy22.  
 
Interferon (IFN) 
Interferons are a group of glycoproteins synthesized and 
secreted by almost all mammalian cells upon stimulation 
by specific antigens213-214. They have antiviral, 
antiproliferative and immunomodulatory properties that 
play important roles in host defense mechanisms and in 
the maintenance of homeostasis213-214. The three types of 
IFN (I, II and III) are classified by their receptor specificity 

and sequence homology. Type I IFNs include IFN-α, β, ε, 
κ, and ω. Type II IFNs refer to IFN-γ, and Type III IFNs 

include IFN1, IFN2, IFN3215. The type 1 Interferon 
exerts antiproliferative and antiangiogenic effects, 
modulating the activity of various immune cells216- 219. On 

the other hand, type 2 interferon (IFN-γ) is classically 

considered a pro-inflammatory factor, but in recent 

years, several studies have found that IFN-γ mediates an 

immunomodulatory and protective function as well220-221. 

In relation to AMD, IFN-γ can exert important effects on 

RPE cells, positively regulating the expression of 
complement factor H (CFH), mediating the positive 
regulation of VEGF, promoting the activation of the RPE, 
significantly increasing the expression and secretion of IL-
6147, 222 -223. In the primary RPE and ARPE19, in addition 

to promoting increased complement activation, IFN-γ 
promotes the deposition of the membrane attack 
complex, which may represent an early event in the 

development of AMD176. Hence, IFN-γ induces pro-

inflammatory responses by activating pro-inflammatory 
cytokines and chemokines, thus recruiting immune cells 
such as macrophages and T cells224-226. Despite the 

important role of IFN-γ in the pathogenesis of AMD, 

several studies do not associate the increase in plasma 
levels of this cytokine with degenerative macular 
disease18,177,183,227.  On the other hand, analysis of whole-
blood samples collected from humans (27 nAMD patients, 
33 PCV patients and 18 healthy individuals) 

demonstrated that the levels of IFN-γ in the supernatants 

of cultured peripheral blood mononuclear cells in patients 
with PCV and nAMD were markedly elevated compared 

to those of controls. These results suggest that the IFN-γ-
related inflammatory pathway may be involved in the 
pathogenesis of PCV and nAMD228. Another study 
corroborated these results, demonstrating significantly 

high levels of IFN-γ expression by CD4+ T cells in patients 

with AMD13. 
 
Homocysteine (Hcy) 
Homocysteine is an amino acid produced from the 
demethylation of methionine229. Mutations in methylene-
tetrahydrofolatereductase or cysteine by cystathionine-
beta-synthase are related to increased plasma 
homocysteine (HHcy)230. Additionally, deficiency of B 
complex vitamins, such as folic acid, riboflavin (B2), 
pyridoxine hydrochloride (B6) and cyanocobalamin 
(B12) is related to an increase in total Hcy 
concentration229, 231-233. Adult total homocysteine values 

of 10 μmol/L or less are probably safe, whereas values 

of 11 μmol/L or above may warrant intervention234. 

Hyperhomocysteinemia has been linked to the 
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development of Alzheimer's disease235, diabetic 
retinopathy236, as well as an increase in the 
cardiovascular mortality rate237-238.  Many experimental 
studies have suggested an association between HHcy and 
AMD. Hyperhomocysteinemia caused activation of 
microglial cells, increased the expression of pro-

inflammatory cytokines such as IL-1B and TNFα, as well 

as downregulated anti-inflammatory cytokines in key 
cells that constitute the inner outer blood–retinal barriers, 
human retinal endothelial cells and RPE239-241. Blood-
retinal barrier dysfunction caused by increased Hcy 
leads to RPE changes like AMD, including inducing 
CNV242-244. Furthermore, HHcy has been shown to 
promote the activation of hypoxia-inducible factor (HIF)-

1α244, retinal hypoxia245, and increase in the expression 

of VEGF in RPE cells244.  A meta-analysis indicated weak 
evidence that increased tHcy may be associated with 
nAMD; however, this result must be interpreted with 
caution due to a marked heterogeneity among studies246. 
Another meta-analysis, which evaluated eleven studies 
(including 1072 cases and 1202 controls), demonstrated 
that the plasma tHcy level among AMD cases was 2.67 

μmol/L higher than controls. Studies involving vitamin B12 

and folic acid were also analyzed (including 152 cases 
and 98 controls) and it was found that the level of vitamin 
B12 among AMD cases was 64.16 pg/mL lower than 
controls. Subgroup analyzes showed that the folic acid 
level was 1.66 ng/mL lower in the wet type. Together, 
the results demonstrated that AMD is associated with 
elevated tHcy levels and decreased vitamin B12 
levels247. In this regard, a prospective study 
demonstrated that an increase in total vitamin B-12 
intake was associated with a 24% reduction in the risk of 
incidence of any AMD in 10 years248, just as well as high 
folate intake is associated with a reduced risk of 
progression to GA249.  A randomized, double-blind, 
placebo-controlled trial including 5442 female health 
care professionals 40 years or older with CVDs or CVDs 

risk factors showed that supplementation with folic acid 
(2.5mg), B12 (1 mg) and B6 (50 mg) led to a 34% 
reduced risk of any AMD and a 41% reduced risk of 
visually significant AMD over a 7.3-year period250. 

 

Conclusion 
Several studies point to changes in blood biomarkers in 
AMD, especially in the late stages of the disease. The 
increase in the neutrophil-lymphocyte ratio (NLR) and the 
platelet/lymphocyte ratio (PLR), as well as the higher 
peripheral monocyte count, suggest the onset of systemic 
changes that can potentially interfere with the course of 
AMD. The correlation between AMD and increased HDL, 
TOS, IL-6, CRP, IL-8, MCP-1 and homocysteine has been 
observed in many studies, as has a reduction in TAS. Most 
of the biomarkers analyzed were compared between 
normal elderly people and elderly people with AMD. 
There are few long-term studies in the literature 
analyzing the correlation of these markers with the onset 
of AMD. Therefore, long-term studies should be 
encouraged in the search for answers regarding the 
usefulness of such markers in identifying those people 
who tend to develop AMD, even before the appearance 
of any phenotypic changes in the retina, with the aim of 
predicting the risk, preventing it and monitor progression. 
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