REVIEW ARTICLE

The Management of Atraumatic Shoulder Instability

Sophia Burns¹, Moritz Lebe^{2,3}, Anju Jaggi⁴, David Butt⁴, Deborah Higgs⁴, Mark Falworth⁴, William Rudge⁴, Addie Majed⁴

¹Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom

²HOCH Health Ostschweiz-Kantonsspital St Gallen, St Gallen, Switzerland

³BHRUT, Queens Hospital, Romford, United Kingdom

⁴The Royal National Orthopaedic Hospital, London, United Kingdom

PUBLISHED

31 May 2025

CITATION

Burns, S., Lebe, M., et al., 2025. The Management of Atraumatic Shoulder Instability. Medical Research Archives, [online] 13(5). https://doi.org/10.18103/mra.v13i5.

COPYRIGHT

© 2025 European Society of Medicine. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

DOI

https://doi.org/10.18103/mra.v13i5. 6467

ISSN

2375-1924

ABSTRACT

The definition of atraumatic shoulder instability is 'abnormal motion or position of the shoulder that leads to pain, subluxations, dislocations and functional impairment.... Without any history of a significant preceding injury'.

Atraumatic shoulder instability can be a severely disabling condition resulting in reduced quality of life, even simple daily tasks such as reaching for a glass may lead to subluxation and pain.

The management of ASI remains a challenging and under-researched area. This is in part due to the multiple potential underlying causes which can co-exist in each presentation, and the strong association with psychosocial co-morbidities that can negatively impact engagement with treatment and post-operative outcomes.

This review will detail the anatomical and biomechanical basis of ASI, the essential considerations in clinical assessment and investigation, as well as the current evidence and ongoing controversies regarding management.

<u>Keywords:</u> Shoulder, glenohumeral, atraumatic, instability, dislocation, multidirectional

Introduction

The definition of atraumatic shoulder instability (ASI) is 'abnormal motion or position of the shoulder that leads to pain, subluxations, dislocations and functional impairment.... Without any history of a significant preceding injury' ¹. Atraumatic shoulder instability can be a severely disabling condition resulting in reduced quality of life, even simple daily tasks such as reaching for a glass may lead to subluxation and pain ². There are many potential causes including, but not restricted to, aberrant muscular activation, altered proprioceptive and motor neural pathways and capacious capsular volume.

The management of ASI remains a challenging and under-researched area. This is in part due to the multiple potential underlying causes which can co-exist in each presentation, and the strong association with psychosocial co-morbidities that can negatively impact engagement with treatment and post-operative outcomes. Non-operative management, with a specialist upper limb rehabilitation programme, is the mainstay of treatment and there is growing evidence for its efficacy in this condition. Surgical intervention should be reserved for cases with defined structural pathology, that have failed conservative measures and have had mental and social co-morbidities optimized.

This review will detail the anatomical and biomechanical basis of ASI, the essential considerations in clinical assessment and investigation, as well as the current evidence and ongoing controversies regarding management.

Classifications, Anatomy and Biomechanics

There are numerous classifications and terminologies used to describe the clinical entity of ASI. Neer and Foster first described multidirectional instability (MDI) of the shoulder as anterior and posterior instability with inferior subluxation or dislocation 3, 4. This definition was then refined by Neer as instability in 2 or more directions with minimal or no structural damage 4. Shoulder instability that occurs due to aberrant and unbalanced activation of the rotator cuff and periscapular musculature can also be known as functional shoulder instability (FSI) 5. Functional shoulder instability can be further described according to the direction of instability, whether controllable or non-controllable, and whether positional instability (during movement) or non-positional instability (in neutral position)⁶. Alternative terms subsequently used to classify shoulder instability are Traumatic, Unilateral, Bankart lesion, Surgery (TUBS) AND Atraumatic, Multidirectional, Bilateral, Rehabilitation, Inferior capsular shift (AMBRI) 7.

