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ABSTRACT 

The spreading of person-to-person infectious diseases (such as influenza) 

depends significantly on the contact network of the community. Any successful 

vaccination plan demands a complete understanding of how the disease can 

possibly propagate on this network. For this purpose, we examined 

vaccination actions on two specific community networks: scale-free networks 

and random networks. We applied a “random” vaccination plan and a 

“strategic” vaccination plan on both networks. The former corresponds to 

vaccine interventions regardless of the community structure, while the latter 

corresponds to preferential interventions according to the individual’s 

degree of connectivity. The “random” vaccination shows to be capable of 

reducing the infection peak, but the overall performance varies significantly 

if applied on a scale-free or random network. The “strategic” plan, on the 

contrary, prioritized vaccination actions on highly connected individuals. It 

showed more effective results since it slowed down the disease propagation 

while providing more time for immunization. We further applied the 

“strategic” plan to families instead of individuals alone. The plan appeared 

to perform nicely but not as effectively as vaccinating highly connected 

individuals. 

Keywords: COVID-19, Complex networks, Small world. 
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1. Introduction 
The spread of disease within large population groups is 
a complex phenomenon, shaped by the interactions 
between individuals and the internal dynamics of the 
disease within each person. These factors can vary widely 
across communities1-4 and depend on the specific 
infectious agent involved5-7. This variability helps to 
explain the diverse outcomes observed during the 
COVID-19 pandemic in 20208-10.  
 

Research indicates that a consistent pattern of contagion 
cannot be established without considering the role of 
human mobility. Mobility can create connections between 
individuals outside their immediate social environment, 
such as family or friends2,5. Studies on common mobility 
patterns suggest that these can differ depending on the 
spatial scale being examined11. Nonetheless, there is 
wide consensus in the literature that people tend to follow 
a “scale-free” spatial distribution within a typical urban 
environment12-14. In a nutshell, this means that a small 
number of individuals are responsible for the majority of 
social interactions, while most people only attain a few 
social contacts15. 
 

Human mobility introduces some degree of heterogeneity 
in the connectivity pattern. For instance, some groups may 
exhibit more connections than expected, leading to the 
formation of social communities. Consequently, 
epidemiological analysis must be conducted on two 
levels: a “global” scale that considers the overall 
progression of the disease and a “local” scale that 
focuses on the spreading within specific communities16. 
These scales are not necessarily spatial, as distinct “social 
layers” can overlap within the same geographic area15. 
 

Given these complexities, a microscopic approach to 
epidemiological modeling becomes essential. This 
approach considers each individual as part of an 
epidemiological environment similar to a “small world” 
network17. Within this framework, individuals may 
become infected, and the disease spreads according to 
established models, typically involving three stages (SIR 
models) or four stages (SEIR models), though additional 
stages may also be considered18. 
 

Incorporating vaccination strategies into this analysis 
adds another layer of complexity19. Vaccination can alter 
mobility patterns and social interactions by reducing the 
likelihood of disease transmission. For instance, 
vaccinated individuals may have fewer restrictions on 
their movement, which can impact how the disease 
spreads through different social groups20. 

Our investigation stands on the above perspective for the 
COVID-19 spreading. We simulated and compared 
different vaccination strategies in order to mitigate the 
disease propagation. The paper is organized as follows: 
Section 2 describes the epidemiological model and the 
different mitigation strategies. Section 3 details the 
simulation procedure. Section 4 displays the results of our 
investigation. These results are later discussed in Section 
5. Finally, conclusions are drawn in Section 5. 
 

2. The Model 
This section outlines the presumed environment for the 
disease propagation. We first summarize the main 
features of the connectivity network (see Sections 2.1 and 
2.2). We secondly detail the compartmental model of the 
disease (see Section 2.3).  
 
2.1 RANDOM AND SCALE-FREE NETWORKS RANDOM 
AND SCALE-FREE NETWORKS 
A network is essentially a collection of nodes (say, N) 
linked between each other in a specific manner. The 
random network and the scale-free network are possible 
examples that come up after establishing a rule for 
linking the nodes. The rules are as follows: 
(a) Random linking: a fixed probability π is set, and 

nodes are connected according to this probability, as 
detailed in Ref. 21. 

