

REVIEW ARTICLE

A Scoping Literature Review of Lung HRCT in Connective Tissue Disease: Descriptions and Prediction of Mortality

Olga Morgan, Thasia Woodworth ¹, Raymond Paria, Harsh Agrawal ², Aishwarya Bollampally, Kevin Kafaja ³, Adla B Hassan ⁴, Nihal Fathi ⁵, Daniel E Furst ⁶

¹ Leading Edge Clinical Research

² Division of Cardiovascular Medicine, Department of Medicine, University of California, San Francisco

³ Student in an Organized Health Care Education/Training Program, Pomona, CA

⁴ Internal Medicine Department Arabian Gulf University Consultant Rheumatologist King Abdulla Medical City Bahrain

⁵ Head Faculty of Medicine, Assiut University

⁶ Prof. of Rheumatology (emeritus) at University of California Los Angeles, Prof. of Rheumatology at the University of Washington, Seattle Washington, Prof. of Rheumatology (research) at the University of Florence, Florence Italy

OPEN ACCESS

PUBLISHED

31 May 2025

CITATION

Morgan, O., Woodworth, T., et al., 2025. A Scoping Literature Review of Lung HRCT in Connective Tissue Disease: Descriptions and Prediction of Mortality. Medical Research Archives, [online] 13(5).

<https://doi.org/10.18103/mra.v13i5.6602>

COPYRIGHT

© 2025 European Society of Medicine. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

DOI

<https://doi.org/10.18103/mra.v13i5.6602>

ISSN

2375-1924

ABSTRACT

Background and Objectives: This scoping literature review is intended to describe the characteristic HRCT lung findings related to interstitial lung disease (ILD) which occur in: dermatomyositis/polymyositis (DM/PM), rheumatoid arthritis (RA), Sjogren's Syndrome (SjS), systemic lupus erythematosus (SLE) and systemic sclerosis (SSc). In addition, we examined whether HRCT features in these diseases could predict mortality.

Methods: We reviewed the medical literature from PubMed, EMBASE and Cochran reviews from 1993 to 2021, in DM/PM, RA, SjS, SLE and SSc. The articles were extracted according to defined inclusion/exclusion criteria using standardized forms with double extraction of 20% of the articles. Analysis included descriptive statistics plus tabulations for comparisons of frequency, prevalence, and prediction of mortality.

Results: Of 478 publications, 110 studies were included. HRCT features consistent with ILD were reported with variable prevalence (often depending on study design) in RA (15-43%), SjS (~50%), DM/PM (~60%), SSc (~53%) and SLE (53%) patients. Usual interstitial pneumonia (UIP) frequently predicted mortality as did, less commonly, honeycombing and increasing fibrosis. Other non-HRCT factors such as decreased FVC, DLCO, increased age, smoking and male gender were predictors of mortality in RA and SSc. Additionally, predictors of mortality were: UIP in RA; increased skin involvement in SSc, diffuse alveolar hemorrhage in SLE (although rare) and MDA5 in DM, when available.

Conclusion: ILD and increased fibrosis, by HRCT, is relatively common in these connective tissue diseases and plays a significant role in mortality. Specific occurrences such as UIP (RA), increased skin involvement (SSc), diffuse alveolar hemorrhage (SLE) and MDA 5 (DM) also affected mortality.

Keywords: HRCT, Lung, RA, DM/PM, Sjogren's e, SLE, SSc, description, prognosis, scoping review

Introduction

Collagen vascular diseases (CVD) that show features of interstitial lung disease (ILD) include rheumatoid arthritis (RA), systemic sclerosis (SSc) Sjogren's syndrome (SjS), systemic lupus erythematosus (SLE), polymyositis and dermatomyositis (DM/PM). ^{1,2} There can be changes in pulmonary function, quality of life, function, survival, and imaging when considering the lung in these diseases. ²⁻⁸

We examined the use of High-Resolution Computerized Tomography (HRCT) imaging for diagnosis/screening and monitoring of CVD-ILD as it is a reasonable reflection of lung anatomy, and it is both noninvasive and sensitive ^{8,9}. There was previously hesitation with respect to using this modality because a significant amount of radiation was necessary for imaging. However, lower radiation protocols have alleviated this concern to a large degree ^{10,11}. While HRCT was the sole imaging modality used in this review, other modalities were also considered

MRI was considered in connective tissue diseases because it does not expose patients to radiation. MRI correlates well with HRCT of the lungs ($r=0.85$) in small numbers of patients while extent of involvement on MRI is less than HRCT. Agreement between the two methods in SSc is good ($\kappa=0.73$) ^{1,17} and 0.85 in another (PMID 27107755) Some authors in fact, feel that MRI is more sensitive than HRCT, although it is less specific. In a 24 patient SSc study, sensitivity of MRI vs. HRCT was 100%, while specificity was 60% ¹⁸ (doi10.1016/j.rbre.2017.02.001) However, the expense of MRI makes it much less feasible.

Ultrasound of the lungs, too, may be a measurement modality in the future but it is not yet sufficiently validated for use, as its sensitivity, specificity, accuracy, ability to examine change and minimally important clinical difference are not yet fully delineated ¹⁴(repeat of 14:28923086).

As lung damage, logically correlated with mortality, the influence of HRCT and mortality was also examined. HRCT of the lungs was associated with mortality in DMS/PMS (21, 22, 23, 28), rheumatoid arthritis (54 – 56, 58 – 60), Sjogren's syndrome (68, 71, 72) and systemic sclerosis (98, 99). However, subsets of HRCT damage such as UIP and other factors such as age and disease activity (e.g., 21, 55, 72) affected mortality.

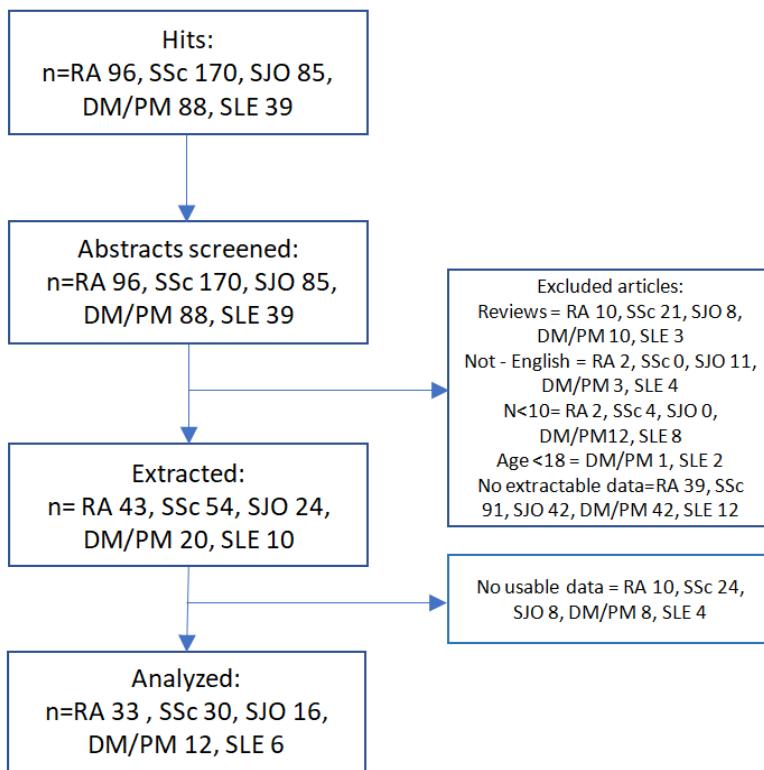
In this review, the HRCT findings in DM/PM, RA, SJS, SLE and SSc were described and the contribution of HRCT of the lungs to mortality in these diseases was examined.

Methods:

This was a scoping literature review of medical literature from PubMed, EMBASE and Cochrane Reviews (1993 to

2021) analyzing HRCT changes in the lung in patients with DM/PM, RA, SJS, SLE, and SSc. A case report form was developed and used to facilitate data extraction consistency.

Inclusion criteria were the following: reports of studies in English, conducted in patients ≥ 18 years of age, containing pulmonary HRCT data, explicitly in at least one of DM/PM, RA, SjS, SLE or SSc, data separable for extraction if more than one disease was included. Exclusion criteria included non-English, exclusively animal or in vitro data and lack of separability into the diseases of interest. We accepted the diagnoses as reported, and explicit description of the HRCT technique was not required. Reviews were not included although the bibliographies were examined for articles not found in the initial literature review.