The relationship between these different forms of glenohumeral joint (GHJ) instability can be understood

as a spectrum comprising the polar groups of the Stanmore classification 8. Type I—traumatic with associated structural defects, Type II—atraumatic with an absence of bony structural defects and Type III secondary to muscle patterning 8. Type II and III shoulder instability come under the umbrella term 'atraumatic shoulder instability' which is estimated to account for 4% -10% of shoulder instability cases 9,10. Atraumatic shoulder instability is a dynamic condition and repetitive trauma to the GHJ from subluxations and dislocations can result in structural defects over time. Atraumatic shoulder instability may not multidirectional but in cases where MDI is identified the pathoanatomy is most frequently increased GHJ volume due to redundant capsule 11. This increased capsular volume can lead to symptomatic subluxations and/or dislocations which may be anterior-inferior with posterior subluxation, posterior-inferior with anterior subluxation or global dislocation 3.

There is growing evidence that the proprioceptive and motor neural pathways of patients with ASI are altered. Howard et al 12 used functional MRI (fMRI) to assess the brain activity of patients with ASI during forward flexion and abduction compared to age matched controls. They found significantly greater activity of the primary motor cortex, supramarginal gyrus, inferior frontal gyrus, precentral gyrus and middle frontal gyrus suggesting that these patients were 'working harder' to maintain motor stability. Poor scapular control, leading to downward rotation, winging and forward tilt on arm elevation, can also contribute to ASI by reducing GHJ congruency 13,14. Nyiri et al 15 confirmed with biomechanical analysis that patients with MDI had significantly altered kinematic parameters and muscle activity compared with healthy controls.

The Comprehensive Assessment of Atraumatic Shoulder Instability

A thorough history of the nature, onset and timing of symptoms is essential. In those patients with hyperlaxity symptoms may have commenced following a minor injury or event. Involvement of other joints should be considered. The history should detail the occurrence and direction of subluxations and dislocations, apprehension with movement and position, the quality and distribution of any pain, the presence of neuropathic pain or neurological disturbance, functional limitations and general health including psychosocial comorbidities ¹⁶.

Examination findings specific to instability include the direction of instability and whether this occurs at rest or on movement. Abnormal muscle patterning can be identified on examination. The lower trapezius, infraspinatus, supraspinatus and deltoid may be underactive whereas the latissimus dorsi and pectoralis major may be overactive ^{17,18}. This disordered muscular function may occur due to muscular deconditioning

and weakness, avoidance pain, altered proprioception or as a fear-avoidant strategy ¹⁷. It should be noted whether the neutrality of pelvis, trunk and neck on arm movement is maintained. The arm may assume a position of excessive internal rotation and hyperextension of the elbow on elevation of the GHJ. Any aberrant positioning of the scapula, arm or body should be corrected by the examiner and the movements repeated to assess improvement in symptoms ¹⁷.

Hypermobility is a common aetiology in ASI which can complicate management and rehabilitation, a Beighton score should be undertaken to quantify the degree of laxity ¹⁹. The 2017 Ehlers Danlos Syndrome (EDS) diagnostic criteria can be applied to diagnose Joint Hypermobility Syndrome. (JHS) and hypermobility spectrum disorder (HSD) ^{20,21}. If laxity affects only the glenohumeral joint this is considered a localized HSD ^{20,21}. The history may reveal non-musculoskeletal symptoms of JHS such as autonomic dysfunction, vascular disorders, gastrointestinal disturbance and chronic fatique ^{17, 22}.

Imaging and Diagnostics

Investigation should begin with plain radiographs, these may identify glenoid dysplasia or hypoplasia, glenoid or humeral bone loss ²³. Bony defects can be further quantified by a computed tomography (CT) scan in axial and coronal planes ²³.

For soft tissue evaluation a magnetic resonance imaging (MRI), or preferably MR arthrography (MRA), is recommended. An MRA including standard and abduction/ external rotation (ABER) images, can identify pathology of the labrum, rotator interval (RI) and glenohumeral ligaments. The most common finding is increased GHJ volume and RI dimension, without or without the presence of attritional labral tears. Schaeffler et al ²⁴ found that on MRA the combination of a 'crescent sign' - enhancing layer between the humeral head and anterior-inferior glenohumeral ligament with 'triangle sign' - enhancing triangular space between the humeral head, anteriorinferior glenohumeral ligament and glenoid, had good sensitivity and specificity for MDI. Moroder et al 25 assessed FSI patients with fluoroscopy and MRI, the most common findings were glenoid flattening and glenoid dysplasia with soft tissue compensation.