(b) Scale-free linking: the probability π of connecting an 
unlinked (new) node to an already attached node to 
the network depends on the degree of the latter22-23. 
That is, if the attached node i has an associated 
degree ki, the probability of connection to this node 
is given by:  
 

𝐶𝐵(𝑖) = ∑ 𝑏𝑖𝑗𝑘𝑗≠𝑘∈𝑁 𝑏𝑗𝑘⁄    (1) 

 
This is called a preferential attachment23. It has been 
shown that this connection probability generates a scale-
free (or power-law) connectivity distribution24,25. Real-
world examples of such networks include the Internet and 
the human brain26,27. 
 
In network science, a node with an exceptionally high 
number of links is called a hub24. The existence of these 
hubs is the key difference between random networks and 
scale-free networks. Notice that the degree k in random 
networks is the same for all nodes. In scale-free networks, 
however, a few nodes (hubs) attain a high degree, while 
most of the nodes are scarcely linked. Fig. 1 exhibits a 
scheme for types of networks. 
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   (a) Scale Free      (b) Random 
 
Figure 1: Examples of a random network and a scale-free network28. Nodes with higher degrees are represented with 
more intense colors. 
 
2.2 THE CAVEMAN MODEL 
Disregarding the type of network (see Section 2.1), a 
caveman model can also be present in the network. This 
model captures the intra-family and inter-family social 
structure29. The common procedure to include the 
caveman model in the network is by first selecting 
randomly groups of four nodes (the family) and 

connecting them as a cliqué. Next, these family units were 
connected in a presumed fashion, allowing for interactions 
between different families, and thereby, reflecting a 
broader social network (see Fig. 2). It’s important to note 
that every individual is embedded within a family 
structure after this model. 

 

 
Figure 2: A schematic representation of a complex network consisting of four families. The subgraphs, which represent 
individuals’ families, are interconnected by red links. These families are then integrated into the broader network through 
blue links. 
 
2.3 THE SEIR EPIDEMIOLOGICAL MODEL 
Throughout our investigation, we use the SEIRV 
epidemiological model to describe the disease evolution 
(see below). This model is widely used in epidemiology to 
simulate how diseases spread within a population. It 
offers a structured approach to understanding the 
dynamics of the disease transmission by categorizing the 
population into different stages30,31. 
In this context, each individual (out of a population of N) 
stands on a compartmental stage of the disease. The 
stage corresponds to some (discrete) step in the evolution 
of the disease. This is a kind of approximation that 
categorizes the complex evolution of the disease into 
major compartments of specific features. The number of 
compartments depends on the disease under study. We 
consider five compartmental stages, since this suits the 
behavior of a wide family of diseases like COVID-19. 
The compartmental stages are as follows: 

(1) Susceptible S(t): number of individuals who can become 
infected upon contact with an infected person. 

(2) Exposed E(t): number of individuals carrying the disease 
but not yet able to infect others. 

(3) Infected I(t): number of individuals capable of 
transmitting the infection to susceptible individuals. 

(4) Recovered or removed R(t): number of individuals who 
have recovered and are immune. 

(5) Vaccinated V(t): number of individuals who are immune 
due to vaccination. 
 
where S(t)+E(t)+I(t)+R(t)+V(t)=N. 
 
We stress that these basic compartments provide a 
preliminary approximation for the disease evolution. 
However, the specific complexities of each disease may 
require more detailed compartments for a more accurate 
description5,7,32. 
Notice that unlike other epidemiological models (SIS, SIR, 
etc.), the SEIR model fits better the behavior of the 
COVID-19 epidemic because it includes individuals in an 
incubation period of 5-6 days who are not yet 
infectious33. 
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3 Methods 
3.1 THE NETWORKS IMPLEMENTATION 
As already mentioned in Section 2.1, we implemented the 
random and scale-free (preferential attachment) 
networks22. Recall that each one expresses a very 
different contact structure. The scale-free network, 
however, has been shown to express accurately human 
mobility patterns22. The random network, although naive, 
is useful as a comparison to other social situations. 
 
We programmed both types of networks in low-level 
codes in order to simulate networks as big as one million 
nodes (N). These may represent cities the size of Rosario 
or Mendoza in Argentina. We further run at least 30 
realizations for statistical sampling. 
 
The detailed procedure for building the random and 
scale-free networks can be found in Ref.34. We just remind 
here that our implementation of the random network 
yields degrees that do not exceed k≈10. The scale-free 

network, instead, yields nodes of very high degree values 
acting as hubs (k>100). 
 