To ensure consistency, 20% of the articles were independently extracted by 2 individuals. 80% consistency was found. We used the EPHPP [<https://www.eppp.ca/quality-assessment-tool-for-quantitative-studies/>] to rate articles.

HRCT-ILD patterns of interest included usual interstitial pneumonitis (UIP), nonspecific interstitial pneumonia (NSIP) and their components. Predominant findings of UIP were characterized by patchy, ground glass appearance, reticulation, fibrosis and bronchiectasis plus honeycombing with basal preponderance. NSIP was defined by more uniform ground glass opacity, reticulation, fibrosis, +/- bronchiectasis but without honeycombing. It should be noted that these definitions were inconsistent in the articles and often missing, with only UIP and NSIP reported. Lymphocytic interstitial pneumonia (LIP) is defined by centrilobular nodules, ground-glass attenuation, septal and bronchovascular thickening and thin-walled cysts. Organizing pneumonia (OP) findings included patchy bilateral consolidation, ground-glass opacification, perilobular opacity, nodules or masses, bronchial wall thickening, bronchial dilatation, mediastinal lymphadenopathy and pleural effusion.

Our study additionally examined whether HRCT ILD lung changes were associated with patient morbidity/mortality. Because there was marked heterogeneity, we tabulated results for descriptive statistics and visually compared results.

Results

A total of 478 publications were identified, of which 104 met the selection criteria. HRCT clinical data were extracted for risk factors for ILD development, and/or prediction of mortality.

Table 1: HRCT subsets, grouped by disease (updated on 3/07/25tgw)

Disease/HRCT feature	ILD (range, studies>50 pts)	UIP	NSIP	LIP	OP
Rheumatoid Arthritis (24/24 studies >50pts)	19-43%	~44%	~38%	0**-	15
Systemic Sclerosis (Scleroderma) (21/35 studies>50pts)	28-77%	37%	84%	37%	-0**
Dermatomyositis/ Polymyositis (7/14 studies>50pts)	31-43%	14.8%	33.1%	0	36.9%
Sjogren's Syndrome (13/23 studies>50pts)	11-53%	23.9%	22.8%	3.2%	2.4%
Systemic Lupus Erythematosus (2/11 studies>50pts)	13-85%	8.1%	14.5%	1.7%	11.2%

ILD- interstitial lung disease; NSIP-Nonspecific interstitial pneumonia; UIP-Usual interstitial pneumonia, OP-organizing pneumonia; LIP- Lymphocytic interstitial pneumonia

*there were other ILD patterns studied that were specified as "others" that aren't represented in the above table; some studies had less patients at the end due to loss of follow-up, therefore, not all the numbers add up to 100%

** case reports only e.g. doi 10.1590/0100-3984.2015.0116.¹²

Table 2. HRCT detailed descriptions (updated 020225)

fax points out that, while variable, reticulation (34.1 – 49.8%) and groundglass opacification (20 – 54.1%) Disease	GGO	HC	Reticular pattern	Traction bronchiectasis
Rheumatoid Arthritis	54.1%	26.9%	47.8(or 57.8)**%.	36.6(or 49.1)**
Systemic Sclerosis (Scleroderma)	49.8%	29.7%	37.3%	42.5%
Dermatomyositis/ Polymyositis	29.9%	12.7%	39.2%	10.9%
Sjogren's Syndrome	25.8%	18.2%	34.1%	41.4%
Systemic Lupus Erythematosus	20.0%	Xx	Xx	14.7%

Please put in the numbers you have here) xx= <= 15 pts so unreliable result

Table 3. HRCT features predicting mortality (could remove last 2 rows- redundant of UIP)

Factors affecting mortality	PM/DM	RA	SJS	SLE	SSc
ILD	+	+			
NSIP				+	
UIP		++	+		+
DAH				+	
GGO	+				
Fibrosis / reticulation extensive		+	+	+	+
HC		+	+		+
Lower Lobe Consolidation	+				
Traction Bronchiectasis		+			

NSIP-Nonspecific interstitial pneumonia; UIP-Usual interstitial pneumonia, HC- honey combing; ILD- interstitial lung disease; he 6

Dermatomyositis/polymyositis (DM/PM)

24 (out of 88) studies with DM/PM patients were analyzed in our review, including 1357 patients ^{3,13-35}, ILD was found in approximately 31-43% (across 7 of 14 studies with >50 pts), Kameda and Takeuchi's 30-50% prevalence. Only four studies looked at specific ILD patterns, finding NSIP (33.1%), organizing pneumonia (OP) (36.9%), then UIP (14.8%) ^{13,15,17,36}. (Table 1). Also, presence of ground glass opacity (29.9%), reticular pattern (39.2%) and fibrosis (36%) were common findings. A low prevalence of honeycombing was observed (12.7%) ^{2,18,19} (Table 2)

Among 4 studies concentrating on the HRCT among DM/PM patients, irregular linear patterns, consolidation and ground glass seemed the predominant patterns ^{18,19,37}. Two of 30 patients in one study had lung cancer, introducing the need for caution when examining the HRCT ²⁰.

A study by Kotani et al. found that ground glass opacities (GGO) ≥ 25% of the right middle lobe was the best cut-off value for a poor prognosis (sensitivity: 85.7%, specificity: 85.7%), and the survival rate after 24 weeks was much lower in these patients (survival rate: 0.0%) than in those with < 25%GG (92.9%) (p < 0.0001 (35) (Table 3)

Four studies examined predictors of survival ^{21-23,38}. Two studies highlighted HRCT (ground glass, consolidation, UIP ^{21,23} Table 2), and 2 studies also included function tests in the survival prediction (FVC, DLCO ^{21,23}) while 4 studies included a relatively large range of blood tests (anti-MDA 5,anti-CADM110, decreased C3/4/8 T cells, increased CD19 cells, our YKL – 40, anti-RO 52, CEA, Ferritin ^{23,25,38,39}, out of which only anti-MDA 5 was found in more than one study, Most prognostic and predictive studies combined serologies or laboratory tests with HRCT. Anti-CADM-140/MDA5 autoantibody titer predicted worse disease outcome in patients with dermatomyositis ¹⁸. Several studies with clinically amyopathic dermatomyositis showed that an HRCT score, when associated with extensive interstitial lung disease, significantly increased mortality. Additionally, lower lobe consolidation/ground glass attenuation on HRCT may predict worse survival in these patients ^{18,26,33,34,40} (Table 3).

For example, Tanizawa et al. showed that, in clinically amyopathic dermatomyositis, lower lobe consolidation/

GG pattern (odds ratio, 23.1; P < 0.02) and the presence of MDA5 (odds ratio, 14.1; P < 0.03) were independent predictors of 90-day mortality ²³. This was supported by Hallowell et al., for MDA5, as well as anti-JO-1 and anti-Ro52, especially in the presence of CCP,RF,SSA, and SSB antibodies ^{3,25}.

Summary: In studies of HRCT lung findings in DM/PM, the most common findings were irregular linear patterns, ground glass, and consolidation. The HRCT plus serological markers, particularly anti-MDA5, predict poorer survival in these patients.

Rheumatoid Arthritis (RA)

Twenty-four (of 96) studies in RA patients were analyzed to examine the role of HRCT to diagnose and assess prevalence of ILD, as well as to examine ILD impact on survival. All studies described features (ground glass opacities, honeycombing, reticular pattern, traction bronchiectasis, or/and patterns of ILD on HRCT (UIP > NSIP > OP).

Twelve studies (>50 patients) provided prevalence data, using retrospective chart reviews with a prevalence of 19-43% ⁴¹⁻⁵².

Thirteen studies examined only HRCT-ILD features relative to clinical characteristics including morbidity/mortality, in retrospective ILD patient studies of various types. ⁵³⁻⁶⁵ (Table 1). Specific HRCT patterns and/or features were described variously, either as UIP (~44%), NSIP (~35%), or less commonly as organizing pneumonia (OP) in 15%. In some studies, neither UIP nor NSIP were noted although the components were: ground glass opacity (GGO) (54.1%), bronchial wall thickening (50.3%), reticular pattern (57.8%), honeycombing (26.9%) and t's truck traction bronchiectasis (38.6%) (Table 1,2).

