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ABSTRACT 
The programming of cardiac implantable electronic devices, such as 

pacemakers and implantable defibrillators, represents a promising 

domain for the application of automated learning systems. These 

systems, leveraging a type of artificial intelligence called reinforcement 

learning, have the potential to personalize medical treatment by 

adapting device settings based on an individual’s physiological 

responses. At the core of these self-learning algorithms is the principle 

of balancing exploration and exploitation. Exploitation refers to the 

selection of device programming settings previously demonstrated to 

provide clinical benefit, while exploration refers to the real-time search 

for adjustments to device programming that could provide an 

improvement in clinical outcomes for each individual. Exploration is a 

critical component of the reinforcement learning algorithm, and 

provides the opportunity to identify settings that could directly benefit 

individual patients. However, unconstrained exploration poses risks, as 

an automated change in certain settings may lead to adverse clinical 

outcomes. To mitigate these risks, several strategies have been 

proposed to ensure that algorithm-driven programming changes 

achieve the desired level of individualized optimization without 

compromising patient safety. In this review, we examine the existing 

literature on safe reinforcement learning algorithms in automated 

systems and discuss their potential application to the programming of 

cardiac implantable electronic devices. 
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A. Introduction 
In the past decade, innovation in data science has 
proceeded at a tremendous pace as larger amounts of 
data become available for development of increasingly 
sophisticated machine-learning algorithms.  This 
innovation has brought the promise that treatment 
approaches, such as programming of cardiac 
implantable electronic devices (CIEDs), can be tailored 
dynamically to the benefit of each individual.  A type of 
machine-learning model framework that is increasingly 
being applied in automated systems is reinforcement 
learning (RL), whereby the algorithm itself retains the 
agency to identify better decisions through dynamic 
interaction with the environment.  Utilizing a state-action-
reward decision framework1, the RL algorithm learns the 
best action to achieve reward, which is individualized 
based on the state information, in this case the patient’s 
condition (Fig. 1). Unlike a typical clinical decision, in 
which a human clinician selects the action, in a RL 
framework the action is selected by a computer 
algorithm.  Reinforcement learning algorithms have been 
applied successfully in robotics2,3, automated video game 
applications4,5, on-line map applications like Google 
Maps or Waze, internet search optimization6, as well as 
recently in certain medical applications7-10.   
 
 

 
Figure 1. Decision framework. Decisions (action) are 
made for individuals based on varying state information, 
toward the goal of achieving a reward, which includes 
both positive and negative outcomes that can result from 
the decision. 
 
Reinforcement learning methods are most powerful in 
settings where the data elements that comprise the 
individual components of the model are already 
available in digital formats, such as a CIED that, in 
addition to providing pacing or defibrillation, also 
collects various physiological measures.   For example, 
the measure of daily activity derived from the 
accelerometer of an implanted pacemaker can be used 
to optimize the pacing protocol for a patient who 
requires atrial pacing during exertion due to insufficient 
increase in heart rate (termed chronotropic incompetence, 
see below).  If the device-collected daily activity is 
already available within the storage system of the 
pacemaker, changes to the pacing protocol can be 
evaluated prospectively by the device without the need 
for follow-up exercise testing or collection of patient 
survey data.  As such, the potential for integration of RL 
methods into programming of CIEDs has great potential 
to improve outcomes for the various clinical conditions 
treated with CIED implantation.   
 

However, as is inherent in RL algorithms, the process of 
ensuring that the reward achieved represents the global 
optimum rather than a local optimum requires a trade-off 
between exploitation of existing rewards under the 
present algorithm, and exploration of new actions that 
could reach higher levels of reward.  While the potential 
benefit of finding a novel action might be evident, there 
are risks if this exploration step leads to dangerous or 
harmful outcomes.  Safe RL refers to the set of approaches 
that can be applied to balance exploration and 
exploitation in such a way that an algorithm can still 
explore new actions, but with mitigation of risks in 
exploration.  In this review, we outline how safe RL can 
be applied in models of CIED programming.  We start 
with a brief description of some of the clinical scenarios 
where programming of CIEDs has an impact on outcomes 
for certain conditions. We then explain how RL can be 
utilized in programming CIEDs to improve outcomes for 
individuals with these conditions, including a brief 
discussion of the RL framework itself.  Finally, we describe 
the approaches to safe RL that would be needed in these 
applications, highlighting both technical (quantitative) 
methodology as well as practical considerations that 
would need to be addressed for these approaches to be 
used in practice.   
 