We also included cliqués for each kind of network, as 
explained in Section 2.2. These mimic the family structure 
in the network, although they do not change significantly 
the degree distributions in the network. Recall that the 
degree distribution for scale-free networks follows a 
power-law behavior (see Ref.34 for details). 
 
The minimum allowable degree for our simulations was 
k=4 due to the cliqués. The corresponding scale-free 
distribution (say, the network attaining preferential 
attachment and family structure) exhibited a power law 

with exponent γ = −2.82. 

 
The paramount network attribute concerning our 
investigation is its “minimum path length”, that is, the 
shortest distance between any two nodes in the network. 
Fig. 3 illustrates the distribution of this magnitude for the 
random and scale-free networks. 

 

 
 

Figure 3: Shortest path distribution for the scale-free and random networks. 50 network realizations for each type were 
computed for building the histogram. 
 
As can be noticed from Fig. 3, the average distance 
between any two nodes in the scale-free network is 
smaller with respect to the random network. This is due to 
the scale-free network’s structure, since the high-degree 
nodes, acting as hubs, enable more efficient and rapid 
dissemination of information across the network. 
Consequently, any “infection signal” or similar 
phenomenon within the scale-free network will spread 
more quickly than it would in the random network. 
 
3.2 THE SEIR MODEL IMPLEMENTATION 
The SEIRV model implementation follows the same steps 
as detailed for the SEIR model in Ref.34. But now we 
introduce the immunity stage due to vaccination (the 
ending V in the name of the model). We briefly resume 
the SEIR steps presented in Ref.34.  
(1) Start the simulation by randomly infecting an 

individual from a susceptible population. 
(2) List the “susceptible” (S) individuals linked to the 

infected one and switch their stage to “exposed” (E) 
with fixed probability p (see Ref.34). 

(3) Switch those exposed (E) individuals to the “infected” 
(E) stage after the incubation period. 

(4) Repeat the above steps until the end of the 
simulation. 

 
The average values of the incubation and infection 
periods for COVID-19 reported in Ref.35 were 
considered. 
 
The SEIRV model implements the vaccination strategy at 
step 2. Vaccination is applied exclusively on susceptible 
individuals since these are the ones at risk of becoming 
infected. However, we assumed that the vaccine provides 
immunity to the individual starting the day after its 
application. 
 
The vaccines may be applied randomly on the 
population. However, an order of priority is also possible. 
For instance, the degree of connectivity in the network 
may establish an order of priority. Nodes are sorted 
according to the corresponding degree (in ascending or 
descending order), and the vaccines are strictly applied 
in this order. 
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According to literature, it appears to be some kind of 
relation between people’s age and the number of daily 
interactions they have (see, for example, Ref.36). Young 
individuals typically attain higher degrees of connectivity 
among the population than seniors. Thus, the order of 
priority based on the connectivity degree may be 
implemented by ordering people by their age. We will 
come back to this point in Section 4.2. 
 
Complementary to random or priority vaccination of 
individuals, we may implement a family vaccination 
process. Fig. 4 shows the difference between both 
vaccination schemes (individual or family). Recall from 
Section 2.2 that families are present in the network by 
means of cliqués of 4 nodes. 
 
We can summarize our implementation of the vaccination 
strategies as follows: 

(a) Individual vaccination: may be random or prioritized. 
The former is self-explanatory. The latter sorts the 
individuals according to their degree and proceeds 
to vaccinate people in that order. Priority may be set 
in descending order (higher to lower degrees) or in 
ascending order (lower to higher degrees). 
Descending order may be envisaged as younger 
people first, while ascending order corresponds to 
seniors first. 

(b) Family vaccination: similar to individual vaccination, 
but applies to cliqués (groups of 4 nodes). The 
degree of a family (cliqué) is defined as the sum of 
its members’ degrees and ordered from lowest to 
highest (and vice versa). Thus, families were 
categorized as “young families” (high-degree) or 
“senior families” (low-degree). 

 

 
(a) Individual vaccination     (b) Family vaccination 

Figure 4: Schematic representation of (a) individual vaccination and (b) family vaccination. 
 

4. Results 
Our results are divided into two parts. As a first step, we 
studied the disease spreading using a random 
vaccination strategy, where vaccines were administered 
regardless of the individual’s connectivity. This approach, 
although naive, served as a baseline for the rest of the 
research. The “no matter who” intervention is the most 
elementary way of acknowledging how the disease 
propagates when a fraction of the population becomes 
immune. 
 
