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ABSTRACT

Purpose: Pancreatic cancer is an extremely aggressive and deadly cancer with a
S5-year survival rate of less than 10%. Our study aims to establish an MRI radiomics-
based model to predict survival for borderline resectable and locally advanced

pancreatic ductal adenocarcinoma patients who have received radiation therapy.

Methods: 71 borderline resectable and locally advanced pancreatic cancer
patients (42 Male, 29 Female) were retrospectively selected for radiomics
analysis with a median age of 63 years. The gross tumor of each patient was
delineated on contrast-enhanced T1-weighted MRI images. Radiomics
features were extracted using PyRadiomics and feature stability of the
radiomics features was assessed under MRI intensity normalization and bin
width variation. The 71 patients were randomly split into a training set (54
patients) and a testing set (17 patients). Using the training set, we trained
three risk stratification models (clinical-only, radiomics-only, and a composite)
through a penalized Cox model, which simultaneously established the
predictive model and selects important features by incorporating L1 and/or
L2 penalties to the Cox Proportional Hazards model. We also built a Random
Forest classifier using the Synthetic Minority Over-sampling Technique
(SMOTE) with the same set features selected in the penalized cox model to
predict the 1-year survival of these pancreatic cancer patients.

Results: Out of 924 extracted features, we identified 133 (14.4%) stable
features with ICC > 0.75, against both intensity normalization and bin width
variations. Survival models based on clinical endpoints alone, radiomics
features alone, and a combination showed that including radiomics features
can significantly improve survival prediction. Using the same number of
features to construct survival models for clinical only, radiomics only, and a
combination of clinical and radiomics features, we find that we are able to
accurately distinguish low and high-risk groups and generate survival curves
for the test group with a concordance index of 0.615, 0.654, and 0.716,
respectively. The Random Forest classifier predicted the 1-year survival
accuracies of 0.529, 0.824, and 0.765 for the clinical-only model, radiomics-
only model, and the composite model, respectively.

Conclusions: Magnetic resonance imaging (MRI) radiomics is promising in
predicting the mortality of pancreatic cancer following SBRT and improving
survival prediction capabilities. Intensity normalization is an essential

preprocessing step to exclude unstable and/or redundant imaging features.
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Introduction

Pancreatic cancer is a notably aggressive form of
cancer and is the 4" leading cause of all cancer-
related deaths in the US, with an estimated 5-year
overall survival of approximately 9%'. The low
survival rate is largely due to the difficulty in
detecting pancreatic cancer early as symptoms will
typically not appear until the disease has advanced
to its later stages. The symptoms of pancreatic
cancer can be subtle or nonexistent, leading to
delayed diagnosis and limited treatment options.
In 2022, approximately half of all pancreatic cancer
cases were diagnosed at an advanced or distant
stage with a metastatic 5-year survival of less than
3%?. Cancers will often form within critical
proximity to other vital organs and blood vessels
nearby, reducing the chance of a cure via surgical
resection. In many cases, pancreatic cancer has
been shown to be resistant to chemotherapy and
radiation, increasing the overall mortality rate®*.
Immunotherapy, another promising approach
gaining attraction in modern cancer treatment, has
also shown limited effectiveness in treating
pancreatic cancer. Therefore, research aimed at risk
stratification is crucial for the classification of
patients into risk categories and, thus, providing
patient-appropriate treatment based on the status
of the disease for an individual. Medical imaging
techniques offer an opportunity to be employed
for identifying quantitative biomarkers that can aid
in risk stratification and treatment planning. Precise
multifaceted risk stratification enables more

effective and personalized treatment.