The presence of UIP was significantly associated with poor prognosis and survival in 8 studies (Table 3). ^{47,54-56,58-60,62}. For example, during the 10.4 (95%CI:8.2-12.9) year follow-up period in a study by Solomon et al. in 108 UIP RA and 29 NSIP RA patients, 44% of the RA-UIP patients died vs. 24% who had RA-NSIP (Chi-squared 3.59, p=0.05) (median survival 10.18 years versus 13.62 years; log rank p=0.02)(63).

Three studies demonstrated that the extent of lung disease or fibrosis on HRCT ^{46,56,63} was associated with

mortality, and two studies^{54,60} found that honeycombing, and traction bronchiectasis (features of UIP) were associated with patient mortality (Table 3). Further, Nurmi et al. described HRCT findings in 60 RA-ILD patients and showed that the extent of reticulation (hazard ratio 1.14), traction bronchiectasis (HR: 1.18), and architectural distortion (HR 1.09) - all associated with UIP - predicted decreased survival⁵⁹. Yunt et. al. showed decreased survival in the 23 of 158 RA-ILD patients with UIP⁵⁸. (Table 3)

Additional significant predictors of mortality on multivariate analyses in other studies were presence of emphysema, a decrease of FVC (% predicted) from baseline by $\geq 10\%$, male gender, and smoking history^{46,56,64}.

Summary: Across all studies, ILD was identified in $\sim 31\%$ (range 19-43%) of RA patients. (Table 1) In most studies, UIP, characterized by ground glass opacity, bronchial wall thickening, reticular pattern, often with traction bronchiectasis and honeycombing, was more common than NSIP. UIP was significantly associated with poor prognosis and lowered survival. Additional significant predictors of mortality on multivariate analysis were decreased FVC from baseline by $\geq 10\%$ predicted, age >60 , male gender, and smoking history.

Sjogren's syndrome (SJS)

Thirteen studies with Sjogren's syndrome (SJS) patients were analyzed, including 2810 patients (Table 5). ILD was found in 49.8%. In 617 patients NSIP was demonstrated in 22.8% (mean), and UIP in a mean of 23.9% studies (Table 1). **An outlier with only 8 patients had 44.4% UIP. In the group of 12 studies, components were as follows: traction bronchiectasis (41.4%), reticular pattern (34.1%), honeycombing (18.2%) and ground glass opacity (25.8%)^{23,66} (Table 2).

Lymphocytic Interstitial pneumonia (LIP), while very uncommon in our review (3.2%), is more common in SJS than the other; reviewed connective tissue diseases (0-1.7%)^{24,67-69}. It is characterized by extensive ground glass opacities, inter-lobular septal thickening and scattered thin-walled cysts^{68,70}. Although useful to increase the suspicion of Sjogren's, this description also applies to other connective tissue diseases, and non-connective tissue diseases such as HIV and drug reactions¹⁴. Separately and independently, diffuse alveolar hemorrhage was found in 3.2%.

Extent of HRCT lung involvement, presence of UIP patterns, and presence of honeycombing were significant factors in predicting mortality in Sjogren's syndrome^{68,71} (Table 3). Ming-Han et al., found that a high, semi-subjective, HRCT score (range 0-18, high/severe ≥ 13) was significantly and independently associated with higher mortality, as was "low" FEV1 and FVC $< 60\%$ ^{70,71}. Kim et al found that UIP, increased age and increased ESR predicted mortality⁷².

In one study examining the prognostic significance of HRCT findings in Sjogren's Syndrome lung disease, verified by histology, a low PaO₂ and microscopic

honeycombing were independently associated with poor survival (Table 3).

Summary: NSIP (22.8%) or UIP (23.9%) or LIP (3.2%) Figure 2) patterns were seen in this disease in the available 12 subset-analyzed studies. Although uncommon, lymphocytic interstitial pneumonia was more common in SJS than in the other connective tissue diseases, as were thin-walled cysts. LIP and thin-walled cysts should make one consider Sjogren's Syndrome. Extent of HRCT ILD lung involvement and honeycombing were significant factors in predicting mortality in SJS.

Systemic Lupus Erythematosus (SLE)

Sixteen (out of 39) studies with SLE patients, a total of 269 patients, met our inclusion criteria and were analyzed⁷³⁻⁸⁸ SLE-ILD was found in 53%. Only two studies meeting our inclusion criteria included ILD patterns. NSIP was found in 14.5%, UIP in 8.1% and obliterating pneumonia in 11.2%. Pleural effusions (26.4%) were found relatively more frequently in SLE than other connective tissue diseases (Table 1)⁷⁵. In some cases, the number of patients was so small (e.g. 10 patients with honeycombing - "47.6%") that percentage results, while included here for completeness, should be viewed with suspicion.

Sant et al. concluded that HRCT had excellent ability to detect lung changes in patients despite absence of symptoms, and normal pulmonary function tests⁸⁹. In Fenlon et al, HRCT abnormalities were identified in 24 patients (70%), while pulmonary function abnormalities were present in only 14 patients (41%), and the plain chest radiograph was abnormal in only 8 patients (24%)⁷³. It should be pointed out that diseases other than SLE, such as infection or renal disease, could also have explained the HRCT appearance of ILD.

A necropsy series of 90 SLE patients showed that interstitial lung disease was always secondary to other causes (e.g. tuberculosis, infection, renal disease)⁷⁹. At necropsy, as expected, there were more pathological findings than would be seen on HRCT. Pleuropulmonary involvement was seen in 97.8% of 90 autopsies, pleuritis in 77.8%, bacterial infections in 57.8%, alveolar hemorrhage in 25.6%. Writing and pulmonary arterial hypertension in 4%.

Clinically significant alveolar hemorrhage by HRCT is most commonly found in SLE and vasculitis among the rheumatic diseases but is rare (Table 2). Andrade et. al. found it in only 1.6% of their retrospective chart review from 1984 to 2013, while others found it in 2-5.4%^{81,82}.

The combination of bilateral diffuse, dependent ground glass opacity, airspace bronchograms and the superposition of ground glass and reticulation (called "crazy paving") are highly suggestive of diffuse hemorrhage on HRCT⁸². Mortality in diffuse alveolar hemorrhage was 28.6% and 61.9% in two studies^{81,82}.

The only study found which attempted to examine predictors of survival was by Enomoto et al in 55 patients⁷⁵ (Table 3). They identified that NSIP, NSIP+OP, and presence of fibrosis on HRCT were significant predictors

of poor survival. Other non-HRCT findings that increased mortality were history of smoking, thrombocytopenia, positive Anti-ds DNA antibody, and Serum KL-6 antigen. **Summary:** It appears that HRCT abnormalities are found frequently (55.7%) while symptoms, chest radiographs and pulmonary function tests are abnormal in far fewer SLE patients. Pleural effusions and infiltrates/consolidation were the most common HRCT findings. Rare diffuse alveolar hemorrhage is the most important predictor of mortality.

Systemic Sclerosis (SSc)

Thirty-two (out of 170) studies with SSc patients from 1993 to 2021 were reviewed ^{11,18,19,40,90-109} and ILD was specifically examined in 13 of those studies (2534 patients). ILD was found in a mean of 53% of these SSc patients (Table 1).

Only five studies looked at specific ILD patterns. They showed a significant predominance of NSIP in 102 of 121 ILD patients (84%) ^{16,97,100,110,111}. Other common chest CT characteristics of SSc-ILD included ground glass opacity (49.8%), reticular pattern (37.3%), honeycombing (29.7%) and traction bronchiectasis (42.5%) ^{11,16,19,94,100,110,112} (Table 2).

Studies that looked at prognosis (5 studies) showed that increased lung disease or baseline lung fibrosis, UIP, and honeycombing were associated with greater mortality (OR 1.03- 3.4, p<0.001-0.05) ^{40,94,98,99,101,105,113,114} (Table 3). Non-HRCT factors predicting mortality included pulmonary arterial hypertension, low baseline FVC %, age, Rodnan skin score, male gender, and smoking history ^{40,94,98,99,101,105,113,115}.

