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ABSTRACT 
Gastroenteropancreatic neuroendocrine tumors (GEP NETs) are a diverse 

group of tumors often characterized by somatostatin receptor type 2 

(SSTR2) positivity. The objective of this article is to review basic information 

on GEP NETs and somatostatin receptors (SSTR) with a focus on SSTR2. The 

prognostic implications of the receptor, how epigenetic modifications play 

a role, and the diagnostic and therapeutic strategies available that rely 

on the somatostatin receptor including somatostatin analogs (SSAs), SSTR-

based imaging, and peptide receptor radionuclide therapy (PRRT) are 

explored. While surgery is the only curative option, current therapy for 

SSTR2 positive GEP NETs is based on the use of SSAs which have been 

shown to both control symptoms and exert antiproliferative effects in 

SSTR2 positive GEP NETs. SSTR-based imaging offers numerous benefits 

over standard imaging techniques including revealing additional 

metastases, assessing response to therapy, and by demonstrating sufficient 

SSTR expression in tumors to render patients eligible for PRRT. PRRT has 

been shown to be an effective treatment in low grade, SSTR2 positive GEP 

NETs. Adjuncts are being investigated to synergize with PRRT and improve 

patient outcomes. Complete responses to SSA and PRRT are rare and 

SSTR2 negative tumors have limited treatment options. Given that GEP 

NETs have a low frequency of mutations and no mutations in SSTR2 have 

been identified, efforts are being made to investigate epigenetic 

regulations influencing SSTR2 expression as a future therapeutic option. 

Keywords: Somatostatin receptor, somatostatin analog, neuroendocrine 

tumor, epigenetics 
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Introduction 
Gastroenteropancreatic neuroendocrine tumors (GEP 
NETs) arise from neuroendocrine cells along the digestive 
tract and are the most common neuroendocrine tumor 
(NET) subtype 1. GEP NETs are known for their ability to 
produce and secrete peptides, hormones, and 
neuroamines, and can be functional or non-functional 
which often influences patient presentation 2. The majority 
of GEP NETs are non-functional and are thus identified at 
later stages secondary to tumor burden, mass effect or 
metastases 2. In the minority, functional tumors tend to 
present earlier as localized lesions in the setting of 
symptoms related to secretory function 2. GEP NETs can 
also be classified by genomic characteristics 3. These 
tumors arise either sporadically or in association with 
hereditary predisposition syndromes including multiple 
endocrine neoplasia type 1 (MEN1), Von Hippel-Lindau’s 
disease (VHL), or neurofibromatosis type 1 (NF1) 4. Using 
histology, mitotic count, and expression of Ki-67, they are 
classified as well-differentiated grade 1, 2 or 3 NETs, or 
poorly differentiated grade 3 neuroendocrine 
carcinomas (NECs) 5. Both the incidence and prevalence 
of these lesions have increased over time and while most 
possess an indolent, benign pathology there is a subset 
of highly proliferative, therapy-resistant tumors that still 
pose a challenge to clinicians and scientists 4. While 
surgical resection is the only curative therapy, only a 
small subset of patients are candidates for surgery due 
to the presence of metastatic disease at initial diagnosis 
6. Consequently, great effort has been made into the 
identification of novel diagnostic and therapeutic targets 
for NETs. 
 
A significant area of focus in GEP NET research is the 
somatostatin receptor (SSTR) family of transmembrane 
G-protein coupled receptors (GPCRs). Somatostatin itself 
is an inhibitory peptide, regulating endocrine and 
exocrine hormone secretion in normal physiologic states 7. 
Although a heterogenous group of tumors, SSTR 
expression is a shared feature amongst NETs and 
therefore a desirable candidate for diagnosis and 
therapy 7. High SSTR expression is associated with well-
differentiated tumors and is more common amongst 
gastroenteric NETs than pancreatic NETs 8. Currently, 
there are five described subtypes of the SSTR, SSTR 1-5, 
which vary in structure, distribution, and signaling effects 
9. Qian et al. discovered in examination of 112 small 
intestine NETs, 19 pancreatic NETs, and 42 NETs from 
other locations, that 65%, 76%, 90%, 86% and 93% of 
all cases were recognized by the expression of SSTR1, 
SSTR2, SSTR3, SSTR4, and SSTR5, respectively 10. Further 
evaluation showed that SSTR type-2 (SSTR2) was 
expressed most frequently and that 51% of examined 
NETs were recognized by high SSTR2 levels 10. SSTR2 
subtype is prevalent amongst GEP NETs and are a 
particular area of clinical focus 6. Consequently, 
somatostatin analogs (SSAs) have become increasingly 
utilized to diagnose and treat SSTR expressive NETs 
through radiolabeling 11. 