Magnetic resonance imaging (MRI) is frequently
selected as the preferred imaging modality for
abdominal examinations due to its exceptional
ability to differentiate soft tissues. The high soft
tissue contrast in the abdominal region allows for
highly accurate tumor delineation, a crucial aspect
for both treatment planning and quantitative
analysis of the imaging features. MRI can identify
tumor size, location, and potential invasion into
nearby structures such as the lymph nodes, or

distant metastases. Quantitative imaging analysis,

namely radiomics, is emerging as a novel technique
in medical imaging as a data source for biomarkers®
that are manifested as image-based phenotypes.
This methodology involves the extraction and
analysis of quantitative data from medical images
where the derived image features hold potential
for personalized patient care. It is becoming
increasingly useful for predicting patient response
to therapy, whether before, during, or after
treatment. Radiomics features, extracted based on
segmentation, i.e., delineation of a boundary
around a region of interest, typically include the
shape, volume, texture, and higher-order statistics
of a volume of interest and can provide a more
comprehensive and nuanced representation of the
radiographic phenotype of a tumor or an organ
than qualitative descriptors from human experts®'2.
Due to its distinct advantages for biomarker
development, radiomics has become an active
area of research focusing on risk assessment and
treatment response prediction of cancer as well as
the relationship between image features and
genomics™ 8. Despite the promising potential of
applying MRI Radiomics in the medical field, MRI
poses unique challenges due to its varying signal
intensity, which can significantly affect the
robustness of the extracted radiomics features as
well as the generalizability of such models when

applied to external datasets.

The primary purpose of this study is to assess
whether radiomics features, extracted from the MR
prior to radiotherapy, can improve the accuracy of
predictive models for the survival of patients with
pancreatic ductal adenocarcinoma (PDAC) as a
more effective method than consideration of
clinical endpoints alone. Additionally, we aim to
emphasize the role of the incorporation of an
intensity normalization protocol into the MRI
radiomics workflow as an essential step to reduce
the extent of overfitting predictive models and to

improve the overall prediction of survival.
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Materials and Methods

PATIENT CHARACTERISTICS

The Institutional Review Board at our institution
approved this retrospective study (IRB 789-18-EP)
and waived the informed consent of the subjects.
The waiver would not affect the rights and welfare
of the study subjects. A total of 71 borderline
resectable and locally advanced PDAC patients
were retrospectively selected for this study, 42
male and 29 female with a median age of 63 years
ranging from 35 to 81 years, at the time of
diagnosis. We also collected other clinical

characteristics such as gender, surgical status,

Table 1. Patient Characteristics

chemotherapy  regimen, radiation therapy
prescription and staging information. The patient
characteristics were summarized in Table 1. We
grouped the T staging into T4 and non-T4
categories, given that the definition of T4 has
remained consistent from the 7th to the 8th edition
of the AJCC cancer staging manual. Stage T4 is a
critical factor in determining tumor resectability, as
it typically refers to tumor involvement with the
celiac trunk and/or superior mesenteric artery
(SMA) exceeding 180 degrees for head/uncinate
tumors or contact with the celiac trunk and aortic

involvement for body/tail tumors.

Patient Characteristics

Gender
Female 29
Male 42
Median 63
Range 35-81
Resection
Yes 26
Mo 45
Chemotherapy Regimen
5FU 53
xeloda 17
Mone 1
Staging
T4 30
T1, T2, T3 a1
Mode Negative 34
Node Positive a7

Radiotherapy Prescription (cGy)

2500
3000
3500
4000

4
4

16
a7
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MRI ACQUISITION

We retrospectively retrieved contrast-enhanced
T1-weighted MR scans of the abdomen, which
were acquired prior to the pancreas SBRT
treatment for each of the 71 patients from 2006 to
2017. These scans were acquired on Philips
Ingenia, Achieva, and Intera 1.5 T and 3 T MRI
scanners at the University of Nebraska Medical
Center. Original scans have an in-plane resolution
between 0.52-1.20 mm and slice thicknesses range
from 1.40-2.50 mm. Patients were intravenously
injected with gadolinium-based contrast agents

based on the standard protocol.