As a second step, we focused on the more strategic 
intervention that prioritizes those (susceptible) individuals 
with a higher degree. This targeted strategy presumes 

that the mitigation efficiency depends on how fast the 
disease links can be broken. The higher the degree, the 
more links removed in a single shot. 
 
4.1. RESULTS FOR THE RANDOM VACCINATION 
PROCESS 
Fig. 5 presents the time evolution of the epidemic for 
different amounts of daily vaccinated people (see 
caption for details). The vaccination process exhibits a 
reduction in the peak number of infections for either the 
random network (dashed lines) or the scale-free network 
(continuous lines), as expected. However, this reduction is 
more pronounced in the case of the random network for 
an increasing number of daily interventions. 
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Figure 5: Evolution of infected individuals for different amounts of daily vaccinated people. The dashed lines correspond 
to random networks, while the continuous lines correspond to scale-free networks (see legend in the plot). The curves are 
normalized with respect to the population size (N = 1 million people). The black vertical line indicates the start of the 
vaccine interventions, say, once the number of infected individuals reached 5,000 (say, 5% of the population). The daily 
contagion probability was assumed to be po = 0.8 (p = po /24). 50 realizations were performed for each network type. 
 
The curves for the random network in Fig. 5 are a clear 
example of the commonly referred to “curve flattening” 
phenomenon that is known to be quite relevant when 
dealing with possible overcrowdings of medical-care 
centers. But also calls attention to the fact of the timing: 
the more people can be vaccinated daily, the better. 
 
Fig. 5 further allows the comparison between the 
vaccination in the random network and in the scale-free 
network. For instance, in a random network, 50,000 daily 
interventions appear enough for an almost complete stop 
of the disease propagation (in the context of our model). 
But, surprisingly, this is not the case for the scale-free 

network where people may be easily reached, according 
to Fig. 3. This is an apparent paradox since many 
propagation links are now unavailable due to 
vaccination. We will discuss this point in Section 5.1. 
 
Fig. 6 shows the number of vaccinated individuals over 
time for different vaccination rates (see caption for 
details). Notice that the maximum number of vaccinated 
people is always less in the scale-free network than in the 
random network (for the same rate). This means that many 
individuals were reached by the disease before the 
vaccination arrived, or say, the vaccination campaign did 
not arrive on time for them.  

 

 
Figure 6: Evolution of vaccinated individuals for different amounts of daily vaccinated people. The random networks are 
shown in dashed lines, while the scale-free networks are shown in continuous lines. The slope of the curves indicates the 
vaccination rate (vaccinated people per day). The curves were normalized with respect to the whole population (N = 1 
million individuals). The black vertical line indicates the starting point of the vaccination campaign. The daily contagion 
probability was assumed to be po = 0.8 (p = po /24). 50 realizations were performed for each network type. 
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Fig. 7 completes the picture by showing the corresponding 
number of recovered individuals over time. It can be 
observed that the final effectiveness of the vaccination 
differs between the analyzed networks. For instance, 
applying 10,000 vaccines daily prevents 60% of the 

population from becoming infected in the random 
network, while this percentage drops to nearly 20% in 
the scale-free network (for the analyzed contagion 
probability). 

 

 
Figure 7: Evolution of recovered individuals for amounts of daily vaccinated people in scale-free (continuous lines) and 
random networks (dashed lines). The curves were normalized with respect to the population (N = 1 million people). The 
black vertical line indicates the start of vaccine interventions. The daily contagion probability was assumed to be po = 
0.8 (p = po /24). 50 realizations were performed for each network type. 
 

4.2 Results for the Strategic vaccination 
process 
So far, we have analyzed the effectiveness of the 
vaccination campaign for a somewhat “no matter how” 
procedure. A step forward in our investigation is 
considering the degree of connectivity of each individual. 
We therefore turn to a vaccination procedure targeting 
individuals according to their degree of connectivity in 
the network. 
 

We idealize the community as belonging to the following 
categories: senior or young individuals. The former are 
presumed to attain fewer contacts than the latter, as 

already mentioned in Section 3.2. Thus, in the context of 
our model, we will associate for a while low-degree 
nodes to seniors and high-degree nodes to young people. 
However, we want to make clear that this is just a 
simplifying hypothesis, although more complex situations 
may appear in practice. 
 