 

Somatostatin Signaling 
Somatostatin is a cyclic neuroendocrine peptide, widely 
functioning as inhibitory to exocrine function and 
hormonal homeostasis 12. Somatostatin has two isoforms, 

somatostatin-14 and -28, each with 14 and 28 amino 
acids respectively 6. These isoforms result from post-
translational modification of pro-somatostatin and have 
a short plasma half-life of less than three minutes 13-15. 

Somatostatin-14 is secreted from pancreatic β-cells, and 

somatostatin-28 largely from gastrointestinal D-cells, 
with each peptide’s functions specifically mediated by the 
SSTR subtype it binds to 16. Somatostatin-14 has higher 
affinity to SSTRs 1-4, while somatostatin-28 
preferentially binds to SSTR5 17.  SSTR subtypes can be 
co-expressed in various cell types and share common 
signaling pathways. 
 

As SSTRs 1-5 are types of GPCRs, their structures and 
signaling are largely conserved with up to 61% of 
conserved amino acid identity despite being encoded for 
by different genes 18,19. GPCRs are the largest family of 
cell surface signaling receptors, and mediate most of our 
physiologic responses to hormones, neurotransmitters, 
lipids, and peptides. GPCRs play a critical role in normal 
cellular function, and their dysregulation has been 
implicated in a variety of diseases and cancers 20. 
Composed of a single subunit polypeptide chain, seven 

α-helical segments span the plasma membrane, with an 

extracellular component binding to an agonistic molecule 
21. The intracellular component of the receptor 
incorporates the “G protein” portion of the receptor 
which upon agonistic stimulation of the extracellular 
receptor an alpha subunit exchanges GDP for GTP, 
allowing for its dissociation from beta and gamma 
subunits 21. The ligand-binding pockets are what make 
each SSTR subtype distinct, and their functionality critical 
to various organ processes 22. These processes result in 
inhibition of adenylyl cyclase, reduction of intracellular 
Ca2+, and inhibition of cellular proliferation and 
secretory signaling 23. 
 

Somatostatin Receptors 
SSTR1 is encoded by SSTR1 on chromosome 14q13 24. 
Compared to other SSTR subtypes, studies report SSTR1 
expression is more difficult to detect through 
immunohistochemistry (IHC) and may be more reliably 
analyzed using reverse transcriptase-polymerase chain 
reaction (RT-PCR) 25.   SSTR1 is naturally found in 
neuroendocrine cells 26,  cerebral cortex 27, blood vessels 
28,  retinal cells 29, as well as normal, benign, and 
malignant thyroid cells 30. In the pancreas, SSTR1 has 

been identified on glucagon secreting α- cells and 

somatostatin secreting δ-cells 31.    Functionally, activation 

of SSTR1 inhibits growth hormone (GH), prolactin (PL), 
and calcitonin. It has been shown to inhibit the cell cycle 
and angiogenesis. SSTR1 is thought to also regulate 
cardiac and vasomotor tone due to its presence in 
vascular tissue 32. 
 

In cancer, SSTR1 has been identified as highly expressed 
in neuroblastomas, and correlates with improved 
prognosis 33.  Additionally, SSTR1 is expressed in GEP 
NETs, and has been shown to be highly expressed in 
lower grade tumors 34. Pharmacologically, octreotide, a 
somatostatin analog used in a variety of therapeutic 
treatments, has no affinity for SSTR1 9.  Newer agents, 
including pasireotide, a cyclic hexapeptide, has 30 times 
higher binding affinity for SSTR1 compared to 
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octreotide, but its utility in NET treatment has yet to be 
demonstrated 35. 
 
SSTR3 is encoded by SSTR3 on chromosome 22q13.1 24.   
It is expressed throughout the gastrointestinal tract, 
exocrine pancreas, salivary glands, and nervous system 
36.  Within the pancreas, SSTR3 is expressed mostly on δ 

and β -cells 37.   Activation of SSTR3 inhibits cellular 

proliferation and induces apoptosis in various cell types, 
including in models of pituitary NET 38, neuronal injury 39, 
and breast cancer 40.  Like its comparable subtypes, 
SSTR3’s presence in NETs has been established, albeit in 
lower abundance than SSTR2A and SSTR5 25.   SSTR3 
expression is also associated with lower grade NETs 34 . 
SSTR3 is highly expressed both in normal pituitary and in 
gonadotroph pituitary adenomas, making it of 
therapeutic interest in this group of neoplasms as well 41.  
In terms of pharmacologic targeting, octreotide has low 
affinity for SSTR3, while newer somatostatin analog 
pasireotide has a 5-fold stronger binding affinity 35. 
 