VOLUME OF INTEREST SEGMENTATION

The tumor region of all subjects was contoured by
two trained medical researchers using the Varian
Eclipse treatment planning system (Varian Medical
Systems, Palo Alto, CA) and finalized by an
attending radiation oncologist, who has more than
18 years of experience specializing in gastro-
intestinal Cancer. All the segmentations were
delineated on the MRI with the original in-plane
resolution and slice thickness. The MRl images with
associated segmentations were stored and
exported via DICOM format for processing and
analysis.

FEATURE EXTRACTION

Open-source software PyRadiomics' was used to
extract radiomics features from the set of MR
images. The DICOM images and target delineation
were converted to NRRD format using a batch
process in 3D slicer software?. We extracted nine
hundred twenty-four (924) radiomics features from
each tumor delineation. The radiomics features
included first-order statistics, 3D shape-based
features, Gray Level Co-occurrence Matrix (GLCM),
Gray Level Run Length Matrix (GLRLM), Gray Level
Size Zone Matrix (GLSZM), Neighboring Gray Tone
Difference Matrix (NGTDM), and Gray Level
Dependence Matrix (GLDM) from the original
images, images derived from Laplacian of Gaussian
(LoG) filters, and eight derived images from

wavelet decompositions.

CLINICAL ENDPOINTS

In this study, we chose to assess the role of
radiomics features in modeling patients’ 2-year
survival. We calculated the 2-year survival rate to
establish a survival prediction model. The 2-year
survival is determined by weather the patient is still
alive at 2 years mark following the date of their
diagnosis. In addition to calculating the 2-year
survival rate, we also grouped the patients into
alive or deceased categories at 1 year for a

classification model.

TRAIN/TEST DATASETS SPLIT

As shown in Figure 1, the patients were randomly
split into a training set (54 patients) and a test set
(17 patients), by our in-house workflow?’, while
ensuring the events were balanced and the binary
categorical variables were stratified. We utilized
the same train/test split for our clinical-only,
radiomics-only and composite models.

UNCERTAINTY ANALYSIS OF RADIOMICS
FEATURES

In radiomics research, feature selection is a crucial
step in the workflow due to the typically large
number of available features compared to the
limited number of cases in the patient cohort.
Failure to perform feature selection may lead to
overfitting®?, where the model may not generalize
well to independent datasets and demonstrate
accurate predictive power. To assess the stability
and reproducibility of the extracted features, we
introduced two perturbations in the imaging
preprocessing and the feature extraction process,
specifically MRI intensity normalization and bin
width for feature extraction. The goal is to ensure
that extracted features are robust against the
variabilities from the intensity distribution as well as
feature extraction parameters and reliable such
that the model can effectively adapt to new
datasets. The robustness of features with respect
to these perturbations was assessed using Intraclass
Correlation Coefficient (ICC)?, where unstable
features were removed from the final dataset for

performing classification and predictive analysis.
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INTENSITY NORMALIZATION

To get a consistent scheme for the comparison of
MR images, the first problem to be addressed is
the varying signal intensity that is received across
MRI scans. Inter- and intra-scanner intensity non-
uniformities across MRI scans can arise due to
changes in RF frequency, coil uniformity, nonlinear
fields, gradient fields, etc?. Image pre-processing

methods (intensity normalization among the

various methods) were employed to mitigate these
issues where possible. Intensity normalization was
performed using the method first introduced by
Nyul et al. taking the approach of linear histogram
matching in which the intensity distributions from a
set of MR images can be mapped onto a “standard
histogram” that acts as a map for renormalization®.
Figure 1 showed the MRI intensity normalization of

the patient cohort.