Fig. 8 depicts the evolution of infected and recovered 
individuals for two vaccination strategies: time-priority of 
young people (blue color) or time-priority of seniors 
(green color). The random vaccination process is also 
shown in red color for comparison reasons (see caption 
for details). 

 

 
(a) Infected 
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(b) Recovered 

Figure 8: Evolution of (a) infected and (b) recovered individuals for different vaccination procedures. The red line 
corresponds to random vaccination, while the blue and green lines correspond to prioritizing young individuals and seniors, 
respectively. In all cases, 10,000 vaccines are supplied daily. The curves were normalized with respect to the population 
size (N = 1 million). The black vertical line indicates the starting point of the vaccination campaign. The contagion 

probability is assumed to be p₀ = 0.8 (p = p₀/24). 50 realizations were performed for each network type. 
 
A first inspection of Fig. 8a shows that the vaccination 
campaign exhibits more “flattened” curves on the random 
networks (dashed lines) than on the scale-free networks 
(continuous lines) for the same priority strategy. This 
phenomenon was already present when analyzing the 
random vaccination process (see Section 4.1 for details). 
We observe that it remains present despite prioritizing 
seniors or youngers within the context of our model. 
 
A closer examination of the random and scale-free 
networks in Fig. 8a shows that prioritizing younger people 
(blue lines) yields the most promising results (within the 
same kind of network). This means that starting the 
vaccination campaign on people attaining high-degree 
connectivity significantly improves the success of the 
campaign. The obvious reason is that vaccination gives 
immunity to highly connected people before the disease 
reaches them. However, not so obvious is that prioritizing 
younger people provides more time to vaccinate other 
larger portions of the population. 
 
We emphasize that our hypothesis of associating low-
degree nodes to seniors and high-degree nodes to 
youngers is quite ideal. There may exist in practice other 
reasons for prioritizing specific groups of individuals. 
However, from the logistic point of view, simply asking the 
age of the individual appears to be a feasible 
procedure. 

Besides, a qualitative difference between the scale-free 
network and the random network can be noticed from Fig. 
8a. The scale-free network does not show any significant 
difference between seniors priority and random 
vaccination. But this is not the case for the random 
network, where random vaccination somehow flattens the 
infection curve. 
 
Fig. 8b confirms the above difference between the scale-
free network and the random network. The former shows 
the same number of recovered individuals, regardless of 
proceeding with a seniors priority or a random 
vaccination. The latter, however, favors the random 
vaccination in comparison to seniors priority vaccination 
(say, by around 10% at the end of the campaign). 
 
4.3 RESULTS FOR THE FAMILY VACCINATION PROCESS 
The vaccination strategies discussed so far focus solely on 
individuals not considering the family social structure (see 
Section 2.2). We now turn our attention to vaccinating 
families based on their degree of connectivity, as defined 
at the end of Section 3.2. Fig. 9 depicts the evolution of 
recovered individuals under different vaccination 
strategies (see caption for details). 
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Figure 9: Evolution of recovered individuals in the scale-free network under different vaccination strategies (see legend 
for details). The red line represents the situation with no vaccination at all. In all cases, 10,000 vaccines are supplied 
daily. The curves were normalized with respect to the population (N = 1 million). The black vertical line indicates the 

starting point of the vaccination. The contagion probability was assumed to be p₀ = 0.8 (p = p₀/24). 50 realizations 
were performed for each network type. 
 
We can see in Fig. 9 that priority vaccination of younger families appears as the most promising strategy. This is in 
agreement with the results shown in Section 4.2. Fig. 10 shows a more detailed comparison between both results. 
 

 
Figure 10: Evolution of recovered individuals in the scale-free network under different vaccination strategies (see legend 
for details). The red line represents a situation with no vaccination at all. In all cases, 10,000 vaccines are supplied daily. 
The curves were normalized with respect to the population (N = 1 million). The black vertical line indicates the starting 

point of vaccination. The contagion probability was assumed to be p₀ = 0.8 (p = p₀/24). 50 realizations were performed 

for each network type. 
 
Notice from Fig. 10 that young individuals alone or young 
families attain a final recovery of roughly 60%. However, 
the “young families” vaccination appears slightly beyond 
the “young individuals” vaccination. Or in other words, the 
former appears as less effective than the latter (see 
Section 5.3 for a detailed discussion). 