B. Programming decisions for CIEDs based 
on clinical condition 
From the time of the first implanted pacemaker in 195811 
until present, CIEDs have been increasingly utilized to 
manage a number of cardiac conditions.  While the 
original pacemakers focused on restoring conduction to 
patients with asystole or heart block, latter CIEDs have 
been developed to treat patients with chronotropic 
incompetence, heart failure, and lethal ventricular 
arrhythmias.  Inherent in all clinical uses is the need to 
modify programming parameters based on perceived 
clinical response, but a generalizable strategy for CIED 
optimization has not been identified. As such, devices are 
often programmed using standardized settings which 
may not be optimal for some, if not most patients.  
Presently, these modifications have been made on two 
levels: 1) internally, through static changes made by the 
manufacturer to the rules-based algorithms (i.e., updating 
the internal pacing algorithm across a version of the 
device), or 2) externally, by treating clinicians changing 
standard settings during follow-up clinic visits.  
Incorporation of next-generation methods of artificial 
intelligence, such as RL, would bypass both existing 
methods to design a dynamic, internalized learning 
algorithm within the CIED, which learns the ‘best’ settings 
for each individual patient.  In order to develop such 
algorithms, an understanding of what specific 
programming changes have already been identified as 
having clinical impact is required.  In this section, we 
highlight four clinical situations where CIEDs are utilized 
(Table 1), and outline the broad programming changes 
that have been investigated for improvement in clinical 
impact. 
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Table 1. Examples of CIED programming for clinical conditions. See text for details. 

 Chronotropic 
Incompetence (CI) 

Heart Failure 
with Preserved 
Ejection Fraction 
(HFpEF) 

Cardiac 
Resynchronization in 
Heart Failure with 
Reduced Ejection 
Fraction (HFrEF) 

Detection and 
Therapy for 
Ventricular 
Tachycardia (VT) and 
Fibrillation (VF) 

State  
(indication) 

Inadequate function 
of the SAN 

Impaired 
ventricular filling 

Cardiac dyssynchrony 
(left bundle branch block) 

Presence of VT or VF 

Action 
(programming) 

Rate-responsive 
pacing 

Rate-responsive 
pacing 

Bi-ventricular pacing 
(cardiac 
resynchronization) 

Anti-tachycardia 
pacing and 
defibrillation 

Reward  
(outcome) 

Fatigue, perceived 
exertion 

Dyspnea with 
exertion 

Heart failure symptoms, 
hospitalization, mortality 

Termination of VT/VF, 
mortality 

 
1. Pacing for sinus node dysfunction and chronotropic 
incompetence. In healthy individuals, the heart’s intrinsic 
pacemaker, the sinoatrial node (SAN), maintains the 
resting heart rate, and uses input from the autonomic 
nervous system to adapt to the physiological demands of 
exercise and stress to maintain an appropriate heart rate 
by increasing it. Its function is well-documented to decline 
with age, leading to a reduced heart rate response to 
exercise and even daily activities in older individuals. In 
some cases, fibrosis or changes in atrial physiology can 
result in complete loss of activation of the SAN, leading 
to electrical atrial asystole, or lack of intrinsic activation 
of the atrial tissue.  In the absence of an escape rhythm 
from elsewhere in the conduction system, these individuals 
can suffer from syncope or potentially cardiac arrest.  
The spectrum of dysfunction of the SAN is categorized 
under the umbrella of sinus node dysfunction (SND), and 
when associated with symptoms, represents a class I 
indication for implantation of a permanent pacemaker12.  
 