SSTR4 is encoded by SSTR4 on chromosome 20p11.2 
and found in lung, heart, placenta, and intestinal cells 42.   
Interestingly, SSTR4 is the most rarely expressed in NETs 
amongst all SSTR subtypes, and its function is less 
understood 25,43. SSTR4 has been shown to mediate 
analgesic effects by inhibiting nociceptive signaling 44, 
while also mediating pro-inflammatory effects of 
somatostatin in murine intestine 42,45,46. It is implicated in 
mediating neurogenic inflammatory conditions, 
Alzheimer’s disease, and depression, setting it apart from 
the other subtypes 47,48.     
 
SSTR5 is encoded by SSTR5 on chromosome 16p13.3 49. 
Along with SSTR2, it is the most abundantly expressed 
somatostatin receptor 50.  SSTR5 is highly expressed in 
the pituitary and has been shown to be crucial in the 
modulation of pituitary hormone release 51. In GEP NETs 
its expression is correlated with lower grade, well 
differentiated tumors 52. There is conflicting evidence 
whether SSTR5 expression is correlated with better 50,53 
or worse 54 survival but it is generally regarded as a 
positive prognosticator. Similar to SSTR2, SSTR5 is 
detectable in circulating tumor cells in NET patients, 
proving a useful prospective biomarker 55.  Additionally, 
SSTR5 has high binding affinity to somatostatin analogs 
octreotide and lanreotide, regulating symptoms from 
functional tumor secretion and resulting in delayed tumor 
proliferation 56-58. 
 

Epigenetic and post transcriptional regulation of SSTR5 
has been shown to downregulate its expression in 
pancreatic NETs, influencing tumor biology and treatment 
responsiveness 59.  An alternatively spliced SSTR5 variant 
sst5TMD4 has been reported in glioblastoma 60, breast 
cancer 61, and prostate cancer 62 with overexpression 
associated with more aggressive disease 60. 
 

Somatostatin Receptor 2 
SSTR2 is encoded by SSTR2 located on chromosome 
17q24 42. SSTR2 RNA is subject to alternative splicing 
which can produce two variants, SSTR2a and SSTR2b 6. 
SSTR2 plays a role in cell cycling, angiogenesis, 
apoptosis, as well as growth factor signaling via inhibition 

of adenylate cyclase, inhibition of calcium influx, 
augmentation of p53 influx and downstream signaling 
through kinases such as mitogen activated protein kinase 
(MAPK) and protein kinase B (AKT) 63. Given its 
upregulation in GEP-NETs and wide-reaching functions, 
this receptor has been the focus of research on its 
diagnostic and therapeutic implications. 
 

Implications in Other Cancers 
While SSTR2 is of particular interest in GEP NETs, it is also 
expressed in other malignancies with various functional 
and therapeutic implications. Small-cell lung cancer 
(SCLC) comprises approximately 15% of lung cancers, is 
highly morbid and lacks effective therapeutic treatment. 
Significantly, these tumors possess neuroendocrine 
features; and SSTR2 has been found to be most prevalent 
as determined by IHC and sequencing analyses 64,65. As 
seen in GEP NETs, decreased expression of SSTRs (except 
SSTR5) occurs in more poorly differentiated tumors 65. 
Although SSTR2 expression is correlated with worse tumor 
differentiation, studies have failed to demonstrate 
predictive capacity for overall survival (OS) or 
progression free survival (PFS) 66. Congruently, SSTR 
expression as determined by 68Ga-DOTATATE radio-
imaging and in vitro assays can elucidate options for 
treatment, including 177Lu-DOTATATE PRRT alone or in 
combination therapy as second- or third-line treatment 
options 67,68. 
 
In meningioma, SSTR2 is widely expressed 69  and utilized 
as a biomarker of disease 70. While expression has not 
been demonstrated to correlate with meningioma grade, 
it has been correlated to the meningothelial subtype, 
which can guide prognostication and treatment 71. Like in 
GEP NET, 68Ga-DOTATATE-PET can be utilized for 
diagnosis of meningioma and has proven useful in 
identifying tumor recurrence versus post-treatment 
change 72,73.   While surgery is the mainstay treatment 
for meningioma, the utility of somatostatin analogs and 
SSTR2-directed PRRT within the treatment paradigm is 
currently under investigation 74. 
 