Unnormalized

log(count)

1500 2000 2500

Normalized

log(count)

w

0 500 1000 1500 2000 2500 3000 3500

Intensity

Figure 1. MRI Intensity Normalization via Pair-wise linear histogram Matching

BIN WIDTH AND RESAMPLING

Image voxel size and extraction bin width are two
important feature extraction. We aimed to
investigate how different bin widths and
resampling techniques (with or without resampling)
impact the stability of the extracted features. We
chose five different gray-level discretization for
voxel intensity values - 5, 10, 25, 50, and 75 - and
were applied with the original resolution and a
resampled resolution of 1.0 mm x 1.0 mm x 1.0
mm. Original planar resolutions range from 0.52
mm x 0.52 mm to 1.2 mm x 1.2 mm and original
slice width ranges from 1.4 mm to 2.5 mm. The
combination of the bin width and resampling
allowed for a total of ten different parameter sets
to be explored for feature robustness. ICC > 0.75
was again the threshold for the determination of
the robust features using different feature

extraction parameters.

© 2024 European

FEATURE STABILITY EVALUATION

Intraclass Correlation Coefficient (ICC) is the
statistical measure used to quantitatively assess the
robustness of radiomics features against various
perturbations. In this study, the MRI features were
extracted under different perturbations to the
dataset (bin width and intensity normalization) and
evaluated for robustness using ICC. Specifically,
ICC (2,1) was selected to assess the single
measurement absolute agreement with the 2-way
random-effects model since this 2-way random-
effects model is the appropriate model to
generalize our reliability results®?, calculated as

follows:
MSR - MSE

ICC(2,1) = =z
MSg + (K — 1)MSg + 5 (MS¢ — MSg)

where MS is the statistical mean square for R=rows,
C=columns, and E=error for the radiomics data set.

Society of Medicine 5



SURVIVAL ANALYSIS WORKFLOW UTILIZING
PENALIZED COX MODEL

We designed a survival analysis workflow that
utilized a nested cross-validation approach to
optimize a Cox Proportional Hazards model with
elastic net regularization (penalized cox model?)
for survival analysis as previously described?®’.
Briefly, our workflow repeatedly split the data into
outer training and test sets using 5-fold cross
validation. Within each outer split, it performed
multiple  inner  cross-validation  repetitions,
exploring various ‘l1_ratio’, ‘alpha_min_ratio’ and
‘alpha’ combinations using a grid search approach
to identify the best hyperparameters. Then, the
features with non-zero coefficients were ranked

and stored for each inner repetition. Subsequently,

Table 3. Feature Selected for Each Model

7 best features, which were selected based on the
frequency during the inner repetitions, were
utilized to create a penalized cox model in the
outer training set and evaluated by the outer test
set. The best-performing 7-feature model was
determined by its concordance index (Cl) from the
outer loop. Then, this best performing 7-feature
model was evaluated using the independent test
set (20% of the total patients) using concordance
index (Cl). Three models were created by feeding
clinical-only features, radiomics-only features, and
a combination of both clinical and radiomics
features, from the same training set (17 patients),
into this workflow. The selected features were
listed in the Table 3.

Clinical Features

Radiomics Features

Composite Features

Chemo Drug_xeloda
Resection_1
NO=0, N+=1_1

Ethnicity_White
Age at Dx
Rad Rx (cGy)_ 4000

wavelet-LHH_firstorder_Minimum
original_shape_Sphericity
original_shape_Maximum2DDiameterRow
Sex_ M log-sigma-1-0-mm-3D_firstorder_Skewness
wavelet-HHH_gldm_DependenceEntropy
wavelet-LLL_firstorder_Kurtosis
log-sigma-1-0-mm-3D _firstorder Mean

Resection_1
wavelet-HHH_glrim_LongRunEmphasis
wavelet-LLL_firstorder_Kurtosis
wavelet-HLH_firstorder_Median
wavelet-HHL _firstorder_Skewness
Chemo Drug_xeloda
Rad Rx (cGy) 3000