Chronotropic incompetence (CI) refers to a subtype of 
SND whereby the SAN is unable to increase the heart 
rate in response to increased activity or exercise12,13.  
Chronotropic incompetence is associated with impaired 
quality-of-life, and has been found to be an independent 
predictor of adverse cardiovascular events and overall 
mortality in certain populations14.  Although the specific 
heart rate cutoff used to define CI is not well-defined, it 
is generally suggested that the failure to achieve 80-
85% of the predicted age-dependent maximum heart 
rate with exertion (220 – age), with associated symptoms 
such as fatigue or shortness of breath, is sufficient to 
warrant evaluation for pacing solutions to improve heart 
rate with exertion.   
 
A common feature of patients with SND, either complete 
asystole or CI, is the utility of atrial pacing to set the 
underlying heart rate for normal activities or exertion.  In 
the process of implanting a pacemaker for atrial pacing, 
regulation of the heart rate is transferred from the body’s 
intrinsic system of autonomic regulation to the device 
itself, which must learn to adapt to changes in demand as 
would require increasing the pacing rate to match the 
needs of physical activity15.  To match pacing to 
exertional demands, the device must have a method to 
ascertain the presence and degree of physical activity, 
for which some common sensors are integrated in modern 
CIEDs.  Two well-established methods include an 
accelerometer that uses piezoelectric crystals to identify 
movement, and a sensor for lung impedance, which 

monitors for changes in breathing rate.  These two sensors 
are combined in the internal algorithm for most 
commercial CIEDs in such a way that the initial movement 
detected by the accelerometer is matched to changes in 
respiratory rate to confirm that exertion is occurring in the 
body.  This combined methodology thus prevents 
inappropriate pacing changes resulting from other causes 
of vibration or movement. However, the relationship 
between movement and the degree of heart rate 
increase necessary can vary significantly from person to 
person, for example in a 40 year-old versus an 85 year-
old.  Due to a lack of intrinsic adaptability, modifications 
from standard algorithms are empiric rather than based 
on the patient’s physiologic response to the current 
pacemaker settings.  
 
Most commercial CIEDs employ adjustable parameters to 
attempt to match the pacing rate to the level of exertion, 
which include the sensitivity for detection of activity as 
well as the degree to which the pacing rate is increased 
and the peak pacing rate.  In standard clinical settings, 
these adjustments are made offline, occasionally with the 
additional evaluation during treadmill or ergometer use.  
The requirement for offline adjustment creates a burden 
for patients, who must wait for the next clinic visit for 
adjustments to be made, and the inability to make minor 
modifications to improve overall exercise capacity.   
 
2. Heart rate modulation for heart failure with 
preserved ejection fraction.  Another condition where 
heart rate has increasingly drawn attention in clinical 
decision-making is heart failure with preserved ejection 
fraction (HFpEF)16.  HFpEF17 is sub-type of heart failure 
in which the predominant pathophysiological deficit lies 
in the inability of the heart to accommodate filling during 
diastole, resulting in fluid backup and accumulation in the 
lungs and other tissues.  The symptoms of HFpEF range 
widely across individuals, with some requiring frequent 
hospital admission to remove fluid using intravenous 
diuretic agents, and others primarily noting symptoms 
only with exertion.   
 
Historically, patients who have HFpEF have been treated 
empirically with heart rate reduction strategies, such as 
giving medications to reduce heart rates. However, recent 
work has demonstrated that certain HFpEF patients may 
benefit from more permissive or even increased heart 
rate.  Recent studies, such as the myPACE trial, 
demonstrated patients whose CIEDs were programmed 
to have an increased heart rate had better quality of life 
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scores based on the Minnesota Living with Heart Failure 
Questionnaire, improved changes in heart failure 
biomarkers (NT-proBNP) and decreased durations of 
abnormal heart rhythms, such as atrial fibrillation18. In 
contrast, in the RAPID-HF trail, there was no improvement 
in oxygen consumption or cardiac output with faster heart 

rates programmed on patients  ’pacemakers during 
exercise19.  One explanation for these seemingly 
contradicting findings is that the impact of heart rate on 
symptoms in HFpEF is highly individualized, such that 
certain patients benefit from lower heart rates while 
others may have fewer symptoms with higher rates.    
 