Another neurologic tumor of which SSTR2 is of significant 
relevance is gliomas. There are various subtypes of 
gliomas, of which differential SSTR2 expression has been 
shown 75,76. High grade gliomas (grade III and IV) are the 
most common primary malignant brain tumors and have 
poor prognosis 77. Glioblastoma (grade IV) is the most 
aggressive subtype of glioma and rarely expresses 
SSTR2, while oligodendroglioma, astrocytoma, and 
anaplastic oligodendrogliomas have been shown to have 
more significant expression 76. In addition to variable 
expression amongst glioma subtypes, there exists 
discrepancy between ability to assess glioma SSTR2 
expression in vivo versus in vitro. While IHC and western 
blot techniques have demonstrated increased expression 
of SSTR1-3 75, in vivo somatostatin receptor scintigraphy 
has not shown clear binding of somatostatin analogs 78-

80. Furthermore, there are reports of 68Ga-DOTATATE 
uptake misrepresenting glioma tumor recurrence in the 
setting of treatment related changes, which is thought to 
be due to SSTR2 expression in proinflammatory 
macrophages and other immune cell populations 81. Like 
in GEP NETs, a truncated alternatively spliced SSTR5 
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variant, sst5TMD4, has been associated with more 
aggressive disease in glioblastoma 60,82. Overall, SSTR2 
expression is correlated with improved outcomes in 
glioma, while the utility of 68Ga-DOTATATE imaging 
amongst various glioma subtypes is still under 
investigation. 
 
Head and neck squamous cell carcinoma (HNSCC) are a 
prevalent and heterogenous group of cancers originating 
from mucosal epithelium of various anatomic structures 
including oral cavity, oropharynx, lip, nasal cavity, 
sinuses, nasopharynx, and larynx 83, and caused by 
different inciting agents 84. In contrast to the 
aforementioned cancer types, SSTR2 expression is 
correlated with worse prognosis of HNSCC 83. SSTR2 
expression is highly sensitive and specific for Epstein Barr 
Virus-positive nasopharyngeal carcinoma, likely 
mediated via virally induced changes in nuclear factor 
kappa-light-chain-enhancer of activated B cells (NF-kB) 
pathways 85, making it a valuable biomarker for this 
disease 86. Concordant with the degree of SSTR2 
expression amongst HNSCC, 68Ga-DOTATATE was shown 
to be an effective imaging modality with comparable 
results to traditional 18F-FDG-PET/CT 87. 
 
SSTR2 is somewhat expressed amongst lymphoma 
subtypes, with immunopositivity predominantly shown in 
dendritic cells and follicular centers of lymph nodes. IHC 
analysis performed by Juntikka et al. demonstrated 
approximately 50% of cells staining positive for SSTR2 
in diffuse large B-cell lymphoma, Hodgkin lymphoma, 
and follicular lymphoma 88. SSTR3 and 5 were not 
expressed in diffuse large B-cell and follicular subtypes 
but were expressed in Hodgkin lymphoma within 
cytoplasmic domains. Interestingly, CXCR4 was co-
expressed with SSTR2, pointing to potential future 
targeted co-therapeutic options. Largely, studies 
analyzing SSTR2 in lymphomas show too little expression 
to make them suitable candidates for somatostatin 
receptor radio-imaging and therapy 89,90. An exception 
to this conclusion has been found in differentiating gastric 
versus extra-gastric MALT-type lymphomas, as 
somatostatin receptor scintigraphy has better uptake in 
extra-gastric MALT-type lymphomas 91. 
 

Somatostatin Receptor 2 in Gastroentero-
pancreatic Neuroendocrine Tumors 
With the heterogeneity of this spectrum of disease in GEP 
NETs, efforts are being made to identify biomarkers for 
predicting response to treatment and outcomes. 90% of 
GEP NETs express SSTR2 on tumor surface 92. Okuwaki et 
al. studied 79 pancreatic NETs and found that negative 
SSTR2 staining was a significant independent predictor 
of poor outcome 93. Wang et al. looked at SSTR2 and 
SSTR5 expression among 143 GEP NETs, finding that 
positive expression for these two receptors was 
associated with improved survival compared to negative 
expression 53. Conversely, van Adrichem et al. in a study 
of 73 GEP NETs, found that negative SSTR2 staining was 
not significantly related to OS, disease stage, or tumor 
grade 94. Despite an unclear relationship between SSTR2 
expression and outcomes, expression of these receptors 
has implications in the diagnosis and treatment of GEP 
NETs.  