NO=0,N+=1: Positive lymph node; Resection_1: Patients received resection

CLASSIFICATION PREDICTIVE MODELING

We trained three models utilizing the Random
Forest framework, utilizing the Synthetic Minority
Over-sampling Technique (SMOTE)?, on the same
training set (54 patients) to differentiate the alive
and deceased cases at 1 year. These models
utilized the same sets of clinical-only features,
radiomics-only features, and a combination of both
clinical and radiomics features, which were
selected from the survival model. We utilized a
grid-search

approach  to  optimize  the

hyperparameters of the Random Forest classifier.
We utilized our in-house classification workflow?”
to explore a parameter grid consisting of
"max_depth”, "n_estimator", ‘min_samples_split’,
"min_samples_leaf", "‘max_feature’', "‘bootstrap”
and "criterion” with specific value ranges. We coupled
the Random Forest classifier with Synthetic

Minority Over-sampling Technique (SMOTE)? with

the best hyperparameters identified in the grid
search and tested the model performance on the
test dataset. The performances of the classification
models were quantified by the area under the
receiver operating characteristic curve (AUC),

accuracy, sensitivity, and specificity.

Results

FEATURE EXTRACTION AND UNCERTAINTY ANALYSIS
We extracted 924 radiomics features for each
volume of interest on each patient from the T1-
weighted MRI. Figure 2 showed the Intraclass
Correlation Coefficient (ICC) of all the extracted
features, grouped by their radiomics feature
classes, against the variabilities in MRI signal
intensity distribution. We found that 336 features
(36.4%) had ICCs greater than 0.75 and were

therefore considered stable features against

© 2024 European Society of Medicine 6
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intensity normalization. Additionally, we identified
that 25.9% of the radiomics features (239 features
out of 924) had ICCs exceeding 0.75, indicating

ICC_MRI_Normalization

&
r

04 t

Shape original log-sigma-1-0-mm-3D  wavelet-LLH wavelet-LHL

their robustness against extraction parameters
(Figure 3).

wavelet-LHH wavelet-HLL

i

+
+

+

$

wavelet-HLH wavelet-HHL wavelet-HHH wavelet-LLL

Feature Type

Figure 2. Intraclass Correlation Coefficient of MRI Radiomics Features Against Image Normalization
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let-LHH let-HLL let-HLH let-HHL let-HHH let-LLL

Feature Type

Figure 3. Intraclass Correlation Coefficient of MRI Radiomics Features Against Extraction Parameters

FEATURE SELECTION

The penalized cox model differs from the
traditional Cox Proportional Hazards model by
incorporating L1 and/or L2 penalties, which allows
it to perform feature selection and survival analysis
simultaneously. This feature makes it more
effective for modeling large and high-dimensional

datasets The features of clinical-only, radiomics-

only, and composite models were determined by
our in-house workflow involving the use of the
penalized cox model. Figures 4, 6, and 8 showed
the top selected features with their coefficients
from the clinical-only, radiomics-only, and the
composite models. The selected features were also

summarized in Table 3.

© 2024 European Society of Medicine 7
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Top Selected Features
Clinical_Model

HO=0, N+=1_1

Resection_L

Cheme Drug_xeloda

Rad Rx (cGy)_4000

Features

M

Ethiicity_White

Age at Dx

008 004 002

000
Average Coefficient

00z 004 006

Figure 4. Selected 7 Clinical Factors with Their Coefficients. NO=0, N+=1_1: positive lymph node. Resection_1: Patients received resection.

Features

Top Selected Features
Radiomics_Model

wavelet-LHH_firstorder_Minimum {

log-sigma-1-0-mm-3D_firstorder_Skewness {

log-sigma-1-0-mm-3D_firstorder_Mean {

original_shape_Maximum2DDiameterRow |

wavelet-HHH_gldm_DependenceEntropy |

wavelet-LLL firstorder_Kurtosis |

original_shape_Sphericity |

Figure 6. Selected 7 MRI Radiomics Factors with Their Coefficients

Features

Average Coefficient

Top Selected Features

Composite_Model

Rad Rx (cGy)_3000
wavelet-HLH_firstorder_Median
wavelet-HHL firstorder_Skewness
L