 

5. Discussion 
5.1 THE RANDOM VACCINATION PARADOX 
We noticed in Section 4.1 that the “no matter how” 
vaccination strategy performs better in the scale-free 

network than in the random network. Fig. 6 served to 
illuminate this point by showing that the random 
vaccination strategy fails to reach many individuals 
before the disease catches them. This is the key point of 
the paradox. 
 

Recall that in the scale-free networks, only a few nodes 
(i.e. hubs) attain an extremely high number of connections 
(k>100), while many nodes only achieve a small number 
of connections. However, the vaccination process of “no 
matter how” yields equal immunity to individuals 
regardless of their degree of connectivity. Thus, some 
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hubs may not be reached on time by the vaccination 
campaign while the disease continues spreading easily 
throughout the network. This is not the case in the random 
network, where the degree does not exceed k≈10, and 
consequently, there is more time for people to become 
immune. 

 
In summary, this paradox expresses a somewhat 
competitive dynamic between the disease propagation 
and the vaccination rate. The “no matter how” vaccination 
at a fixed daily rate ignores the underlying contact 
structure, and thus, may lose effectiveness whenever the 
disease is allowed to spread easily throughout the 
network. We illustrated this phenomenon by means of a 
scale-free environment. 
 

The message from the above reasoning is that a condition 
for the success of the vaccination campaign relies on its 
adaptability to the structure of the underlying network. 
 

5.2 WHO TO VACCINATE FIRST? 
We explored in Section 4.2 the priority vaccination 
strategy, targeting individuals according to their degree 
of connectivity in the network. We associated low-degree 
nodes to seniors and high-degree nodes to youngers, as 
a simplifying hypothesis. We emphasized that, although 
this is quite ideal and more complex situations may exist 
in practice, it appears as a reasonable starting point for 
the analysis. 
 

Fig. 8 showed that starting the vaccination campaign on 
young people significantly improves the success of the 
campaign, regardless of the type of network (random or 
scale-free). This is not in question within our context, but 
other arguments may come into discussion in practice. 
 

The most controversial arguments might involve seniors 
priority. Fig. 8 shows that the random vaccination 
procedure is preferred to seniors priority in the context 
of random networks. Thus, there are not a priori reasons 
to implement a seniors priority strategy if the network 
suggests some kind of linking randomness. But, as 
mentioned above, other reasons (out of the scope of our 
model) may exist for insisting on prioritizing seniors. 
 

The scale-free network does not show any significant 
difference between seniors priority and random 
vaccination. This point is quite relevant when planning a 
campaign. The planner may prioritize the seniors, missing 
that the disease shortcuts through those younger, acting 
as hubs. Instead, the planner should consider thoughtfully 
if the random scheme is worth the logistics.  
 

We conclude this Section emphasizing that priority 
procedures exhibit promising results. However, these 
should be considered with care according to the 
environmental conditions. As a guideline, any successful 
strategy should prioritize individuals attaining high 
degrees, such as young people in our model. But the 
precise vaccination procedure may deal with issues out of 
our model. 
 

5.3 IS THE FAMILY VACCINATION AN EFFECTIVE 
STRATEGY? 
We noticed in Fig. 10 that the fraction of recovered 
people at the end of the campaign is slightly higher for 
the “young families” target than for the “young 

individuals” target. This means that the former yields a 
less effective campaign than the latter. Recall that 
recovered people are those who were not vaccinated at 
all.  
 

The above results are quite understandable since young 
families are expected to include mostly young individuals. 
However, some young people may not belong to young 
families, but to senior families (in a small fraction, though). 
Thus, they may still propagate the disease easily. This is 
the reason why the “young families” vaccination appears 
in Fig. 10 slightly beyond the “young individuals” 
vaccination. Or in other words, the former is less effective 
than the latter. 

 
The priority vaccination of “senior families” shows 
somewhat no difference with respect to “random families” 
vaccination (see Fig. 9). This is also in agreement with the 
corresponding results shown in Fig. 8b for individuals 
alone. Indeed, the argument given in Section 4.2 remains 
valid here, say, that the disease shortcuts through younger 
people (belonging to younger families), acting as hubs. 
The priority of “senior families” makes no significant 
difference from a random family vaccination. 