Radiolabeled SSAs, including 68Ga-DOTA-SSA and 111In-
pentetrotide, are used as radiopharmaceuticals in 
PET/CT imaging for NET diagnosis and staging 5,11. 
Further, radiolabeled SSAs and unlabeled SSAs are 
employed in peptide receptor radionuclide therapy 
(PRRT) which has been shown to prolong PFS in metastatic 
GEP NETs 56,95,96. Utilizing these mechanisms has proved 
beneficial in some patients, however, there is a subset, 
albeit small, of patients that do not express SSTR2. Few 
have sought to delineate differences between SSTR2 
positivity and negativity in these lesions. Hu et al. 
examined 223 cases of non-functional pancreatic NETs, 
of which 23 were negative for SSTR2 and found that 
SSTR2 negativity was significantly associated with earlier 
onset, larger, more advanced lesions, peripheral 
aggression, metastasis to liver and lymph nodes (LN), and 
worse PFS 11. Refardt et al. examined 69 SSTR2 positive 
and 69 SSTR2 negative propensity score matched 
patients with well-differentiated NETs and found that 
those negative for the receptor had a worse prognosis 
despite receiving more aggressive treatment 5. 
 

With no known mutations affecting its expression 97, it has 
become clear that SSTR2 loss in advanced tumors is 
chiefly mediated through epigenetic mechanisms 6. 
Simply put, epigenetics is the study of heritable gene 
expression alterations that do not involve changes to the 
underlying DNA sequence. Examples of epigenetic 
mechanisms include DNA methylation, histone 
modifications, chromatin remodeling and non-coding 
RNAs 98. Preclinical work from several labs, including ours, 
have identified broad-based epigenetic silencing 
mechanisms, such as DNA CpG methylation and histone 
deacetylation, in negatively controlling SSTR2 expression 
6,99. DNA methylation involves the covalent addition of a 
methyl group to cytosines, just upstream of a guanine 
nucleotide (CpG), by a family of enzymes called, DNA 
methyltransferases 100. DNA CpG methylation causes 
compaction of chromatin, impeding transcription factor 
binding, resulting in gene silencing 101. CpG sites occur at 
increased frequencies in regions called CpG islands, 
which are often concentrated in gene regulatory 
elements, such as promoters and enhancers 102. CpG 
islands are routinely found to be hypermethylated in 
cancers, often leading to silencing of tumor suppressor 
genes. Importantly, the SSTR2 gene was found to have a 
CpG island in its promoter, upstream of the transcription 
start site 103. As expected, increased promoter CpG 
methylation has been correlated with decreased 
expression of SSTR2 gene transcript 99,103,104. In addition 
to CpG methylation, histone deacetylation also plays a 
major role in regulating SSTR2 expression. Enzymes 
termed histone acetyltransferases (HATs) attach acetyl 
groups to select lysine residues on histone protein N-
terminal tails. Histone acetylation acts to open chromatin, 
leading to increased transcription factor binding and 
gene transcription 105. Opposite to that of HATs, histone 
deacetylases (HDACs) remove acetyl groups from histone 
protein tails, facilitating chromatin compaction, resulting 
in decreased gene expression 106. Performing chromatin 
immunoprecipitation (ChIP) experiments, it was shown that 
promoter histone acetylation levels correlate with SSTR2 
gene expression levels 103. Unique to epigenetics is the 
plasticity of their marks. While direct damage to DNA 
and its base pairs is permanent, epigenetic changes and 
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their marks are not. The focused clinical goal regarding 
SSTR2-based epigenetic studies is to ultimately turn back 
on its expression, resulting in improved patient responses 
to SSTR2-focused radioligand imaging and therapy 
modalities. With that in mind, numerous preclinical NET 
cell culture studies have demonstrated that epidrug 
treatment, with either DNA methyltransferase inhibitors 
(DNMTi) or histone deacetylase inhibitors (HDACi), 
increases SSTR2 expression levels 6,99,107-110. Thus, these 
studies, and others, have shown the utility of epigenetic 
targeting to increase expression of SSTR2. 
 