The highly individualized presentation and treatment 
response across patients with HFpEF presents the 
opportunity to modify CIED programming to better match 
the requisite pacing rates to the impact on symptoms, 
particularly during exertion.  In theory, a system that uses 
lung impedance, which is also a marker of fluid 
accumulation in the lung and standard in many CIEDs, 
could be modified to pace at faster or slower rates to 
match the clinical effects.  However, like with heart rate 
programming for SND, these changes can presently only 
be made empirically during standard clinical visits, rather 
than learned dynamically by the device during real-
world activities.   
 
3. Cardiac resynchronization therapy for heart failure 
with reduced ejection fraction.  Another major subtype 
of heart failure includes individuals whose ventricular 
function becomes depressed or reduced, termed heart 
failure with reduced ejection fraction (HFrEF), which can 
be a result of a prior myocardial infarction or ongoing 
coronary ischemia, as well as from genetic or unknown 
(termed idiopathic) etiologies.  The common underlying 
problem is that patients with HFrEF suffer from symptoms 
reflecting both impaired filling, like HFpEF, and reduced 
cardiac contraction, which can cause fatigue, life-
threatening arrhythmias, and eventually death in many 
cases.   
 
The past few decades have brought a number of medical 
therapies to improve symptoms and outcomes for patients 
with HFrEF; however, a particularly interesting 
technological innovation in management of HFrEF has 
been the use of CIEDs to provide synchronization to 
electrical activation among patients whose reduced pump 
function is also associated with dyssynchony between the 
left and right ventricles due to abnormalities in the heart’s 
electrical conduction system.  These devices, called 
cardiac resynchronization therapy (CRT) devices, are a 
type of CIED that include two separate pacing leads that 
supply energy to the right and left ventricles in a process 
that restores synchrony to electrical activation and, 
ideally, contraction of the heart.  A number of clinical 
trials have identified improvement in symptoms and 
overall mortality with implantation of CRT devices in 
certain populations with HFrEF20,21, and for many patients 
with this diagnosis, implantation of a CIED with CRT 
represents a standard of care, along with medication.   
 
Like other CIEDs, there are a number of parameters that 
can be programmed in CRT devices towards the goal of 
improving cardiac dynamics and improving clinical 

outcomes.  Specifically, the timing of pacing activation of 
the right and left leads of a CRT can be adjusted 
between chambers in an effort to restore muscle 
contraction to as close to normal as possible, as well as in 
conjunction with intrinsic atrial activation, either detected 
or provided by a pacing lead in the right atrium.  A 
number of commercial algorithms have been developed 
and applied seeking to optimize pacing for improved 
ventricular function; however, like other pacing 
modifications, the inter-individual variation across 
patients creates a challenge with finding a one-size-fits-
all methodology, as it is highly likely that the optimal 
settings will be noticeably different between patients.    
 
4. Detection and therapy of ventricular arrhythmias by 
implantable defibrillators.   One of the major innovations 
in development of CIEDs was the ability to design a 
completely implantable cardiac defibrillator (ICD) 
capable of detecting and treating life-threatening 
ventricular arrhythmias, including ventricular tachycardia 
and fibrillation.  Initially employed in patients who had 
already suffered from these arrhythmias, clinicians 
eventually realized that even patients who have not had 
a prior event could be at risk, and obtained a mortality 
benefit from implantation of an ICD prophylactically22,23.   
 
The internal mechanism of an ICD entails two groups of 
algorithms, with some degree of manual tuning or 
programming.  First, the ICD must be able to detect that 
a life-threatening arrhythmia is present, and then it must 
deliver therapy in the form of either rapid ventricular 
pacing (initially) or a high-voltage shock (if rapid pacing 
is ineffective).  Detection algorithms are generally based 
on the presence of a rapid ventricular rate, and use 
characteristics like onset, morphology, and stability to 
discriminate the etiology of the rapid rate from other 
causes, such as sinus tachycardia or supraventricular 
tachycardia (including atrial fibrillation).  Appropriate 
detection of ventricular arrhythmias remains a major 
challenge, as inappropriate treatment not only causes 
substantial morbidity (inappropriate shock), but is 
associated with increased mortality.  The focus on 
algorithms for better therapy for ventricular arrhythmias 
has primarily centered on the use of rapid, or 
appropriately timed, ventricular pacing, also called anti-
tachycardia pacing during the arrhythmia to ‘break the 
circuit’, and potentially forgo the need to deliver a high-
voltage shock.  Insights from invasive electrophysiology 
studies have been heavily leveraged to uncover patient-
specific features of a ventricular arrhythmia that could 
suggest the utility of a well-timed paced beat, or set of 
paced beats, to terminate the arrhythmia.  These types 
of internal algorithms are increasingly being evaluated 
and applied in programming of ICDs, although to-date, 
a well-adopted, validated approach remains elusive, 
leading to many patients continuing to suffer from 
potentially avoidable shocks that may be worsening 
outcomes.    
 