Indications for Management in Tertiary Care

Certain patient groups should be identified early and referred to a specialist tertiary unit. The British Elbow and Shoulder Society (BESS) patient care pathway for ASI stipulates that onward referral is necessary for those with a PainDETECT score of greater than 19, those under the age of 18 who have been absent from more than 20% of schooling or over 3 months of work,

patients that report persistent dislocation or subluxation and those frequently attending emergency departments for shoulder relocation should be referred early to a tertiary unit ¹. In part these guidelines reflect the significant economic burden that ASI in young working age patients can represent. Van der Linde et al ²6 found the combined cost of productivity loss and healthcare utilization per patient was € 6914, € 5284 and € 4061 for the first, second and third or following dislocation, respectively.

Factors which can negatively influence outcomes and compliance with treatment also require referral to tertiary units. Psycho-social comorbidities should be identified and, if significant, treatment at a tertiary center is advised to permit involvement of psychology services from an early stage. Cho et al ²⁷ demonstrated that patients exhibiting depression pre-surgical treatment of rotator cuff injuries had increased postoperative pain scores and disability. Lebe et al 16 carried out a study to date assessing the prevalence of depression and its association with disability in ASI patients. In this study 64 symptomatic patients with ASI completed a self-reported questionnaire including Disability of the Arm, Shoulder and Hand score (DASH), Stanmore Percentage of Normal Shoulder Assessment (SPONSA) and Becks Depression Inventory II (BDI – II). The results found a statistically significant between the overall DASH score and the overall BDI score (F(1,62) = 12.78, P < .001). Nineteen patients (29.7%) reported a history of self-harm and 11 patients (17.2%) had attempted suicide on at least one occasion ¹⁶.

Other factors which have been shown to negatively influence post-operative outcomes may not warrant tertiary referral but should be noted- this includes female sex, smoking, and workers' compensation status ²⁸. Raja et al identified predictive factors for failure of surgical management in patients with Type II instability. These were age under 30 and female gender. Of note hypermobility was not found to be predictive of postoperative recurrence ²⁹.

Non-Operative Management of Atraumatic Shoulder Instability

The literature suggests that 80% of ASI will improve with physiotherapy led strengthening exercises alone ³⁰. Physiotherapy should include education on the condition and exercise prescription focusing on proprioception, recruiting dynamic shoulder stabilisers and strengthening shoulder musculature in order to compensate for lack of passive stability. A systematic review of the evidence for conservative management of posterior shoulder instability found a rehabilitation programme focusing on scapular stabilization followed by progressive deltoid and rotator cuff strengthening resulted in the best PROMS with lowest rates of recurrence ³¹. The BESS patient care pathway recommends that if improvement is evident after 12

weeks of physiotherapy then a further 3-6-month course should be undertaken ¹.

Douglas et al 32 carried out a prospective follow up of 104 patients with ASI managed with specialist physiotherapy. The mean Oxford Instability Score (OIS) and SPONSA scores improved significantly by 6 months compared with pre-treatment results (18 to 27, 43% to 67% respectively) and this improvement was sustained at both 12 and 24 months 32. Burkhead and Rockwood found the Rockwood Instability program resulted in good to excellent Constant scores in 87% of patients included in their study 33. Similarly, Watson et al found a 12-week course of structured physiotherapy resulted in significant improvement in both the Western Ontario Shoulder Instability Index (WOSI) and Oxford Instability Shoulder Score (OISS) on short-term follow-up 34. Scott et al 35 assessed the PROMS of 85 patients with ASI managed with physiotherapy alone and found significant improvements at 12-72 month follow up (median OISS improved from 21 to 39, median WOSI improved from 1117 to 485). Similarly, Bateman et al ³⁶ found a statistically significant improvement in OISS and WOSI following 4.5 months of their target led physiotherapy protocol (16.67 point and 36.76% improvement respectively, p< 0.001).