A 160 SSc patient study showed that mortality correlated with the extent of baseline lung fibrosis on HRCT (HR, 1.03; 95% CI, 1.01–1.04; P = 0.002) and low baseline FVC and FVC decline (p<0.0001). ¹¹⁵ (Table 3). A study by Sánchez-Cano et al found that SSc-associated mortality ^{98,99} and ILD-related mortality were highest in diffuse cutaneous SSc(dcSSc) patients but that it was actually higher than non-SSc in all three SSc subgroups (dcSSc, limited cutaneous SSc, and Scleroderma without skin disease) than controls ⁹⁹.

Quantitation of the lung HRCT is a newer technique which predicts progression and outcome. For example, a 172-patient study by Moore et al. demonstrated that the presence of >20% fibrosis, ground glass attenuation, reticulation and/or honeycombing was associated with a 3-fold increased risk of deterioration or death in SSc-ILD. Similar findings were noted by Goh et al ¹¹⁵. A different, operator-independent computerized quantitation of ILD predicted mortality in the study by Ariani et al ²⁶, and yet another system review showed response to treatment but did not address mortality ¹⁰³. The most reliable, sensitive, and easiest to use algorithm still needs to be decided but quantitative lung HRCT may turn out to be an improved method by which to use lung HRCT for predicting mortality.

Summary: ILD by HRCT occurs in more than half of SSc patients. Both NSIP and UIP occur in SSc interstitial lung

disease, although NSIP predominates. Fibrosis and ILD by HRCT predicted mortality in multiple studies, although other factors (e.g. male sex, smoking and low FVC) contribute significantly as well. Quantitative lung HRCT represents a new potentially useful application of HRCT.

Discussion

Our literature review of HRCT of the lungs included dermatomyositis/polymyositis, rheumatoid arthritis, Sjogren's syndrome, SLE, and SSc. It allowed cross-disease qualitative comparisons of HRCT findings and examination of prognostic factors which included HRCT.

While HRCT was the sole imaging modality used in this review, other modalities were also considered. As noted above, MRI correlates well with HRCT of the lungs ($r=0.83-0.85$). Further while MRI is more sensitive than HRCT, it is less specific. In one SSc study, sensitivity of MRI vs. HRCT was 100%, while specificity was 60%. Also, MRI is more expensive than MRI's

Also, as noted above, ultrasound of the lungs, while being increasingly used, needs validation in the lungs before it goes into common use. Further, it remains operator dependent, another source of variability. ¹¹⁶.

A Taiwanese nationwide cohort study examined the incidence risk of ILD in those newly diagnosed with systemic autoimmune rheumatic diseases and found that the incidence risk of ILD was greatest among patients with SSc, followed by DM, PM, RA, and SLE. (39). This differed somewhat from our study where the prevalence of ILD was highly variable (table 1 – e.g., SLE: 13% – 85%; SSc: 25 – 77%). ³⁹

Multivariable analyses in the Taiwanese study showed that the risk of ILD was increased among patients with SSc (HR, 172.63), DM (HR, 119.61), PM (HR, 84.89), SLE (HR, 32.18), Sjo (HR, 17.54), or RA (HR, 8.29) ³⁹. In Sjogren's syndrome, the ratio was essentially 1 (HR 0.95) while in RA. UIP predominated (HR 0.80).

A study by Kim et al (2002) supported these results, with NSIP more prevalent in SSc and PM/DM, and less so in Sjogren's or SLE (NSIP was still more prevalent). UIP was more common in RA patients ¹¹⁷.

Fang et al. and Flaherty et al., in their studies, addressed the controversy between NSIP and UIP. They pointed out that UIP is not always an accurate diagnosis when NSIP and UIP coexist, and NSIP can have regions of UIP. Therefore, a more standardized approach such as quantitative HRCT might give more definitive results.

We also examined the descriptions of HRCT features in detail, independent of the disease setting. Table 2 points out that groundglass opacification and reticulation, while somewhat variable are common enough across the diseases so they cannot be used to differentiate among these connective tissue diseases. At the same time, table 2 demonstrates that some patterns, such as traction bronchiectasis seem to be most common in rheumatoid arthritis, Sjogren's syndrome, and systemic sclerosis. These detailed descriptions also pointed out some radiographic findings that were relatively specific, although sometimes

rare, among these connective tissue diseases. A finding lymphocytic interstitial pneumonia, for example, (table 2) should make one suspect the possibility that the patient has Sjogren's syndrome or SLE ¹¹⁷. The presence of pleuritis might make one consider SLE. Organizing pneumonia was by far far the most common in dermatomyositis/polymyositis (table 1) Diffuse alveolar hemorrhage was found predominantly in Sjogren's and SLE among the diseases we considered and should make one consider these diseases (when other causes such as pulmonary emboli, infections etc. have been ruled out) ^{82,118}.

We examined whether HRCT features of the lung could be applied to support predictions of mortality (table 3). In 107 patients with dermatomyositis/polymyositis, UIP was one component of predicting mortality; as mortality was also associated with older age, decreased FVC and DLCO ILD (21). Among 156 rheumatoid arthritis patients followed over 10.2 years, 25.6 % died and mortality was predicted by UIP as well as pleural effusions (55). In SSc, mortality was predicted by age, CRP, FVC and UIP (hazard ratio for UIP: 4.58) with a 5-year survival of 81.1% (72). UIP prognosticate mortality. UIP prognosticates mortality in RA, Sjogren's syndrome and SSc, , although often also associated with other factors, gender ⁷⁵. Oftentimes, PFTs can be used as an additional tool to better evaluate lung involvement and assist in prognosis. In SSc, the combination of fibrosis on HRCT plus decreasing FVC is a logical and prognostic finding ¹¹⁵. In SLE, NSIP associates with poor prognosis and, alveolar hemorrhage alone also signals a very poor prognosis ^{81,82}.

The lower half of table 3, indicates the details of the HRCT which were associated with mortality. On careful examination, however, these details generally supported the subsetting of the upper half of the table. For example, UIP correlated with mortality in RA as did honeycombing, extensive fibrosis and bronchiectasis; these latter three details are all elements of UIP. As another example in SLE, details correlated ground glass opacities and extensive fibrosis with mortality, and these are elements of NSIP.

Winstone et al. conducted a systematic review of predictors of mortality in scleroderma ILD. That study supported ours, although our study included more studies and more patients. HRCT (specifically the extent of fibrosis and presence of honeycombing) predicted mortality, while age, low FVC, low DLCO and male

gender were also predictors ⁴⁰. A review by Walsh et al. concluded traction bronchiectasis and the extent of honeycombing (associated with UIP), together with DLCO<45%, in CTD-ILD, were associated with mortality.

A strength of our review is that it examined the HRCT of the lung across five connective tissue diseases and sought to go beyond a description of HRCTs of the lung to use them for prognosis. Examining across these five connective tissue diseases also allowed some qualitative comparisons.

There are also limitations. We chose to examine the literature from 1993 on as there had been SLRs and meta-analyses prior to that date. This scoping literature review faced challenges typical of such an approach. Including a limited number of relevant studies. Also, diagnoses lacked uniformity, HRCT instruments varied widely, and HRCT methods and definitions inconsistent, often poorly described, and changed over time. Clearly, more standardization and quantitation of the HRCT of the chest are needed. Also, given the highly variable data, a meta-analysis was not possible or appropriate. In the future, when the HRCT quantitative methods are standardized, a meta-analysis may yet be possible. Finally, we examined mortality rather than worsening ILD in our predictive examination as we thought that mortality was both more important and a more solid endpoint.

Conclusion

ILD/increased fibrosis, by HRCT, is relatively common in DM/PM, RA, SJS, SLE, and SSc and plays a significant role in mortality. Specific occurrences such as UIP (RA), increased skin involvement (SSC), diffuse alveolar hemorrhage (SLE) and MDA5 (DM) also affected mortality.

Conflict of interest:

None

Acknowledgement:

Thanks to Claudia Real and Gabriel Valdivia for their invaluable help in completing this Manuscript.