Chemo Drug_xeloda

—0s 00

0
Average Coefficient

10

Figure 8. Selected 7 Composite Factors with Their Coefficients. Resection_1: Patients received resection

SURVIVAL ANALYSIS

Each 7-feature model (clinical-only, radiomics-only,

and the composite) predicted a risk score for each

patient, and the patients were grouped by

comparing their risk scores to the mean risk score

of all test patients (17 patients). Patients with scores

above the mean were assigned to the high-risk

group, whereas those with scores lower than mean

were assigned to the low-risk group for each

model. We then performed the log-rank test and

© 2024 European Society of Medicine

calculated the p-value for each model. As
illustrated in Figure 5, the clinical model achieved
a log-rank test of 2.94 with a p-value of 0.0866.
Figure 7 indicated that the radiomics model
reached a log-rank test of 10.46 with a p-value of
1.22 x 1073, Meanwhile, Figure 9 showed that the
composite model obtained a log-rank test of 15.09
with a p-value of 1.02 x 107*. The three models
obtained Concordance Index (Cl) values of 0.615,
0.654, and 0.716 on the test dataset (17 patients).

8



Table 2. Concordance Index and Prediction Accuracy on Test Set

Concordance 1-Year Survival
Index Prediction
Accuracy
Clinical 0.615 0.529
MRI Radiomics 0.654 0.824
Composite 0.716 0.765

Kaplan-Meier Survival Curves

10

=
=]

'Logrank test:

Survival Probability

=
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Figure 5. Kaplan-Meier Curve for Clinical-Only Model

Kaplan-Meier Survival Curves
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Figure 7. Kaplan-Meier Curve for MRI Radiomics-Only Model
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Kaplan-Meier Survival Curves
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Figure 9. Kaplan-Meier Curve for Composite Model

CLASSIFICATION ACCURACY

As shown in Figures 10A, 12A and 14A, repeated
5-fold cross-validation on the training dataset (54
patients) demonstrated that the clinical-only,
radiomics-only, and composite models achieved
average area under receiver  operating
characteristic curve (AUC) values of 0.87 (95%
Cl=0.80-0.94), 0.89 (95% Cl=0.81-0.97), and 0.96
(95% CI=0.93-0.99). Upon evaluation with the
same independent test dataset of 17 patients, each
model achieved AUC values of 0.58,0.77, and 0.79

Clinical Model
A
Repeated 5-fold cross-validation (54 subjects)
1.0 =
”
» ”~
08 e
2 -7
- -
lid g
06 -
: .
8 ’
[<]
o 04
©
2
(=
02 Non-diagnostic
Mean ROC (AUC =0.87 + 0.07)
0.0 + 1 std. dev.

00 0.2 04 06 08 1.0
False Positive Rate

(Figure 10B, 12B and 14B). The prediction
accuracies of the three models were 0.529, 0.824,
and 0.765. showed that after
categorizing the patients into high or low risk, the

Figure 11

clinical model achieved a sensitivity of 0.0 and a
specificity of 0.69. The MRI radiomics model
demonstrated a sensitivity of 0.75 and a specificity
of 0.85 (Figure 13).
illustrated that the composite model achieved a

Meanwhile, Figure 15

sensitivity of 0.50 and a specificity of 0.85.

B
ROC Curve for Test Set (17 subjects)
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Figure 10. ROC Curves For Training And Test Set of The Clinical Model
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Clinical Model
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Figure 11. Confusion Matrix of The Clinical Model
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Repeated 5-fold cross-validation (54 subjects)

-
o
\

0.8 -7
2 -7
i -7
v 06 ol
> ”
= ”
g -
Q04 L’ -
)
2 -7
=] P
02 L = = Non-diagnostic
L - —— Mean ROC (AUC = 0.89 + 0.08)
0.0 L *+ 1 std. dev.
0.0 0.2 04 06 08 1.0