C. Reinforcement learning for CIED 
programming 
1. Background on RL algorithms.  Reinforcement 
learning (RL) is a branch of artificial intelligence where 
the algorithm itself is given agency to select actions 
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towards the goal of learning the optimal solution through 
positive and negative rewards based on choices it makes. 
A typical RL process is depicted in Fig. 2. The RL agent 
takes actions in an unknown, possibly uncertain (random 
or probabilistic) environment. The environment’s reaction 
to the action is viewed as a change in state by an 
observer, which provides a reward to the agent based 
on how closely the environment comes to some optimally 
desired condition. The agent uses the reward to update 
its decision process and selects a new action based on the 
environment’s state, repeating the process with the intent 
maximizing the reward received for its actions.  
 
The power of RL lies in balancing its exploratory and 
exploitative nature. To validate its current solution, the 
agent leverages exploitation by utilizing what it has 
already learned, reinforcing the selection of actions that 
have yielded higher rewards. Meanwhile, the 
exploratory aspect of RL allows the agent to test 
alternative actions that might lead to even greater 
rewards. Through repeated iterations of exploration and 
exploitation, the RL agent progressively converges 
toward an optimal strategy for interacting with the 
environment, ultimately maximizing its reward.  
 

 
Figure 2. Reinforcement Learning Overview. An agent 
(computer algorithm) observes state information and 
rewards provided by the environment and selects actions 
to interact with it. This information is processed to 
maximize rewards through the desired operation. 
 
Reinforcement learning can be implemented with or 
without learning an explicit model of the environment, 
termed model-based and model-free, respectively. Model-
based RL creates an internal representation of the 
environment based on accumulated interactions that it 
uses to simulate different combinations of future actions 
to identify those that yield the maximum reward. In 
contrast, model-free RL does not maintain an explicit 
representation of the environment, and instead selects the 
next action based solely on the current state and a table 
of estimated rewards for each possible action. In simple 
environments, model-based RL generally converges to an 
optimal policy more quickly than model-free RL, at the 
expense of significant memory and computational 
resources. In contrast, model-free RL is less resource-
intensive, but demands more training iterations to achieve 

convergence.  Despite these differences, model-based RL 
scales more effectively to large and complex 
environments by leveraging deep neural networks 
(DNNs)24 for approximation, enabling efficient 
representation and computation. These advancements 
have given rise to deep RL algorithms, which have 
demonstrated the ability to create novel solutions with 
superhuman efficiency5,25-27.  
 
2. Existing non-RL-based approaches for CIED 
programming. Current CIED programming is based on a 
method called process control, which refers to the 
regulation of an environment by adjusting its inputs based 
on the difference between the environment's current state 
and a desired state. The rate response feature of a 
pacemaker is an example of a simple process control 
mechanism. A sensor, such as a piezoelectric 
accelerometer, detects patient motion and outputs values 
categorized into predefined ranges. Each range is 
associated with a specific heart rate. As the sensor output 
transitions between ranges, the pacemaker adjusts the 
pacing rate accordingly. These ranges and rates are 
modified offline by a clinician to optimize exercise 
capacity for each patient. This method is straightforward 
to implement and requires minimal processing power and 
memory, making it suitable for resource-constrained 
devices like CIEDs. However, this approach is limited in 
precision and adaptability, as the system cannot self-
adjust ranges or heart rates between clinical visits, 
leaving patients with suboptimal rate responses until their 
next evaluation.  
 