Griffin et al ³⁷ carried out a systematic review to compare physiotherapy treatment programs for ASI and from the available evidence could not identify one specific programme as superior to others. Among the nine treatment programs identified from their review there were six common components: education, movement re-education, static posture correction, shoulder muscle strengthening, functional training and adjuncts ³⁷.

To date only one randomized controlled study has been carried out to assess the efficacy of this treatment for multidirectional ASI, Warby et al compared two 24week (12 session) physiotherapy programmes (the Watson Multi-Directional Instability rehabilitation programme and Rockwood Instability programme) 38 and found the Watson MDI programme resulted in a statistically significant and clinically important improvement in the Melbourne Instability Shoulder Score (MISS) and Western Ontario Shoulder Index (WOSI) outcome scores by the 24-week mark³⁸. Potential reasons for the success of the Watson MDI programme include progression of exercises to achieve task and position specific functional gains, improvement in proximal scapular stability and focus on motor control training of periscapular muscles 38.

Those patients that are resistant to physiotherapy treatment alone require assessment and management by a multidisciplinary team ideally including surgeons, specialist upper limb physiotherapists, occupational therapists, rheumatologists, paediatricians, pain services, neurophysiologists and psychologists ¹.Once

surgical targets have been excluded, the focus of treatment should be to develop strategies within a biopsychosocial framework to enable the patient to manage their symptoms.

The high prevalence of psychological co-morbidities in this cohort, as evidenced by Lebe et al ¹⁶, makes the involvement of psychologists from the outset of treatment ideal. Jaggi et al ³⁹ introduced a nurse led psychiatry clinic in parallel to the complex instability clinic at their tertiary center. Following initial mental health screening 26 of the 51 patients involved in the study met the criteria for invitation to the psychiatry clinic. Patients were then offered appropriate psychological support to optimize their ASI management (talking therapies, commencement of antidepressants, referral for attention deficit hyperactivity disorder/ autistic spectrum disorder assessment) ³⁹.

Further non-operative interventions which can be of benefit include botulinum toxin injections of the pectoralis major +/- latissimus dorsi to reduce tonic activity which can contribute to persistent dislocation, although affects could be temporary and may not alter central processing or address the primary driver for the abnormal muscle activity 40. Moroder et al assessed the efficacy of 'shoulder pacemaker' treatment using an electrical muscle stimulation-based therapy protocol to address abnormal muscle activation in patients with PP-FSI, they found all clinical outcomes significantly improved by the end of treatment with all participants able to achieve stable shoulder motion Electromyography (EMG) biofeedback has been used with good results to enhance posterior deltoid recruitment as part of treatment for patients with posterior shoulder instability 41, 42.

Surgical Intervention

In cases where non-operative measures have failed surgical management can be considered however literature on the outcomes is inconsistent and the studies largely of low quality. The lack of robust evidence is in part due to great heterogeneity in both the procedures performed and outcome measures used. Surgical intervention for ASI should be individualized to address any specific pathology contributing to the presentation and as such there are several possible surgical treatments.

In cases of capsule-ligamentous or labral insufficiency, an open or arthroscopic capsular shift/ plication or thermal capsular shrinkage can be performed however recurrence rates and outcomes quoted in the literature vary. Jaggi et al ⁴³ carried out a single centre randomised placebo-controlled trial of arthroscopic capsular shift stabilization vs diagnostic arthroscopy in 68 patients with atraumatic shoulder instability. The Western Ontario Shoulder Instability Index (WOSI) improved by over 40% by 6 months post operatively in

both arms, there was not a statistically significant difference between the outcomes for each intervention suggesting no additional benefit of stabilization ⁴³. Raja et al performed a retrospective analysis of 2-year outcomes for 72 shoulders in 70 patients with Type II instability undergoing arthroscopic inferior capsular shift in their tertiary unit ²⁹. Their results found 8% required revision surgery whilst 39% experienced recurrent symptoms, most commonly subluxation. Despite high recurrence rates patient-reported functional outcomes were improved at both short and medium-term follow-up ²⁹.