False Positive Rate

True Positive Rate

Confusion Matrix Test Set -8

Alive 4 6

=5
)
=

= -4

Deceased 4 0 -3

-2

@ > r

¥ &
&
<F

Predicted

ROC Curve for Test Set (17 subjects)

-
o
\

08 -
” ’ -
06 g
//
”
P ”
04 g
P -
”
//
02 i
-
L’ - — = Non-diagnostic

00 - ~—  ROC(AUC=0.77)

0.0 02 04 06 0.8 1.0

False Positive Rate

Figure 12. ROC Curves For Training And Test Set of The MRI Radiomics Model
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Composite Model
A

Repeated 5-fold cross-validation (54 subjects)
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Figure 14. ROC Curves For Training And Test Set of The Composite Model
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Figure 15. Confusion Matrix of The Composite Model

Discussion

Owing to its capability of providing excellent soft
tissue contrast, MRI is one of the most important
imaging modalities in cancer management,
especially for malignancies in the abdominal
region. However, owing to its primary purpose of
providing a visual representation of organs based
on intrinsic differences in relaxation following a
radiofrequency pulse, the intensity range of voxel
values in MR images can vary substantially.
Additionally, the intensity distribution experiences
significant intra- and inter-scanner variability due to
differences in RF frequency, coil uniformity,
nonlinear fields, and gradient fields**. Radiomics

features extracted from a set of MR images with
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significantly varied signal distributions can impair
the robustness of the features and subsequent
predictive modeling. In our study, we addressed
intensity

this issue by applying the Nyul

normalization on the contrast-enhanced T1-
weighted MR images of our patient cohort. We
demonstrated that only about 36.4% of the MR
radiomics features are stable after the intensity was
normalized across all the images. We believe that
intensity normalization should be a standard step
in the MR radiomics workflow, as we observed
significant variability in the intensity distribution of
our MRl images, a relatively small sample size from

a single institution.
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Our results also demonstrated that the MR
radiomics features, after robustness analysis,
provided at least complementary predictive power
for predicting 2-year survival in pancreatic cancer
patients. Radiomics-only model outperforms the
clinical-only model as it achieved a better
Concordance Index on the same test set. The
composite model demonstrated the best
performance among the three models, suggesting
that MR radiomics analysis has the potential to be
integrated into the routine clinical decision-making
as MR is one of the most common and non-invasive

imaging modalities.

Our study has a few limitations. First, we have a
relatively small sample size from a single institution,
and our conclusion necessitates cautious
interpretation and requires validation through
external datasets. The discrepancy in AUC values
observed between the training and test sets
indicates that the sample size is small for a robust
model evaluation. Second, we selected Min-Max
normalization for data preprocessing to match the
data range more effectively with the categorical
variables and did not consider other normalization
or transformation techniques. Third, we did not
explore other intensity normalization methods such
as least squares (LSQ) tissue mean normalization or
Removal of Artificial Voxel Effect by Linear
regression (RAVEL)*' methods. Moreover, continued
assessment of our model is necessary following our
proof-of-concept study. The model needs be
validated, and potentially improved, using external
datasets. We also intend to carry out independent

tests with newly acquired patient data.

Although our study has demonstrated that the T1-
weighted MRI radiomics models can facilitate and
enhance survival risk prediction for pancreatic
cancer who received Stereotactic Body Radiation
Therapy, Future efforts are still warranted to
investigate the radiomics model using other MRI
modalities, such as functional MRI or those with
more physiological relevance such as Diffusion
Weighted MRI. Furthermore, the biggest challenge
in pancreatic cancer is the lack of a reliable early

detection tool, as over 50% of pancreatic cancers
are diagnosed at a late stage. Integrating
radiomics models with imaging-based screening
enhance early

programs could potentially

detection. More studies are needed in this area.

Conclusion

MR radiomics is promising in predicting the
mortality of pancreatic cancer following SBRT and
improving survival prediction capabilities. Intensity
normalization is an essential preprocessing step to

exclude unstable and/or redundant imaging features.
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