 more dynamic, non-RL method to program CIEDs uses 
continuous process control, such as the Proportional-
Integral-Derivative controller, which monitors the 
difference (or error) between the desired state and the 
current environment state over time. Continuous process 
control algorithms enhance pacemaker rate response by 
enabling the device to self-adjust pacing rates to match 
the level of activity detected by the accelerometer. 
However, in practice, this method poses challenges for 
battery-powered devices like CIEDs, which have limited 
energy available for ongoing evaluation and adjustment. 
Moreover, simply matching accelerometer-based activity 
may not achieve the desired outcome of improving 
exercise capacity.  The resulting design process remains 
largely manual and error-prone, as it relies on human 
engineers to define and fine-tune system parameters.  
Broadly, the non-RL-based methods of CIED 
programming have provided insights into the potential 
and challenges with designing smart programming 
methods, but also greater motivation for even smarter 
systems using RL.  
 
3. Reinforcement learning for CIED programming. 
Reinforcement learning offers a promising alternative for 
automating the design of next-generation pacemakers. 
By focusing solely on reward design to represent clinical 
and physiological requirements, RL enables devices to 
autonomously learn optimal pacing strategies through 
interaction with their environment. This paradigm shift has 
the potential to unlock unprecedented levels of 
adaptability and performance, paving the way for truly 
intelligent and personalized medical devices. 
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An example of RL’s application to pacing was 
demonstrated by Dole et al.28, who applied RL to the 
pacing function in subjects with Mobitz II, second-degree 
atrioventricular (AV) block. Starting with a process control 
algorithm in which the environment was defined by 
sensed native atrial and ventricular impulses, and the 
therapy (i.e., action) defined as ventricular pacing, they 
implemented an RL algorithm to modify the programmed 
AV interval in response to changes in the intrinsic atrial 
rate. Unlike the standard static algorithm that uses a 
fixed AV interval, the RL algorithm developed by Dole et 
al. dynamically tracked and learned changes in the AV 
interval. This allowed it to deliver ventricular-paced 
impulses that closely matched the timing of intrinsic 
conduction. The result was smoother pacing during 
dynamic activity, avoiding the pauses or missed beats 
commonly observed with standard pacemaker settings. 
This example highlights RL’s potential to address critical 
limitations in current pacemaker algorithms. By enabling 
dynamic, adaptive control of therapy parameters, RL can 
significantly improve the precision and responsiveness of 
pacing, further underscoring its promise as a 
transformative technology for next-generation CIEDs. 
 
D. Safe Reinforcement Learning 
The RL paradigm is inspired by the way organisms 
reinforce behaviors—good or bad—based on the 
rewards obtained from past experiences. A critical 
aspect of this process is the acquisition of new 
experiences through new decisions, often made without 
prior knowledge or assurance that those decisions will 
lead to better outcomes (i.e., higher rewards). In the 
context of clinical decision-making, this capacity for 
exploration could be highly beneficial, as it opens the 
door to discovering novel treatment approaches or 
paradigms that may not have been previously 
recognized. However, with novelty comes the inherent risk 
that these new approaches could lead to worse outcomes 
for patients. This duality highlights the need to balance 
exploration and safety, especially when applying RL to 
safety-critical systems like CIEDs. To address these 
concerns, identifying safe methods of exploration 
becomes a key consideration for the successful clinical 
implementation of RL. This balance ensures that while 
novel, potentially superior therapies are explored, 
patient safety is not compromised. In the following 
section, we discuss strategies and considerations for 
applying RL in programming safety-critical systems like 
CIEDs, emphasizing the importance of safety in medical 
applications of this transformative technology. 

 
1. Defining safety through fomal language 
specification. Importantly, the concept of ‘safety’ as 
interpreted by a clinician must be translated into 
algorithmic meaning to be integrated with RL.  Underlying 
this translation is the need for a formal, natural language 
specification that describes what the algorithm should 
accomplish in plain terms.  For many complex systems, 
such as programming CIEDs, this process of translation can 
be difficult and error prone29.  For example, the clinical 
concept of ‘lightheadedness’, as might occur if the pacing 
rate is inadequate to meet the demands of exercise, 
could be interpreted algorithmically in several ways: a 
failure to pace the atrium at a sufficient rate, a failure to 

reach a desired ventricular rate with pacing, or perhaps 
a sudden drop in heart rate when reaching the upper rate 
limit (i.e., pacemaker syndrome).  In programming a 
safety feature to operate algorithmically, some definition 
is required to translate ‘lightheadedness’ into such a 
formal language system that is succinct and 
nonambiguous. 
 