Chen et al 44 carried out a meta-analysis assessing the effectiveness of surgical management for MDI. The rates of recurrent instability following open capsular shift and arthroscopic capsular shift were found to be 9.9% and 6.08% respectively with risk of reoperation approximately 5% for both procedures. The metaanalysis performed by Lebe 45 comparing surgical with conservative management of MDI found recurrence rates of 16% for arthroscopic capsular plication, 11% for open capsular shift and 28.31% for thermal capsulorrhapy. Arthroscopic capsular plication conferred the greatest improvement in functional outcome scores with lowest re-operation rates (3.76%) suggesting this procedure could be considered the gold standard 45. Biomechanical studies have demonstrated that capsular shift with post-operative physiotherapy can restore the normal muscular activity and rotational centres of the GHJ on movement for up to 4 years 46.

Additional procedures to address redundant capsular volume include thermal capsular shrinkage, arthroscopic capsulorrhapy and rotator interval closure. Chen et al found that thermal capsular shrinkage had a high recurrence rate of 23.9% and as such concluded this procedure should be avoided for MDI ⁴⁴. Rotator interval closure has not been found to improve recurrence rates of functional outcomes ⁴⁴.

Bony procedures to address ASI, by increasing the static stability of the GHJ, are not routinely performed and evidence for their efficacy is limited. Walch et al ⁴⁷ first proposed combining capsular shift and latarjet procedures for the management of hyper lax shoulders. Ropars et al ⁴⁸ reported excellent or good results with a stability rate of 95% following open latarjet procedures with Neer capsulorrhaphy in their series of 77 patients with anterior shoulder instability and anterior capsular redundancy. Boileau et al performed a retrospective evaluation of 30 shoulders in 28 young athletes with recurrent anterior instability and hyperlaxity who were managed with arthroscopic capsular plication and the trillat procedure, a closed wedge osteotomy of the coracoid tilted inferiorly, posteriorly and medially and

affixed to the glenoid neck above the subscapularis with screw or suture button ⁴⁹. Their cohort had good outcomes with 80% reporting good or excellent Rowe scores, 86% of patients returning to participation in sports and a 10% recurrence rate ⁴⁹.

Conclusion

Atraumatic shoulder instability is a complex condition which requires a holistic management strategy tailored to the patients' individual presentation and pathology. Non-operative management, with a specialist upper limb rehabilitation programme, is the mainstay of treatment and there is growing evidence for its efficacy in this condition. Surgical intervention should be reserved for cases with defined structural pathology, that have failed conservative measures and have had mental and social co-morbidities optimised. Patients and surgeons must remain mindful that evidence indicates surgery for ASI can have variable outcomes, significant rates of recurrence and may even exacerbate symptoms.

The management of ASI is an under-researched field with several potential avenues for further investigation. Through a greater understanding of the pathology underpinning ASI new treatment strategies could be adopted. For example, the increased prevalence of ASI in female patients suggests a possible link between hormonal imbalances and abnormal soft tissue and muscular development, increasing laxity and predisposing to instability. Good quality evidence regarding the role of surgical intervention is also required. To date there are no studies comparing nonoperative intervention with surgical outcomes.

There is a growing understanding that a 'biopsychosocial approach' is key in the management of ASI, involving psychological services from the outset to support treatment. For those patients that are resistant to conventional non-operative management and surgical intervention a holistic approach is essential. In recalcitrant cases it may be necessary for clinicians to support the patient in living with this chronic condition and its effects on both physical and mental health.

Conflict of Interest:

The authors have no conflicts of interest to declare

Funding Statement:

None.

Acknowledgements:

None.

References:

- 1.Noorani A, Goldring M, Jaggi A, Gibson J, Rees J, Bateman M et al. BESS/BOA patient care pathways: Atraumatic shoulder instability. *Shoulder and Elbow*. 2019 Vol 11 (2) 60 70. DOI:: 10.1177/1758573218815002
- 2. Johannessen EC, Reiten HS, Løvaas H, et al. Shoulder function, pain and health related quality of life in adults with joint hyper-mobility syndrome/Ehlers—Danlos syndrome-hypermobility type. *Disabil Rehabil*. 2016; 38: 1382–1390.
- 3. Neer CS II, Foster CR, Inferior capsular shift for involuntary inferior and multidirectional instability of the shoulder. A preliminary report. *J Bone Joint Surg Am*. 1980. 62:897–908
- 4.Neer CS. Involuntary inferior and multidirectional instability of the shoulder: etiology, recognition, and treatment. *Instr Course Lect.* 1985;34:232-8.
- 5.Moroder P, Danzinger V, Maziak N, Plachel F, Pauly S, Scheibel M et al. Characteristics of functional shoulder instability. *J Shoulder Elbow Surg.* 2020 Jan;29(1):68-78. doi: 10.1016/j.jse.2019.05.025.
- 6.Moroder P, Plachel F, Van-Vliet H, Adamczewski C, Danzinger V. Shoulder-Pacemaker Treatment Concept for Posterior Positional Functional Shoulder Instability: A Prospective Clinical Trial. *Am J Sports Med.* 2020 Jul;48(9):2097-2104. doi: 10.1177/0363546520933841.
- 7.Matsen FA III, Thomas SC, Rockwood CA Jr, Wirth MA. Glenohumeral instability. In: Rockwood CA Jr, Matsen FA III (eds) *The shoulder, vol* 1. 2005 Saunders, Philadelphia, pp 611–754
- 8. Angus Lewis, T Kitamura, J.I.L Bayley. The classification of shoulder instability: new light through old windows!. *Current Orthopaedics*, 2004. Volume 18, Issue 2. Pages 97-108, ISSN 0268-0890,doi.org/10.1016/j.cuor.2004.04.002. g.Longo UG, Rizzello G, Loppini M, et al. Multidirectional instability of the shoulder: a systematic review. *Arthroscopy* 2015; 31: 2431–2443.
- 10.Krøner K, Lind T, Jensen J. The epidemiology of shoulder dislocations. *Arch Orthop Trauma Surg* 1989;108:288-90.
- 11. Rodeo SA, Suzuki K, Yamauchi M, Bhargava M, Warren RF. Analysis of collagen and elastic fibers in shoulder capsule in patients with shoulder instability. *Am J Sports Med.* 1998. 26:634–643
- 12. Howard A, Powell JL, Gibson J, Hawkes D, Kemp GJ, Frostick SP. A functional Magnetic Resonance Imaging study of patients with Polar Type II/III complex shoulder instability. *Sci Rep.* 2019 Apr 18;9(1):6271. doi: 10.1038/s41598-019-42754-1.
- 13. Bahu MJ, Trentacosta N, Vorys GC, Covey AS, Ahmad CS. Multidirectional instability: evaluation and treatment options. *Clin Sports Med.* 2008;27(4):671-689.
- 14. Warner JJ, Deng XH, Warren RF, Torzilli PA. Static capsuloligamentous restraints to superior-inferior translation of the glenohumeral joint. *Am J Sports Med* 1992. 20:675–685
- 15. Nyiri P, Illyés A, Kiss R, Kiss J. Intermediate biomechanical analysis of the effect of physiotherapy only