 
We arrive at two major conclusions in this Section. First, 
that the priority vaccination of young families is 
preferred over senior families priority or random families 
vaccination (in the context of our model). Secondly, and 
not intuitive, that vaccinating (young) individuals alone 
expects a more promising campaign than vaccinating the 
young families. 

 
We call attention (once more) to the fact that our model 
neither considers logistic features nor social reasons for 
evaluating the effectiveness of the vaccination campaign. 

 

6. Conclusions 
The investigation studies the spatial-temporal evolution of 
an infection (similar to COVID-19) from a microscopic 
point of view. We focus on the analysis of vaccination 
strategies on different network structures. Two main 
strategies were considered: (a) the random vaccination 
strategy, where vaccines are applied regardless of the 
network connectivity structure, and (b) the priority 
vaccination, which targets individuals (or families) 
according to their connectivity degree within the network. 
We simulated random and scale-free networks for both 
kinds of strategies. 

 
Our major conclusion is that prioritizing highly connected 
individuals (associated here with young people) appears 
as the most promising vaccination procedure within the 
context of our model. This is valid either for random 
networks or scale-free networks. We further noticed that 
prioritizing youngers not only slows down significantly the 
disease propagation, but also provides more time for the 
vaccination of other large portions of the population. 

 
Whenever prioritizing highly connected individuals is not 
possible, we noticed that a random vaccination strategy 
is preferred with respect to prioritizing low-connected 
individuals (associated here to seniors). Random or “no 
matter how” vaccination does not actually have any 
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advantage over seniors priority in scale-free networks. 
But it appears as a slightly more successful procedure in 
random networks. 

 
We may feature a somewhat general rule from the 
above: the random vaccination is expected to be more 
effective in random networks, while targeted vaccination 
is expected to perform better in scale-free networks 
(according to our model). Thus, the campaign planner 
should analyze the nature of the connectivity structure 
and point to those highly linked individuals first. 
 
Tailoring the vaccination procedures to target highly 
linked individuals is of paramount relevance when 
dealing with social groups. We compared a family-
based procedure versus an individual-based procedure, 
prioritizing highly connected families or individuals, 
respectively (in the scale-free network). We noticed a loss 
of effectiveness in the former with respect to the latter. 
The reason is that highly linked families do not target all 

the highly linked individuals but a fraction of them. There 
is a remainder of highly linked individuals out of the 
highly linked families. 
 
Our final conclusion concerns the planning of the 
vaccination campaign. A precise understanding of the 
underlying network structure allows for better tailoring of 
the vaccination strategy. However, our tailoring rule is 
limited to the scope of our model. Other issues may be 
relevant for the welfare of the population. Thus, the 
planner should thoughtfully weight our recommendations 
with those out-of-model arguments for the final decision. 
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13 M. González, C. Hidalgo, A. Barabási, Understanding 
individual human mobility patterns, Nature 453,  779-
782 (2008). 

14  I. Rhee, M. Shin, S. Hong, K. Lee, S. Chong, On the 
levy-walk nature of human mobility., IEEE INFOCOM 
2008 - The 27th Conference on Computer 
Communications, Phoenix, AZ, USA.  924-932 (2008). 

15 I. A. Perez, M. A. Di Muro, C. E. La Rocca, L. A. 
Braunstein, Disease spreading with social distancing: 
A prevention strategy in disordered multiplex 
networks, Phys. Rev. E 102 022310 (2020). 

16 L. Valdez, L. Braunstein, S. Havlin, Epidemic spreading 
on modular networks: The fear to declare a 
pandemic., Phys. Rev. E. 101 032309 (2020). 

17 M. Kuperman, G. Abramson, Small world effect in an 
epidemiological model., Phys. Rev. Lett. 86, 2909 
(2001). 

18 H. Wearing, M. P. Rohani, Appropriate models for the 
management of infectious diseases., PloS Medicine 
2(7) 0621–0627 (2005). 

19 K. A. Kabir, K. Kuga, J. Tanimoto, The impact of 
information spreading on epidemic vaccination game 
dynamics in a heterogeneous complex network, Chaos, 
Solitons and Fractals 132 109548 (2020). 

20 M. Shahzamal, B. Mans, F. d. Hoog, D. Paini, R. Jurdak, 
Vaccination strategies on dynamic networks with 
indirect transmission links and limited contact 
information, PLOS ONE 15 (11)  1–24 (2020). 
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