In 2007, Boston Scientific30 released a natural language 
specification for a dual-chamber pacemaker to the 
research community that was subsequently used to define 
various algorithms of functionality31-33, although 
applications were limited in complex clinical situations.  
Later work by Jiang et al.34 used a formal modeling 
language to successfully express and validate the 
complete pacemaker specification, including complex 
safety features like pacemaker-mediated tachycardia, a 
condition in which the pacemaker inappropriately paces 
the heart at a rapid rate due to mis-sensing non-intrinsic 
atrial activation (i.e., T wave or retrograde P wave) as 
sinus node activation. This work was extended by Dole et 
al.35,  who were the first to specify and validate a 
complete pacemaker in a formal logic with the capability 
of capturing all required timing relationships and 
released the first complete formal pacemaker 
specification.  These types of innovations enable 
development of algorithms that can connect information 
seen internally by the CIED with clinical outcomes, 
measured by the clinician and perceived by the patient.  
In plain terms, they ensure that the reward detected by 
the device can be mapped to a clinically meaningful 
outcome, and allow integration of shielding in RL as 
outlined below. 
 

2. Reward translation for reinforcement learning. 
Formal languages provide the tools to define CIED 
function algorithmically, but they do not themselves 
define the goal or reward of the system, a requirement 
in RL.   The primary programming challenge in developing 
RL-driven systems therefore lies in reward translation, or 
designing a reward function that maps a sequence of 
programming decisions (by the device or a human making 
changes) to scalar rewards. The goal is to ensure that an 
RL agent, by maximizing the aggregated reward sum, 
converges to a policy that aligns with the specified 
learning objectives. For example, a RL-based algorithm 
seeking to avoid causing lightheadedness in a patient 
must take the formal language relating data obtained 
from the device to the clinical entity of ‘lightheadedness’ 
and apply a reward value toward which the device can 
learn (in this case, to avoid).  As might be expected, 
complexity arises in real-world attempts at reward 
translation. The learning agent (i.e., the device), in 
seeking to avoid a situation associated with 
lightheadedness, might select pacing settings that cause 
other adverse outcomes (such as pacing the heart too fast 
and causing chest pain).  As such, reward translation 
requires constant evaluation and refinement to account 
for the numerous unexpected outcomes that can result of 
a given algorithm. 
 

3. Shielding and constrained exploration. As noted 
previously, the power of RL algorithms comes with the 
ability of the decision-making agent, through exploration, 
to identify potentially novel actions that improve the 
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short- or long-term outcome.  A well-designed RL 
algorithm might identify pacing settings for a given 
individual that improve exercise capacity in a previously 
unrecognized manner.  However, allowing an algorithm 
to search across the entire space of pacing settings could 
be haphazardous if it selected an extremely high pacing 
rate (e.g., 200 beats per minute) or an extremely low 
pacing rate (e.g., 10 beats per minute).  Clearly, in this 
example some constraints must be placed on what 
specific space of possible pacing rates should be 
explored.  This process is called shielding, and it forms 
the cornerstone of safe RL.  

 
Figure 3. Process control. Regulation of the environment 
through actions seeking to make the environment match 
the desired state. 
 
One of the challenges with the inclusion of shielding in RL 
is that for large, complex environments with many 
interacting parameters it is virtually impossible to train 
and test RL for every possible condition that could arise. 
This gap leaves untrained situations where the RL must 
interpolate its next action from what it has learned and 

may unknowingly select an unsafe action, which can 
include pacing at too high a rate or inhibition of pacing 
when it is required. Shielded RL (Fig. 4) is becoming a 
popular new technique that enables safety critical 
applications like medical devices to benefit from RL’s 
unique ability to improve patient therapy without the 
dangers of incorrect actions. 
 