- compared with capsular shift and physiotherapy in multidirectional shoulder instability. *J Shoulder Elbow Surg.* 2010 Sep;19(6):802-13. doi: 10.1016/j.jse.2010.05.008. PMID: 20713276.
- 16.Lebe M, Burns SA, Falworth M, Higgs DS, Rudge WB, Majed A. Atraumatic shoulder instability: patient characteristics, comorbidities, and disability. *JSES Int.* 2021 Sep 17;5(6):955-959. doi: 10.1016/j.jseint.2021.08.001. PMID: 34766069; PMCID:
- 17.Barrett C. The clinical physiotherapy assessment of non-traumatic shoulder instability. *Shoulder and Elbow*. 2015 Vol 7 (I) 60 0-71. DOI: 10.11771/1758573214548934
- 18. Jaggi A, Noorani A, Malone A, Cowan J, Lambert S and Bayley I. Muscle activation patterns in patients with recurrent shoulder instability. *Int J Shoulder Surg* 2012; 6: 101–7.
- 19.Grahame R, Bird HA and Child A. The revised (Brighton 1998) criteria for the diagnosis of benign joint hypermobility syndrome (BJHS). *J Rheumatol* 2000; 27: 1777–1779.
- 20. Malfait F, Francomano C, Byers P, et al. The 2017 international classification of the Ehlers-Danlos syndromes. *Am J Med Genet Part C Semin Med Genet* 2017; 175C: 8–26.
- 21. Castori M, Tinkle B, Levy H, et al. A framework for the classification of joint hypermobility and related conditions. *Am J Med Genet C Semin Med Genet* 2017; 175: 148–157.
- 22. Mathias C, Low D, Iodice V, Owens A, Kirbis M and Grahame R. Postural tachycardia syndrome current experience and concepts. *Nat Rev Neurol* 2012; 8: 22–34.
- 23.Merolla G, Cerciello S, Chillemi C, Paladini P, De Santis E, Porcellini G. Multidirectional instability of the shoulder: biomechanics, clinical presentation, and treatment strategies. *Eur J Orthop Surg Traumatol.* 2015 Aug;25(6):975-85. doi: 10.1007/s00590-015-1606-5.
- 24. Schaeffeler C, Waldt S, Bauer JS, Kirchhoff C, Haller B, Schrö'der M et al. MR arthrography including abduction and external rotation images in the assessment of atraumatic multidirectional instability of the shoulder. *Eur Radiol* 2014. 24:1376–1385
- 25.Moroder P, Danzinger V, Maziak N, Plachel F, Pauly S, Scheibel M, Minkus M. Characteristics of functional shoulder instability. *J Shoulder Elbow Surg.* 2020 Jan;29(1):68-78. doi: 10.1016/j.jse.2019.05.025.
- 26. Van der Linde JA, Bosmans JE, Ter Meulen DP, van Kampen DA, van Deurzen DF, Haverlag R et al. Direct and indirect costs associated with nonoperative treatment for shoulder instability: an observational study in 132 patients. *Shoulder Elbow*. 2019 Aug;11(4):265-274. doi: 10.1177/1758573218773543.
- 27.Cho C.H., Seo H.J., Bae K.C., Lee K.J., Hwang I., Warner J.J. The impact of depression and anxiety on self-assessed pain, disability, and quality of life in patients scheduled for rotator cuff repair. *J Shoulder Elbow Surg*. 2013;22:1160–1166. doi: 10.1016/j.jse.2013.02.006.
- 28. Tashjian R.Z., Henn R.F., Kang L., Green A. The effect of comorbidity on self-assessed function in patients with a

- chronic rotator cuff tear. J Bone Joint Surg Am. 2004;86-A:355–362. doi: 10.2106/00004623-200402000-00020.
- 29.Raja, Senthooran et al. Abstract: Arthroscopic Stabilisation of Atraumatic Shoulder Instability: Minimum Two Year Outcomes. *Journal of Shoulder and Elbow Surgery*, 2021. Volume 30, Issue 7, e433
- 30.Burkhead WZ Jr, Rockwood CA Jr. Treatment of instability of the shoulder with an exercise program. *J Bone Joint Surg Am*. 1992 Jul;74(6):890-6. PMID: 1634579.
- 31. McIntyre K, Bélanger A, Dhir J, Somerville L, Watson L, Willis M, Sadi J. Evidence-based conservative rehabilitation for posterior glenohumeral instability: A systematic review. *Phys Ther Sport*. 2016 Nov;22:94-100. doi: 10.1016/j.ptsp.2016.06.002.
- 32. Douglas T, Jaggi A, Grange S, Lambert S. Prospective 2 year follow up of patient and diagnosis specific specialist physiotherapy treatment for patients with atraumatic shoulder instability. Abstract submission *British Elbow and Shoulder Society Annual Scientific Meeting* 2009.
- 33. Burkhead WZ Jr and Rockwood CA Jr. Treatment of instability of the shoulder with an exercise program. *J Bone Joint Surg Am* 1992; 74: 890–896.
- 34. Watson L, Balster S, Lenssen R, et al. The effects of a conservative rehabilitation program for multidirectional instability of the shoulder. *J Shoulder Elbow Surg* 2018; 27: 104–111.
- 35. Scott M, Sachinis NP, Gooding B. The role of structured physiotherapy in treating patients with atraumatic shoulder instability: Medium term results from a case series. *Shoulder Elbow*. 2020 Feb;12(1):63-70. doi: 10.1177/1758573218825392.
- 36.Bateman M, Smith BE, Osborne SE, Wilkes SR. Physiotherapy treatment for atraumatic recurrent shoulder instability: early results of a specific exercise protocol using pathology-specific outcome measures. Shoulder Elbow. 2015 Oct;7(4):282-8. doi: 10.1177/1758573215592266.
- 37. Griffin J, Jaggi A, Daniell H, Chester R. A systematic review to compare physiotherapy treatment programmes for atraumatic shoulder instability. *Shoulder Elbow.* 2023 Aug;15(4):448-460. doi: 10.1177/17585732221080730.
- 38. Warby SA, Ford JJ, Hahne AJ, et al. Comparison of 2 exercise rehabilitation programs for multidirectional instability of the glenohumeral joint: a randomized controlled trial. *Am J Sports Med* 2018; 46: 87–97.
- 39. Jaggi A, Cartwright J. Treating both head & shoulders; introduction of a joint psychiatry liaison and atraumatic shoulder instability clinic a quality improvement project. Abstract submission *British Elbow and Shoulder Society Annual Scientific Meeting* 2025.