Daniel E Furst - University of Washington, Seattle, Washington; University of Florence, Florence, Italy; University of California Los Angeles, Los Angeles, California

Degree(s)

Daniel E Furst - MD, FACR, MACR

References

1. Castelino FV, Varga J. Interstitial lung disease in connective tissue diseases: evolving concepts of pathogenesis and management. *Arthritis Res Ther.* 2010;12(4):213. doi:10.1186/ar3097
2. Raghu G, Remy-Jardin M, Myers JL, et al. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. *Am J Respir Crit Care Med.* Sep 1 2018;198(5):e44-e68. doi:10.1164/rccm.201807-1255ST
3. Hallowell RW, Ascherman DP, Danoff SK. Pulmonary manifestations of polymyositis/dermatomyositis. *Semin Respir Crit Care Med.* Apr 2014;35(2):239-48. doi:10.1055/s-0034-1371528
4. Fathi M, Vikgren J, Boijesen M, et al. Interstitial lung disease in polymyositis and dermatomyositis: longitudinal evaluation by pulmonary function and radiology. *Arthritis Rheum.* May 15 2008;59(5):677-85. doi:10.1002/art.23571
5. Kowal-Bielecka O, Landewe R, Avouac J, et al. EULAR recommendations for the treatment of systemic sclerosis: a report from the EULAR Scleroderma Trials and Research group (EUSTAR). *Ann Rheum Dis.* May 2009;68(5):620-8. doi:10.1136/ard.2008.096677
6. Matcham F, Scott IC, Rayner L, et al. The impact of rheumatoid arthritis on quality-of-life assessed using the SF-36: a systematic review and meta-analysis. *Semin Arthritis Rheum.* Oct 2014;44(2):123-30. doi:10.1016/j.semarthrit.2014.05.001
7. Ohno Y, Koyama H, Yoshikawa T, Seki S. State-of-the-Art Imaging of the Lung for Connective Tissue Disease (CTD). *Curr Rheumatol Rep.* Dec 2015;17(12):69. doi:10.1007/s11926-015-0546-8
8. Winklehner A, Berger N, Maurer B, Distler O, Alkadhi H, Frauenfelder T. Screening for interstitial lung disease in systemic sclerosis: the diagnostic accuracy of HRCT image series with high increment and reduced number of slices. *Ann Rheum Dis.* Apr 2012;71(4):549-52. doi:10.1136/annrheumdis-2011-200564
9. Prior JA, Jordan KP, Kadam UT. Variations in patient-reported physical health between cardiac and musculoskeletal diseases: systematic review and meta-analysis of population-based studies. *Health Qual Life Outcomes.* May 30 2015;13:71. doi:10.1186/s12955-015-0265-x
10. Gobi K, Arunachalam VK, Varatharajaperumal RK, Cherian M, Periaswamy G, Rajesh S. The role of ultra-low-dose computed tomography in the detection of pulmonary pathologies: a prospective observational study. *Pol J Radiol.* 2022;87:e597-e605. doi:10.5114/pjr.2022.121433
11. Nguyen-Kim TDL, Maurer B, Suliman YA, Morsbach F, Distler O, Frauenfelder T. The impact of slice-reduced computed tomography on histogram-based densitometry assessment of lung fibrosis in patients with systemic sclerosis. *J Thorac Dis.* Apr 2018;10(4):2142-2152. doi:10.21037/jtd.2018.04.39
12. Bastos AL, Correa RA, Ferreira GA. Tomography patterns of lung disease in systemic sclerosis. *Radiol Bras.* Sep-Oct 2016;49(5):316-321. doi:10.1590/0100-3984.2015.0116
13. Milisenda JC, Selva-O'Callaghan A, Grau JM. The diagnosis and classification of polymyositis. *J Autoimmun.* Feb-Mar 2014;48-49:118-21. doi:10.1016/j.jaut.2014.01.025
14. Sasaki H, Kohsaka H. Current diagnosis and treatment of polymyositis and dermatomyositis. *Mod Rheumatol.* Nov 2018;28(6):913-921. doi:10.1080/14397595.2018.1467257
15. Findlay AR, Goyal NA, Mozaffar T. An overview of polymyositis and dermatomyositis. *Muscle Nerve.* May 2015;51(5):638-56. doi:10.1002/mus.24566
16. Li H, Xiong Z, Liu J, Li Y, Zhou B. [Manifestations of the connective tissue associated interstitial lung disease under high resolution computed tomography]. *Zhong Nan Da Xue Xue Bao Yi Xue Ban.* Aug 28 2017;42(8):934-939. doi:10.11817/j.issn.1672-7347.2017.08.010
17. Materna O, Koubsky K, Padr R, Janousek J. Major left ventricular thrombi in an adolescent with COVID-19-associated inflammatory syndrome. *Eur Heart J.* Aug 31 2021;42(33):3207. doi:10.1093/eurheartj/ehab165
18. Yamanaka Y, Baba T, Hagiwara E, et al. Radiological images of interstitial pneumonia in mixed connective tissue disease compared with scleroderma and polymyositis/dermatomyositis. *Eur J Radiol.* Oct 2018;107:26-32. doi:10.1016/j.ejrad.2018.08.005
19. Young A, Vummidi D, Visovatti S, et al. Prevalence, Treatment, and Outcomes of Coexistent Pulmonary Hypertension and Interstitial Lung Disease in Systemic Sclerosis. *Arthritis Rheumatol.* Aug 2019;71(8):1339-1349. doi:10.1002/art.40862
20. Moore OA, Proudman SM, Goh N, et al. Quantifying change in pulmonary function as a prognostic marker in systemic sclerosis-related interstitial lung disease. *Clin Exp Rheumatol.* Jul-Aug 2015;33(4 Suppl 91):S111-6.
21. Marie I, Hatron PY, Dominique S, Cherin P, Mounthou L, Menard JF. Short-term and long-term outcomes of interstitial lung disease in polymyositis and dermatomyositis: a series of 107 patients. *Arthritis Rheum.* Nov 2011;63(11):3439-47. doi:10.1002/art.30513
22. Zamora AC, Hoskote SS, Abascal-Bolado B, et al. Clinical features and outcomes of interstitial lung disease in anti-Jo-1 positive antisynthetase syndrome. *Respir Med.* Sep 2016;118:39-45. doi:10.1016/j.rmed.2016.07.009
23. Tanizawa K, Handa T, Nakashima R, et al. The prognostic value of HRCT in myositis-associated interstitial lung disease. *Respir Med.* May 2013;107(5):745-52. doi:10.1016/j.rmed.2013.01.014
24. Zhang PL, Yang HX, Zhang LN, et al. [Value of serum YKL-40 in the diagnosis of anti-MDA5-positive patients with dermatomyositis complicated with severe pulmonary injury]. *Beijing Da Xue Xue Bao Yi Xue Ban.* Dec 18 2021;53(6):1055-1060. doi:10.19723/j.issn.1671-167X.2021.06.008
25. Vojinovic T, Cavazzana I, Ceruti P, et al. Predictive Features and Clinical Presentation of Interstitial Lung Disease in Inflammatory Myositis. *Clin Rev Allergy*

Immunol. Feb 2021;60(1):87-94. doi:10.1007/s12016-020-08814-5

26. Ariani A, Silva M, Seletti V, et al. Quantitative chest computed tomography is associated with two prediction models of mortality in interstitial lung disease related to systemic sclerosis. *Rheumatology (Oxford)*. Jun 1 2017;56(6):922-927. doi:10.1093/rheumatology/kew480

27. Kotani T, Takeuchi T, Yoshimatsu Y, et al. Initial limited three-level thin-section computed tomography scorings predict the prognosis of acute/subacute interstitial pneumonia in patients with dermatomyositis. *Mod Rheumatol*. Sep 2016;26(5):738-43. doi:10.3109/14397595.2015.1134392

28. Wolfe F, Michaud K, Pincus T, Furst D, Keystone E. The disease activity score is not suitable as the sole criterion for initiation and evaluation of anti-tumor necrosis factor therapy in the clinic: discordance between assessment measures and limitations in questionnaire use for regulatory purposes. *Arthritis Rheum*. Dec 2005;52(12):3873-9. doi:10.1002/art.21494

29. Reith PE, Freeman JB, Granner DK. Sputum cytology: a valuable addition to the investigation of hypercalcemia. *Am Surg*. Aug 1977;43(8):538-9.

30. Faraguna MC, Musto F, Crescitelli V, et al. Mucopolysaccharidosis-Plus Syndrome, a Rapidly Progressive Disease: Favorable Impact of a Very Prolonged Steroid Treatment on the Clinical Course in a Child. *Genes (Basel)*. Feb 28 2022;13(3) doi:10.3390/genes13030442

31. Freitas S, Westram AM, Schwander T, et al. Parthenogenesis in *Darevskia* lizards: A rare outcome of common hybridization, not a common outcome of rare hybridization. *Evolution*. May 2022;76(5):899-914. doi:10.1111/evo.14462

32. Sibl O, Siblova O, Vesely J. [Endocrine orbital diseases]. *Cesk Otolaryngol*. May 1989;38(3):129-36. K problemu endokrinni orbitopatie.