The conduction pattern in each patient across the heart is 
unique, while the heart’s response to different electrical 
impulses from the CIED is complicated and difficult to 
model or predict with accuracy. With such variability, the 
therapy must be constrained to maintain safety over a 
wide population of patients and clinical settings. Bloem, 
et al36, introduced the concept of a shield to address this 
safety constriction for process controllers in complex 
environments. A shield is a simple automaton modeling the 
safety properties that must not be violated. When the 
shield sees the controller (i.e., agent) take an action that 
will lead to violation of a safety property, the shield 
modifies the action to maintain safety, otherwise the 
controller performs unhindered.  Alshiekh, et al.37, 
extended the concept of shielding to RL to enable its use 
in safety critical applications. Shielded RL enables safety 
critical applications like medical devices to benefit from 
RL’s unique ability to improve patient therapy without the 
dangers of incorrect actions. 
 
There are two basic forms of shielded RL, which are 
dependent on when and how the safety properties are 
implemented. In preemptive shielding (Fig. 4, a), the 
shield examines the current environment state and 
provides the RL agent with a list of acceptable actions 
from which it can select. This list assures that the agent’s 
actions are always safe. Alternatively, in post posed 
shielding (Fig. 4, b), the shield is applied after the action 
has been selected, where the shield reviews the agent’s 
action in context of other information (i.e., state) that 
might be informative. If the action would lead to violating 
a safety property, the shield changes the action to 
preserve safety.  In either design, the shield remains a 
permanent part of the algorithm, even after RL training 
is completed. 

 

 
Figure 4. Types of shielded reinforcement learning. A) Pre-emptive shielding entails placing constraints on the space 
of actions available to the agent.  B) Post posed shielding applies a shield informed by information from the state to 
actions selected by the agent.  Both methods are trained to avoid potentially unsafe actions during the exploration 
phase of RL. 
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4. Testing and verification.  The transition from design to 
implementation is not complete without a formal testing 
methodology.  In the case of safe RL, this system requires 
a testing framework for both the expected behavior used 
to reward the RL agent for optimal actions, as well as the 
shield that prevents the RL agent from violating safety 
properties. Each of these must be validated to assure 
correctness. In their pacemaker specification, Dole et al.35 
developed an automaton to enable functional testing 
using test scenarios that demonstrated expected 
operation. Interestingly, they found that many test 
scenarios provided unusual conditions to provoke 
erroneous operation, emphasizing the justification for such 
testing. They focused on two common pacemaker features 
with complex timing, ventricular safety pacing and 
upper-rate holdoff, and demonstrated optimized Mobitz 
II pacing therapy to avoid pacemaker syndrome. In this 
work, the shield consisted of two safety requirements: 1) 
The AV interval of the paced beat may not be shorter 
than the most recent intrinsic AV interval and 2) the AV 
interval should not be longer than the maximum allowed 
paced AV interval. Their testing showed that indeed, the 
RL agent was able to dynamically find the optimal AV 
interval that matched the intrinsic ventricular AV interval 
with a continuously changing intrinsic heart rate, without 
inappropriately shortening or prolonging the paced 
interval in such a way that could inhibit appropriate 
pacing or result in inadequate ventricular capture (i.e., 
too short an AV interval).  While limited to a specific set 
of features for pacemaker function, this work provides an 

example for how safe RL can be deployed within a 
learning algorithm seeking to improve clinical outcomes.   

 

E. Conclusion. 
Contemporary CIEDs have found clinical utility within a 
growing number of applications, ranging from replacing 
the heart’s intrinsic electrical system to treating 
potentially life-threatening arrhythmias.  Existing 
programming methodologies for CIEDs remain highly 
static, with limited opportunities to individualize 
programming in order to provide the greatest benefit for 
patients.  The RL framework, which through exploration 
and exploitation is able to learn new settings for a CIED, 
holds great promise for personalized programming of 
CIEDs.  Within this framework, the role of safe RL is 
integral to allow sufficient exploration without subjecting 
patients to increased risk that the algorithm could select 
settings that could result in adverse outcomes.  While the 
field itself remains in its infancy in terms of real-world 
applications of RL, the ability of the CIED to capture 
physiological information about patients provides 
sufficient motivation to pursue innovations in both RL and 
safe RL.  
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