Prognostic Implications & Modifications 
SOMATOSTATIN ANALOGS 
Current therapy for SSTR2 positive GEP NETs is based on 
the use of somatostatin analogs (SSAs). Natural 
somatostatin peptides have a half-life of a few minutes – 
thus, octreotide was developed with a half-life of several 
hours 4. Octreotide has a high affinity for both SSTR2 and 
SSTR5 and can be administered by subcutaneous injection 
or through intravenous infusion with a maximum daily 
dose of 3000 µg 4. Lanreotide is another SSA that can 
be administered by subcutaneous injection every 28 days 
111. These drugs are typically well-tolerated with side-
effects being dose-dependent 111. SSAs are useful in the 
symptomatic control of functioning NETs given their 
antisecretory effect. Both octreotide and lanreotide can 
be used to address carcinoid syndrome and one meta-
analysis found that they provided symptomatic 
improvement in 65-72% of patients 112. However, with 
long-term use of these medications, decreased response 
has been observed which may be attributable to tumor 
progression, tachyphylaxis or treatment resistance 111. 
Multiple studies have found that SSAs also exert 
antiproliferative effects on these tumors in addition to 
symptom control. The PROMID trial investigated eighty-
five patients with well-differentiated metastatic 
neuroendocrine midgut tumors in a placebo-controlled, 
prospective, randomized study where patients received 
either octreotide or placebo with a primary endpoint of 
time to tumor progression. Those that received octreotide 
had significantly longer time to tumor progression (14.3 
months) compared to those receiving the placebo (6 
months) and at the 6 month mark, they also had 
significantly lower tumor progression rates (37% vs 66%) 
56. The CLARINET trial investigated the antiproliferative 
effect of lanreotide in 204 patients with grade 1/2 
differentiated, nonfunctioning, SSTR positive NETs of the 
foregut, midgut, pancreas and unknown primary with a 
primary endpoint of PFS 113. Those that received 
lanreotide had significantly prolonged PFS compared to 
placebo (32.8 months vs 18 months) 113. Further, the 
CLARINET FORTE trial investigated the safety and 
efficacy of increasing the frequency of dosing of 
lanreotide autogel (LAN) in ninety-nine patients with 
pancreatic or midgut NETs that had progression in the 
previous two years while on standard dosing of LAN with 
a primary endpoint of PFS. They found that the median 
PFS in midgut NETs was 8.3 months and 5.6 months in 
pancreatic NETs with increased dosing frequency of LAN 
and that it was well tolerated and safe 114. Thus, lack of 
response with standard dosing does not necessarily mean 
a new treatment has to be pursued. More recently, 
another SSA was developed, pasireotide, which has high 

affinity for SSTR1-3 and SSTR5 115. Though not 
statistically significant, a randomized double-blind phase 
III study compared pasireotide long-acting release with 
octreotide long-acting repeatable in managing 
symptoms of NETs of the digestive tract refractory to first-
generation SSAs and found that those on pasireotide had 
better tumor control rate than those on octreotide 115. In 
a post hoc analysis of these study participants, 
pasireotide had a five month longer PFS than patients on 
octreotide which was statistically significant 115. In 
summary, SSAs provide both symptom control and 
antiproliferative benefits to patients with SSTR2 positive 
GEP NETs. 
 

SOMATOSTATIN RECEPTOR-BASED IMAGING 
SSTR-based imaging is a useful adjunct to standard 
imaging techniques that allows enhanced sensitivity for 
most types of NETs and is an integral part of tumor 
staging and preoperative imaging 116. Computed 
tomography (CT) and magnetic resonance imaging (MRI) 
are often employed to detect NETs but have a sensitivity 
between 50-80% 117. SSTR-based imaging offers 
numerous benefits – it can reveal additional metastases 
compared to conventional imaging, assess response to 
therapy, and by demonstrating sufficient SSTR expression 
in tumors it deems patients eligible for peptide receptor 
radionuclide therapy (PRRT) 116. Currently, 68Ga-DOTA-
SSA and 111In-pentetrotide are the radiopharmaceuticals 
of choice for SSTR-based imaging. 68Ga is an isotope 
normally chelated to 1,4,7,10-tetraazacyclododecane-
1,4,7,10-tetraacetic acid (DOTA) which is then bound to 
a peptide: DOTATATE, DOTATOC, or DOTANOC 118. 
DOTATATE is the most common and has the highest 
affinity to SSTR2 118. The most avid uptake of 68Ga-
DOTATATE occurs in the spleen, adrenal glands, kidneys 
and pituitary gland which is attributed to the presence of 
SSTR2 118. Uptake in the liver and salivary glands is 
related to nonspecific clearance of the tracer 118. 
DOTATOC has high affinity for SSTR2 and SSTR5 while 
DOTANOC has the widest receptor binding profile, 
binding SSTR2, SSTR3, and SSTR5 119. Numerous studies 
have identified benefits to these imaging modalities 
compared to standard techniques 120-123. 
 