33. Hill CL, Zhang Y, Sigurgeirsson B, et al. Frequency of specific cancer types in dermatomyositis and polymyositis: a population-based study. *Lancet*. Jan 13 2001;357(9250):96-100. doi:10.1016/S0140-6736(00)03540-6

34. Prideaux N, van den Berg M, Drummond C, Barr C. Augmented Performance Feedback during Robotic Gait Therapy Results in Moderate Intensity Cardiovascular Exercise in Subacute Stroke. *J Stroke Cerebrovasc Dis*. Jun 2020;29(6):104758. doi:10.1016/j.jstrokecerebrovasdis.2020.104758

35. Kerr SM, Stark GR, Kerr IM. Excess antisense RNA from infectious recombinant SV40 fails to inhibit expression of a transfected, interferon-inducible gene. *Eur J Biochem*. Jul 15 1988;175(1):65-73. doi:10.1111/j.1432-1033.1988.tb14167.x

36. Legras A, Tallet A, Didelot A, et al. Clinical and molecular characteristics of unicentric mediastinal Castleman disease. *J Thorac Dis*. Apr 2018; 10(4):2079-2088. doi:10.21037/jtd.2018.03.159

37. Khanna D, Distler O, Cottin V, et al. Diagnosis and monitoring of systemic sclerosis-associated interstitial lung disease using high-resolution computed tomography. *J Scleroderma Relat Disord*. Oct 2022;7(3):168-178. doi:10.1177/23971983211064463

38. Uddin S, Munir MZ, Gull S, et al. Transcriptome Profiling Reveals Role of MicroRNAs and Their Targeted Genes during Adventitious Root Formation in Dark-Pretreated Micro-Shoot Cuttings of Tetraploid *Robinia pseudoacacia* L. *Genes (Basel)*. Feb 27 2022;13(3) doi:10.3390/genes13030441

39. Schiopu E, Phillips K, MacDonald PM, Crofford LJ, Somers EC. Predictors of survival in a cohort of patients with polymyositis and dermatomyositis: effect of corticosteroids, methotrexate and azathioprine. *Arthritis Res Ther*. Jan 27 2012;14(1):R22. doi:10.1186/ar3704

40. Winstone TA, Assayag D, Wilcox PG, et al. Predictors of mortality and progression in scleroderma-associated interstitial lung disease: a systematic review. *Chest*. Aug 2014;146(2):422-436. doi:10.1378/chest.13-2626

41. Yin Y, Liang D, Zhao L, et al. Anti-cyclic citrullinated Peptide antibody is associated with interstitial lung disease in patients with rheumatoid arthritis. *PLoS One*. 2014;9(4):e92449. doi:10.1371/journal.pone.0092449

42. Chen J, Shi Y, Wang X, Huang H, Ascherman D. Asymptomatic preclinical rheumatoid arthritis-associated interstitial lung disease. *Clin Dev Immunol*. 2013;2013:406927. doi:10.1155/2013/406927

43. Wang JX, Du CG. A retrospective study of clinical characteristics of interstitial lung disease associated with rheumatoid arthritis in Chinese patients. *Med Sci Monit*. Mar 7 2015;21:708-15. doi:10.12659/MSM.890880

44. Zou YQ, Li YS, Ding XN, Ying ZH. The clinical significance of HRCT in evaluation of patients with rheumatoid arthritis-associated interstitial lung disease: a report from China. *Rheumatol Int*. Mar 2012;32(3):669-73. doi:10.1007/s00296-010-1665-1

45. Zhang Y, Li H, Wu N, Dong X, Zheng Y. Retrospective study of the clinical characteristics and risk factors of rheumatoid arthritis-associated interstitial lung disease. *Clin Rheumatol*. Apr 2017;36(4):817-823. doi:10.1007/s10067-017-3561-5

46. Li L, Liu R, Zhang Y, et al. A retrospective study on the predictive implications of clinical characteristics and therapeutic management in patients with rheumatoid arthritis-associated interstitial lung disease. *Clin Rheumatol*. May 2020;39(5):1457-1470. doi:10.1007/s10067-019-04846-1

47. Salaffi F, Carotti M, Di Carlo M, Tardella M, Giovagnoni A. High-resolution computed tomography of the lung in patients with rheumatoid arthritis: Prevalence of interstitial lung disease involvement and determinants of abnormalities. *Medicine (Baltimore)*. Sep 2019;98(38):e17088. doi:10.1097/MD.00000000000017088

48. Gautam M, Masood MJ, Arooj S, Mahmud ME, Mukhtar MU. Rheumatoid Arthritis Related Interstitial Lung Disease: Patterns of High-resolution Computed Tomography. *Cureus*. Feb 4 2020;12(2):e6875. doi:10.7759/cureus.6875

49. Li L, Gao S, Fu Q, et al. A preliminary study of lung abnormalities on HRCT in patients of rheumatoid arthritis-associated interstitial lung disease with

progressive fibrosis. *Clin Rheumatol.* Nov 2019;38(11):3169-3178. doi:10.1007/s10067-019-04673-4

50. Avouac J, Cauvet A, Steelhardt A, et al. Improving risk-stratification of rheumatoid arthritis patients for interstitial lung disease. *PLoS One.* 2020;15(5):e0232978. doi:10.1371/journal.pone.0232978

51. Zrour SH, Touzi M, Bejia I, et al. Correlations between high-resolution computed tomography of the chest and clinical function in patients with rheumatoid arthritis. Prospective study in 75 patients. *Joint Bone Spine.* Jan 2005;72(1):41-7. doi:10.1016/j.jbspin.2004.02.001

52. Wilsher M, Voight L, Milne D, et al. Prevalence of airway and parenchymal abnormalities in newly diagnosed rheumatoid arthritis. *Respir Med.* Oct 2012;106(10):1441-6. doi:10.1016/j.rmed.2012.06.020

53. Hanaka T, Kido T, Ishimoto H, et al. Radiological patterns of pulmonary involvement may predict treatment response in rheumatoid arthritis: A retrospective study. *Respir Investig.* Mar 2019;57(2):172-182. doi:10.1016/j.resinv.2018.12.006

54. Kim EJ, Elicker BM, Maldonado F, et al. Usual interstitial pneumonia in rheumatoid arthritis-associated interstitial lung disease. *Eur Respir J.* Jun 2010;35(6):1322-8. doi:10.1183/09031936.00092309

55. Ekici M, Baytar Y, Kardas RC, et al. Predictors of mortality in rheumatoid arthritis-associated lung disease: A retrospective study on ten years. *Joint Bone Spine.* May 2021;88(3):105133. doi:10.1016/j.jbspin.2021.105133

56. Kim HC, Lee JS, Lee EY, et al. Risk prediction model in rheumatoid arthritis-associated interstitial lung disease. *Respirology.* Dec 2020;25(12):1257-1264. doi:10.1111/resp.13848

57. Ito Y, Arita M, Kumagai S, et al. Radiological fibrosis score is strongly associated with worse survival in rheumatoid arthritis-related interstitial lung disease. *Mod Rheumatol.* Jan 2019;29(1):98-104. doi:10.1080/14397595.2018.1442170

58. Yunt ZX, Chung JH, Hobbs S, et al. High resolution computed tomography pattern of usual interstitial pneumonia in rheumatoid arthritis-associated interstitial lung disease: Relationship to survival. *Respir Med.* May 2017;126:100-104. doi:10.1016/j.rmed.2017.03.027

59. Nurmi HM, Kettunen HP, Suoranta SK, et al. Several high-resolution computed tomography findings associate with survival and clinical features in rheumatoid arthritis-associated interstitial lung disease. *Respir Med.* Jan 2018;134:24-30. doi:10.1016/j.rmed.2017.11.013

60. Yamakawa H, Sato S, Tsumiyama E, et al. Predictive factors of mortality in rheumatoid arthritis-associated interstitial lung disease analysed by modified HRCT classification of idiopathic pulmonary fibrosis according to the 2018 ATS/ERS/JRS/ALAT criteria. *J Thorac Dis.* Dec 2019;11(12):5247-5257. doi:10.21037/jtd.2019.11.73