- 4o.Sinha A, Higginson DW and Vickers A. Use of botulinum A toxin in irreducible shoulder dislocation caused by spasm of pectoralis major. *J Shoulder Elbow Surg* 1999; 8: 75–76.
- 41.Beall, M. S., Jr., Diefenbach, G., & Allen, A. Electromyographic biofeedback in the treatment of voluntary posterior instability of the shoulder. *American Journal of Sports Medicine*, 1987. 15(2), 175e178.
- 42. Young, M. S. Electromyographic use in the treatment of voluntary posterior dislocation of the shoulder: A case study. *Journal of Orthopaedic and Sports Physical Therapy*, 1994. 20(3), 171e175.
- 43. Jaggi A, Herbert RD, Alexander S, Majed A, Butt D, Higgs D, Rudge W, Ginn KA. Arthroscopic capsular shift surgery in patients with atraumatic shoulder joint instability: a randomised, placebo-controlled trial. *Br J Sports Med.* 2023 Dec;57(23):1484-1489. doi: 10.1136/bjsports-2022-106596.
- 44.Chen D, Goldberg J, Herald J, Critchley I, Barmare A. Effects of surgical management on multidirectional instability of the shoulder: a meta-analysis. *Knee Surg Sports Traumatol Arthrosc.* 2016 Feb;24(2):630-9. doi: 10.1007/s00167-015-3901-4.
- 45.Lebe M. Functional outcome of multidirectional shoulder instability treated surgically and non-surgically: A systematic review of recent literature and meta-analysis. 2018. Dissertation MSc Orthopaedic Trauma Sciences Queen Mary University London
- 46.Nyiri P, Illyés A, Kiss R, Kiss J. Intermediate biomechanical analysis of the effect of physiotherapy only compared with capsular shift and physiotherapy in multidirectional shoulder instability. *J Shoulder Elbow Surg.* 2010 Sep;19(6):802-13. doi: 10.1016/j.jse.2010.05.008.
- 47. Walch G, Agostini JY, Levigne C, Nove-Josserand L. Recurrent anterior and multidirectional instability of the shoulder. *Rev Chir Orthop Reparatrice Appar Mot.* 1995;81(8):682-690.
- 48.Ropars M, Cretual A, Kaila R, Bonan I, Hervé A, Thomazeau H. Diagnosis and treatment of anteroinferior capsular redundancy associated with anterior shoulder instability using an open Latarjet procedure and capsulorrhaphy. *Knee Surg Sports Traumatol Arthrosc.* 2016;24(12):3756-3764.
- 49.Boileau P, Clowez G, Bouacida S, Walch G, Trojani C, Schwartz DG. The Arthroscopic Trillat Procedure Is a Valuable Treatment Option for Recurrent Anterior Instability in Young Athletes With Shoulder Hyperlaxity. *Arthroscopy.* 2023 Apr;39(4):948-958. doi: 10.1016/j.arthro.2022.10.046.