SSTR-based imaging is not without pitfalls. Tumors must 
express SSTRs to be visualized on these modalities which 
is less common among poorly differentiated lesions. False 
negative results are often related to tumor heterogeneity 
118. False positives can occur secondary to physiologic 
reasons, osteoblastic lesions, inflammatory processes, and 
incidentally. For example, the uncinate process of the 
pancreas can demonstrate increased activity due to 
higher expression of SSTR2, often presenting as ill-
defined enhancement 124. Accessory spleens can be a 
source of false positives as well. Any process that leads 
to increased osteoblastic activity can create foci with 
increased uptake secondary to high SSTR2 expression in 
osteoblasts 124. Macrophages and leukocytes also 
express SSTR2 therefore, active inflammatory processes 
can contribute to false positives 124. 
 

Treatment with SSA does not preclude clinicians from 
using SSTR-based imaging. Investigations into the use of 
long-acting octreotide and these imaging modalities have 
found that the use of SSAs diminished physiologic uptake 
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in the liver, spleen and thyroid 125,126. These medications 
did not compromise tracer uptake in primary tumors or 
metastatic lesions and tended to improve tumor-to-
background ratio 125,126. 
 

Peptide Receptor Radionuclide Therapy 
177Lu-dotatate therapy was approved by the United 
States Food and Drug Administration (FDA) in 2018 for 
the treatment of SSTR positive, well-differentiated, GEP 
NETs. The radionuclide, 177Lu, is attached to a SSA, 
DOTATATE, to target tumor cells that express SSTR and 
deliver ionizing radiation to them which induces apoptosis 
through single and double-stranded DNA breaks 127. 
Numerous studies have investigated the benefit of this 
therapy. In the NETTER-1 global phase 3 trial, 229 
patients with SSTR positive, grade 1 or 2 midgut NETs 
who progressed on standard dosing of long-acting 
octreotide were assigned to receive either four cycles of 
7.4 GBq 177Lu-DOTATATE with intramuscular long-acting 
octreotide 30 mg every 4 weeks or long-acting 
octreotide 60 mg every 4 weeks 96. Results of this study 
demonstrated longer PFS and higher response rate in the 
PRRT group than high-dose long-acting octreotide in 
patients with advanced midgut NET 96. Follow up from this 
trial showed that these patients also experienced a 
longer time to deterioration in the 177Lu-dotatate group 
and that 36% of the patients in the control group had to 
crossover to 177Lu-dotatate therapy 128,129. Thus, there is 
both a survival benefit and symptom control provided by 
this treatment. The NETTER-2 trial was another 
randomized multicenter phase 3 trial that enrolled 226 
patients with newly diagnosed grade 2 or 3, SSTR 
positive GEP NETs to evaluate 177Lu-dotatate with 30 mg 
intramuscular long-acting octreotide followed by 30 mg 
long-acting octreotide every 4 weeks with patients 
receiving just high dose 60 mg long-acting octreotide 
every 4 weeks 130. 177Lu-dotatate therapy plus long-
acting octreotide significantly extended median PFS by 
14 months in patients with grade 2 or 3 advanced GEP 
NETs 130. Currently ongoing, is the COMPOSE trial which 
aims to evaluate PFS in patients receiving a different 
radioligand, 177Lu-DOTATOC, with chemotherapy in 
patients with grade 2 or 3 GEP NETs and a Ki-67% 
between 15-55%.  
 

Chromogranin A (CgA) levels are often used as a 
biochemical marker in NETs with an elevated level 
correlating to hepatic tumor burden, rapid tumor 
progression and shorter overall survival (OS) 131. In 
patients who undergo PRRT, 25-52% of them exhibit a 
drop in CgA >50% - such a drop has been associated 
with prolonged PFS and OS 132. CgA can, however, be 
increased by both tumor progression and cell damage or 
lysis from PRRT and is thus unreliable 132. 
 

PRRT is contraindicated in pregnant or breastfeeding 
patients, those with severe cardiac impairment or those 
with a life expectancy less than 3 months 133. The most 
common side effects include hematologic toxicity, 
commonly lymphopenia, nephrotoxicity secondary to 
renal excretion of radiolabeled SSAs, and hepatotoxicity 
132. 
 