61. Biederer J, Schnabel A, Muhle C, Gross WL, Heller M, Reuter M. Correlation between HRCT findings, pulmonary function tests and bronchoalveolar lavage cytology in interstitial lung disease associated with rheumatoid arthritis. *Eur Radiol.* Feb 2004;14(2):272-80. doi:10.1007/s00330-003-2026-1

62. Yang JA, Lee JS, Park JK, Lee EB, Song YW, Lee EY. Clinical characteristics associated with occurrence and poor prognosis of interstitial lung disease in rheumatoid arthritis. *Korean J Intern Med.* Mar 2019;34(2):434-441. doi:10.3904/kjim.2016.349

63. Fu Q, Wang L, Li L, Li Y, Liu R, Zheng Y. Risk factors for progression and prognosis of rheumatoid arthritis-associated interstitial lung disease: single center study with a large sample of Chinese population. *Clin Rheumatol.* Apr 2019;38(4):1109-1116. doi:10.1007/s10067-018-4382-x

64. Solomon JJ, Chung JH, Cosgrove GP, et al. Predictors of mortality in rheumatoid arthritis-associated interstitial lung disease. *Eur Respir J.* Feb 2016;47(2):588-96. doi:10.1183/13993003.00357-2015

65. Kelly CA, Saravanan V, Nisar M, et al. Rheumatoid arthritis-related interstitial lung disease: associations, prognostic factors and physiological and radiological characteristics--a large multicentre UK study. *Rheumatology (Oxford).* Sep 2014;53(9):1676-82. doi:10.1093/rheumatology/keu165

66. Suleman Y, Clark KEN, Cole AR, Ong VH, Denton CP. Real-world experience of tocilizumab in systemic sclerosis: potential benefit on lung function for anti-topoisomerase-positive patients. *Rheumatology (Oxford).* Aug 2 2021;60(8):3945-3946. doi:10.1093/rheumatology/keab273

67. Kotani T, Takeuchi T, Makino S, et al. Combination with corticosteroids and cyclosporin-A improves pulmonary function test results and chest HRCT findings in dermatomyositis patients with acute/subacute interstitial pneumonia. *Clin Rheumatol.* Aug 2011;30(8):1021-8. doi:10.1007/s10067-011-1713-6

68. Go DJ, Lee EY, Lee EB, Song YW, Konig MF, Park JK. Elevated Erythrocyte Sedimentation Rate Is Predictive of Interstitial Lung Disease and Mortality in Dermatomyositis: a Korean Retrospective Cohort Study. *J Korean Med Sci.* Mar 2016;31(3):389-96. doi:10.3346/jkms.2016.31.3.389

69. Douglas WW, Tazelaar HD, Hartman TE, et al. Polymyositis-dermatomyositis-associated interstitial lung disease. *Am J Respir Crit Care Med.* Oct 1 2001;164(7):1182-5. doi:10.1164/ajrccm.164.7.2103110

70. Ikeda S, Arita M, Misaki K, et al. Incidence and impact of interstitial lung disease and malignancy in patients with polymyositis, dermatomyositis, and clinically amyopathic dermatomyositis: a retrospective cohort study. *Springerplus.* 2015;4:240. doi:10.1186/s40064-015-1013-8

71. Begleiter A, Robotham E, Lacey G, Leith MK. Increased sensitivity of quinone resistant cells to mitomycin C. *Cancer Lett.* Jun 1989;45(3):173-6. doi:10.1016/0304-3835(89)90073-6

72. Kim YJ, Choe J, Kim HJ, Song JW. Long-term clinical course and outcome in patients with primary Sjogren syndrome-associated interstitial lung disease. *Sci Rep.* Jun 18 2021;11(1):12827. doi:10.1038/s41598-021-92024-2

73. Fenlon HM, Doran M, Sant SM, Breathnach E. High-resolution chest CT in systemic lupus erythematosus. *AJR Am J Roentgenol.* Feb 1996;166(2):301-7. doi:10.2214/ajr.166.2.8553934

74. Alamoudi OS, Attar SM. Pulmonary manifestations in systemic lupus erythematosus: association with disease activity. *Respirology.* Apr 2015;20(3):474-80. doi:10.1111/resp.12473

75. Enomoto N, Egashira R, Tabata K, et al. Analysis of systemic lupus erythematosus-related interstitial pneumonia: a retrospective multicentre study. *Sci Rep.* May 14 2019;9(1):7355. doi:10.1038/s41598-019-43782-7

76. Murphy SS. First impressions on a spinal cord injury unit. *SCI Nurs.* Spring 1988;5(2):21.

77. Ooi GC, Ngan H, Peh WC, Mok MY, Ip M. Systemic lupus erythematosus patients with respiratory symptoms: the value of HRCT. *Clin Radiol.* Oct 1997;52(10):775-81. doi:10.1016/s0009-9260(97)80159-6

78. Hariri LP, Unizony S, Stone J, et al. Acute fibrinous and organizing pneumonia in systemic lupus erythematosus: a case report and review of the literature. *Pathol Int.* Nov 2010;60(11):755-9. doi:10.1111/j.1440-1827.2010.02586.x

79. Quadrelli SA, Alvarez C, Arce SC, et al. Pulmonary involvement of systemic lupus erythematosus: analysis of 90 necropsies. *Lupus.* Oct 2009;18(12):1053-60. doi:10.1177/0961203309106601

80. Spira D, Wirths S, Skowronski F, et al. Diffuse alveolar hemorrhage in patients with hematological malignancies: HRCT patterns of pulmonary involvement and disease course. *Clin Imaging.* Jul-Aug 2013;37(4):680-6. doi:10.1016/j.clinimag.2012.11.005

81. Andrade C, Mendonca T, Farinha F, et al. Alveolar hemorrhage in systemic lupus erythematosus: a cohort review. *Lupus.* Jan 2016;25(1):75-80. doi:10.1177/0961203315605365

82. Kwok SK, Moon SJ, Ju JH, et al. Diffuse alveolar hemorrhage in systemic lupus erythematosus: risk factors and clinical outcome: results from affiliated hospitals of Catholic University of Korea. *Lupus.* Jan 2011;20(1):102-7. doi:10.1177/0961203310381511

83. MacDonald SL, Rubens MB, Hansell DM, et al. Nonspecific interstitial pneumonia and usual interstitial pneumonia: comparative appearances at and diagnostic accuracy of thin-section CT. *Radiology.* Dec 2001;221(3):600-5. doi:10.1148/radiol.2213010158

84. Ioachimescu OC, Stoller JK. Diffuse alveolar hemorrhage: diagnosing it and finding the cause. *Cleve Clin J Med.* Apr 2008;75(4):258, 260, 264-5 passim. doi:10.3949/ccjm.75.4.258

85. Flaherty KR, Travis WD, Colby TV, et al. Histopathologic variability in usual and nonspecific interstitial pneumonias. *Am J Respir Crit Care Med.* Nov 1 2001;164(9):1722-7. doi:10.1164/ajrccm.164.9.2103074

86. Fang X, Luo B, Yi X, et al. Usual interstitial pneumonia coexisted with nonspecific interstitial pneumonia, What's the diagnosis? *Diagn Pathol.* Dec 3 2012;7:167. doi:10.1186/1746-1596-7-167

87. Perez HD, Kramer N. Pulmonary hypertension in systemic lupus erythematosus: report of four cases and review of the literature. *Semin Arthritis Rheum.* Aug 1981;11(1):177-81. doi:10.1016/0049-0172(81)90098-6

88. Kim HG, Tashkin DP, Clements PJ, et al. A computer-aided diagnosis system for quantitative scoring of extent of lung fibrosis in scleroderma patients. *Clin Exp Rheumatol.* Sep-Oct 2010;28(5 Suppl 62):S26-35.

89. Sant SM, Doran M, Fenelon HM, Breathnach ES. Pleuropulmonary abnormalities in patients with systemic lupus erythematosus: assessment with high resolution computed tomography, chest radiography and pulmonary function tests. *Clin Exp Rheumatol.* Sep-Oct 1997;15(5):507-13.

90. Furuta GT, Atkins D, Capocelli KE, de Zoeten EF, Fleischer D, Menard-Katcher C. Antitumor necrosis factor, infliximab, and adalimumab: use with caution in eosinophilic bowel disease. *J Pediatr Gastroenterol Nutr.* Oct 2013;57(4):e25. doi:10.1097/MPG.0b013e3182a1e13b

91. Hoffmann-Vold AM, Fretheim H, Halse AK, et al. Tracking Impact of Interstitial Lung Disease in Systemic Sclerosis in a Complete Nationwide Cohort. *Am J Respir Crit Care Med.* Nov 15 2019;200(10):1258-1266. doi:10.1164/rccm.201903-0486OC

92. Le Gouellec N, Duhamel A, Perez T, et al. Predictors of lung function test severity and outcome in systemic sclerosis-associated interstitial lung disease. *PLoS One.* 2017;12(8):e0181692. doi:10.1371/journal.pone.0181692

93. Hax V, Bredemeier M, Didonet Moro AL, et al. Clinical algorithms for the diagnosis and prognosis of interstitial lung disease in systemic sclerosis. *Semin Arthritis Rheum.* Oct 2017;47(2):228-234. doi:10.1016/j.semarthrit.2017.03.019

94. de Oliveira Martins LV, Oliveira SM, Silvatti J, de Amorim FG, Agapito Tito CV, Kayser C. Mortality in Systemic Sclerosis-Associated Interstitial Lung Disease in Brazil: A Real-Life, Long-Term Follow-up Observational Study. *J Clin Rheumatol.* Mar 1 2022;28(2):e532-e538. doi:10.1097/RHU.000000000000001792

95. Rivas-Vargas D, Snih SA, Rodriguez MA. Characterization of Venezuelan Patients With Systemic Sclerosis: A Study in a Tertiary Hospital in Caracas. *Reumatol Clin (Engl Ed).* Oct 7 2020;doi:10.1016/j.reuma.2020.06.006

96. Els Vandecasteele KM, Kristof Thevissen, Michel De Pauw, Ellen Deschepper, sasaki Decuman, Yves Piette, FILIP De Keyser, Guy Brusselle, Vanessa Smith. Prevalence and incidence of pulmonary arterial hypertension: 10-year follow-up of an unselected systemic sclerosis cohort. original article. *Journal of Scleroderma and Related Disorders.* November 28, 2017 2017;2(3):196-202.

97. Mulkoju R, Saka VK, Rajaram M, et al. Pulmonary Manifestations in Systemic Sclerosis: Hospital-Based Descriptive Study. *Cureus.* Jun 16 2020;12(6):e8649. doi:10.7759/cureus.8649

98. Noviani M, Saffari SE, Tan JL, et al. Mortality and hospitalization outcomes of interstitial lung disease and pulmonary hypertension in the Singapore systemic sclerosis cohort. *Semin Arthritis Rheum.* Jun

2020;50(3):473-479.
doi:10.1016/j.semarthrit.2019.11.005

99. Sanchez-Cano D, Ortego-Centeno N, Callejas JL, et al. Interstitial lung disease in systemic sclerosis: data from the spanish scleroderma study group. *Rheumatol Int.* Mar 2018;38(3):363-374. doi:10.1007/s00296-017-3916-x

100. Fujita J, Yoshinouchi T, Ohtsuki Y, et al. Non-specific interstitial pneumonia as pulmonary involvement of systemic sclerosis. *Ann Rheum Dis.* Mar 2001;60(3):281-3. doi:10.1136/ard.60.3.281

101. Okamoto M, Fujimoto K, Sadohara J, et al. A retrospective cohort study of outcome in systemic sclerosis-associated interstitial lung disease. *Respir Investig.* Nov 2016;54(6):445-453. doi:10.1016/j.resinv.2016.05.004

102. Goh NS, Desai SR, Veeraraghavan S, et al. Interstitial lung disease in systemic sclerosis: a simple staging system. *Am J Respir Crit Care Med.* Jun 1 2008;177(11):1248-54. doi:10.1164/rccm.200706-877OC

103. Bocchino M, Buzzese D, D'Alto M, et al. Performance of a new quantitative computed tomography index for interstitial lung disease assessment in systemic sclerosis. *Sci Rep.* Jul 1 2019;9(1):9468. doi:10.1038/s41598-019-45990-7

104. Vanaken L, Landini N, Lenaerts J, et al. Progressive lung fibrosis and mortality can occur in early systemic sclerosis patients without pulmonary abnormalities at baseline assessment. *Clin Rheumatol.* Nov 2020;39(11):3393-3400. doi:10.1007/s10067-020-05105-4

105. Zuhur F, Zuhur SS, Zuhur C, Musellim B, Ongen G. Survival in progressive systemic sclerosis with pulmonary involvement: a single-center experience in Istanbul, Turkey. *Rheumatol Int.* Jun 2012;32(6):1655-61. doi:10.1007/s00296-011-1842-x

106. Takei R, Arita M, Kumagai S, et al. Radiographic fibrosis score predicts survival in systemic sclerosis-associated interstitial lung disease. *Respirology.* Apr 2018;23(4):385-391. doi:10.1111/resp.13175

107. Moore OA, Goh N, Corte T, et al. Extent of disease on high-resolution computed tomography lung is a predictor of decline and mortality in systemic sclerosis-related interstitial lung disease. *Rheumatology (Oxford).* Jan 2013;52(1):155-60. doi:10.1093/rheumatology/kes289

108. Forestier A, Le Gouellec N, Behal H, et al. Evolution of high-resolution CT-scan in systemic sclerosis-associated interstitial lung disease: Description and prognosis factors. *Semin Arthritis Rheum.* Dec 2020;50(6):1406-1413. doi:10.1016/j.semarthrit.2020.02.015

109. Ariani A. Quantitative Computed Tomography in Systemic Sclerosis-Interstitial Lung Disease: Are We Ready to Go beyond Standard Assessment? *Ann Am Thorac Soc.* Jan 2021;18(1):183-184. doi:10.1513/AnnalsATS.202008-967LE

110. Goldin JG, Lynch DA, Strollo DC, et al. High-resolution CT scan findings in patients with symptomatic scleroderma-related interstitial lung disease. *Chest.* Aug 2008;134(2):358-367. doi:10.1378/chest.07-2444

111. Kimura N, Gu E, Fujihata T, Kato H. [Ratio of 3 major nutrients compounded in complete intravenous hyperalimentation]. *Nihon Rinsho.* 1979;37(8):2954-9.

112. Chen M, Liu X, Xu Y, et al. Clinicopathological characteristics of lung cancer in patients with systemic sclerosis. *Clin Respir J.* Dec 2020;14(12):1131-1136. doi:10.1111/crj.13249

113. Murgia N, Gambelunghe A. Occupational COPD- The most under-recognized occupational lung disease? *Respirology.* Jun 2022;27(6):399-410. doi:10.1111/resp.14272

114. Duncan F, Moore EK, Rami Eltaraboulsi, Virginia D. Steen. Increased Morbidity and Mortality of Scleroderma in African Americans Compared to Non-African Americans. 1154. *Arthritis Care & Research.* 2019;71(9):1154-1163. doi: 10.1002/acr.23861

115. Goh NS, Hoyles RK, Denton CP, et al. Short-Term Pulmonary Function Trends Are Predictive of Mortality in Interstitial Lung Disease Associated With Systemic Sclerosis. *Arthritis Rheumatol.* Aug 2017;69(8):1670-1678. doi:10.1002/art.40130

116. Wang Y, Gargani L, Barskova T, Furst DE, Cerinic MM. Usefulness of lung ultrasound B-lines in connective tissue disease-associated interstitial lung disease: a literature review. *Arthritis Res Ther.* Sep 18 2017;19(1):206. doi:10.1186/s13075-017-1409-7

117. Kim EA, Lee KS, Johkoh T, et al. Interstitial lung diseases associated with collagen vascular diseases: radiologic and histopathologic findings. *Radiographics.* Oct 2002;22 Spec No:S151-65. doi:10.1148/radiographics.22.suppl_1.g02oc04s151

118. Xu L, Yang R, Cao Y, Wang M, Yang X. Risk factors of diffuse alveolar hemorrhage in Chinese patients with systemic lupus erythematosus. *Sci Rep.* Dec 16 2023;13(1):22381. doi:10.1038/s41598-023-49978-2