Efforts to improve the efficacy of this treatment modality 
are ongoing. PRRT is known to induce double and single-

stranded DNA breaks – most of these breaks are single-
stranded which require poly-[ADP-ribose]-polymerase 1 
(PARP-1) activity for repair 134. Without repair, these 
single-stranded breaks cause replication fork arrest and 
thus double-stranded break formation during replication 
134. Olaparib is a PARP-1 inhibitor and has been found 
to synergistically sensitize SSTR2-expressing human tumor 
cells to 177Lu-DOTATATE treatment 134. Investigations 
have also shown that inhibition of heat shock protein 90 
(Hsp90) with ganetespib can enhance the anti-tumor 
effect of 177Lu-DOTATATE therapy in an SSTR expressing 
xenograft model 135. Hsp90 expression is higher in small 
intestine NETs relative to tumor stroma 135. Investigations 
are also underway exploring alternative radionuclides to 
use in PRRT 132. 
 

Epigenetic Therapeutic Implications & 
Future Directions 
Although epidrug treatment has been shown to increase 
expression of SSTR2, evidence of therapeutic benefit 
from this re-expression is necessary to drive novel SSTR2-
directed therapies to the clinic. To date, several GEP-NET 
cell culture studies have demonstrated increased uptake 
of 68Ga-radiolabeled somatostatin analogs after either 
DNMTi or HDACi epidrug treatment 108-110,136,137. While 
in vitro epidrug therapy can both increase expression of 
SSTR2 and radiolabeled somatostatin analog uptake, the 
results from limited in vivo studies have been mixed. 
Studies using DNMTi or HDACi treatment of mice, 
harboring NET cell line xenografts, have shown increased 
uptake of radiolabeled 68Ga somatostatin analogs 
108,110,136. One in vivo study demonstrated uptake of 
177Lu-DOTATATE PRRT in NET cell line tumor xenografts 
138; unfortunately, no effects on tumor size or therapeutic 
benefit was seen. Additional in vivo studies demonstrated 
contradictory results, depending on the specific HDACi 
employed, regarding SSTR2 expression increases and 
177Lu-DOTATATE uptake 139,140. Lack of functional effects 
or therapeutic benefit from the limited in vivo studies to 
date may hint at necessary changes or finetuning in 
epidrug selection or dosing regimen parameters. A recent 
publication from our group, using an SSTR2-low PNET cell 
line xenograft tumor model, demonstrated that HDACi 
treatment led to increased tumor uptake of 177Lu-
DOTATATE and resulted in significant antitumor response, 
compared to 177Lu-DOTATATE treatment alone 99. 
Currently, human studies combining epidrug and 
radiolabeled somatostatin analogs are also limited. One 
study showed no tumor uptake of 68Ga-DOTATATE after 
dual DNMTi and HDACi treatment in advanced NET 
patients having low baseline levels of SSTR2 expression 
141. In contrast, a study of metastatic midgut NET patients 
revealed increased 68Ga-DOTATOC after HDACi 
treatment 142. Future GEP-NET patient trials combining 
novel epidrug therapy and somatostatin radioligand 
regimens are eagerly anticipated. Currently, participants 
are being recruited for a Phase 1 trial in the United 
Kingdom investigating whether pre-treatment with 
ASTX727 (cedazuridine 100 mg + decitabine 35 mg) 
results in re-expression of SSTR2 in patients with 
metastatic neuroendocrine tumors 143. 
 
Recent research endeavors from our lab have delved 
deeper into the finer details of SSTR2 epigenetic 
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regulation, beyond just broad-based DNA CpG 
methylation and histone deacetylation events. Our 
unpublished work, using functional genomic and chemical 
screens, has identified various repressor complexes 
responsible for silencing of SSTR2 expression and further 
demonstrates the unique interconnectedness of various 
epigenetic mechanisms. Ultimately, our clinical research 
goal is to formulate the optimal epidrug treatment 
regimen. This epidrug regimen would have negligible 
patient toxicity and would increase SSTR2 cell surface 
expression in SSTR2 low/negative GEP-NET patients, 
resulting in augmented somatostatin radioligand imaging 
and therapeutic efficacy. 
 

Conclusion 
In summary, GEP NETs encompass a heterogeneous group 
of tumors often characterized by SSTR2 positivity. Though 
surgery is the only curative option, most patients at the 
time of diagnosis are not candidates and must instead 
rely on treatment based on the use of SSA. SSA provide 
both symptoms control and antiproliferative properties. 
PRRT is a newer therapeutic modality that takes 

advantage of SSTR2 positivity to target ionizing 
radiation. SSTR2 expression is associated with well-
differentiated tumors and the loss of expression in more 
advanced ones is attributed to epigenetic silencing 6. 
Efforts are now being made to employ epidrugs to 
increase the expression of SSTR2 in poorly differentiated 
GEP NETs so that SSTR-based imaging, SSA, and PRRT 
can be utilized in this subset of patients. 
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