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ABSTRACT

Despite advances in imaging and clinical assessment, current diagnostic
paradigms lack precision needed to subcategorize disease or predict therapeutic
response with accuracy. This review proposes precision neuropathic pain
diagnostics through the combination of artificial intelligence-guided imaging
and molecular biomarker identification, using the use-case of Trigeminal
neuralgia (TN), a refractory craniofacial pain disorder characterized by
paroxysmal, one-sided facial pain and variable treatment response. We use
trigeminal neuralgia as a case example to explore how deep learning, advanced
imaging, and molecular profiling can work together to improve the diagnosis
and treatment of neuropathic pain. First, the current paper reviews contemporary
advances in deep learning for neuroimaging, particularly convolutional neural
networks and U-Net architectures that have enabled automatic segmentation
of the trigeminal nerve and paved the way for radiomic measurement of
neurovascular compression. Such advances optimize the objectivity of surgery
stratification and help to distinguish classical from idiopathic Trigeminal
Neuralgia. In parallel, proteomic profiling of cerebrospinal fluid and plasma
has revealed TN-specific molecular signatures, including upregulation of
inflammatory, stress-related, and axonal damage markers that are different
from those of similar disorders such as multiple sclerosis. Both markers not
only have implications for disease pathobiology but also for identifying new
therapeutic targets. The current study proposes a multimodal data integration
platform combining imaging and molecular phenotypes using machine
learning and multi-omics platforms. The integration permits mechanistic
subtyping and predictive modeling of treatment response, with potential
applications expanding to diabetic neuropathy and complex regional pain
syndrome. Clinical deployment challenges, such as heterogeneity of data,
ambiguity regarding regulation, and ethical risk, are addressed along with
near-term solutions such as federated learning and interoperable biomarker
registries. At the intersection of neurosurgery, radiology, and computational
science, Trigeminal Neuralgia offers a scalable model for precision pain
medicine, transforming care through mechanism-based classification and
patient-stratified interventions.
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Precision Diagnostics in Trigeminal Neuralgia

Introduction

Trigeminal neuralgia (TN) is a disabling, excruciating
craniofacial pain syndrome that is an episodic,
electric shock-like pain paroxysmally occurring in
the distribution of one or more divisions of the
trigeminal nerve (CN V)'% The pain is abrupt in
onset and often precipitated by innocuous stimuli
such as light touch, speaking, chewing, or even wind
exposure®*. Such characteristic triggering features
are found in as many as 79% of cases, are an
important diagnostic feature, and are most often
located in the perioral and nasal regions,
corresponding to the preferential involvement of
the V2 (maxillary) and V3 (mandibular) divisions>”.

Spontaneous episodes of pain mayoccur but are
less common. Pain is distributed into the weblike
pattern of the areas of the skin elsewhere referred
to as the dermatome (V1 [ophthalmic], V2 [maxillary],
and V3 [mandibular]), with V2 and V3 being the most
common presentations. Cases of V1-only involvement
are uncommon (around 4%) and should prompt
consideration of other diagnoses, including trigeminal
autonomic cephalalgias®'. Pain is usually unilateral,
and the incidence of bilateral TN is low except for
secondary causes such as multiple sclerosis. Around
50% of patients with TN experience background
pain that is persistent, dull, or burning, interspersed
with episodes of a band-like paroxysmal pain called
TN with concomitant continuous pain''2 This
phenotype is more common in younger age groups
and women, and it is characterized by greater
therapeutic demand and reduced responsiveness
to standard treatments'™'>. However, such variability
of clinical manifestations with both remitting and
relapsing phases complicates the diagnostic process

and calls for careful phenotyping.

Most patients with idiopathic or classical TN show
no demonstrable deficit on neurological examination.
Neurologic examination is characteristically normal,
but minor sensory abnormalities (including mild
cases of hypaesthesia or hyperaesthesia) may be
present in 10-30% of cases'. The occurrence of

severe or worsening sensory loss, however, might

indicate secondary causes such as multiple sclerosis,
neoplasms, and postherpetic neuropathy, leading to
further diagnostic imaging and workup'’'®. Magnetic
resonance imaging (MRI) of the brainstem is the
cornerstone of diagnostic investigation in TN, which
allows clinicians to appreciate the neurovascular
contact, generally observed between the transverse
portion of the trigeminal nerve at the root entry
zone and the superior cerebellar artery'?. High-
resolution sequences (3D T2, 3D T1 with gadolinium,
time-of-flight angiography) are useful in confirming
classical TN, defined by morphological changes of
the nerve, including distortion or atrophy, in
concordance with the clinical pattern observed? %,

Importantly, neurovascular contact does not always
lead to the presentation of TN symptoms, as
contact is also seen in asymptomatic subjects®.
Therefore, the diagnosis is more confidently made
when MRI findings and further imaging correspond
to clinical laterality and pain distribution. Trigeminal
reflex testing might offer ancillary diagnostic value
when MRI is contraindicated or not available,
particularly in differentiating TN from painful
trigeminal neuropathy or demyelinating diseases.
Yet, it is not specific enough to distinguish classical
and idiopathic TN and should be reserved for

atypical cases?.

TN is characterized by overlapping symptomatology
with other facial pain syndromes, including painful
post-traumatic trigeminal neuropathy,
glossopharyngeal neuralgia, persistent idiopathic
facial pain, orofacial pain with dental or
temporomandibular  involvement?®. Hence, a
comprehensive clinical evaluation is crucial.
Overdiagnosis of TN, especially in the setting of
neurosurgery, may occur due to the over interpretation
of imaging findings without sufficient clinical
correlation?’?8, This underscores the necessity of an
extensive workup, which needs to include meticulous
patient history, precise drawing of the sensory field

on examination, and exclusion of dental pathologies.

Despite increasing awareness, TN still presents a
diagnostic dilemma, particularly for dental and
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primary care physicians. Insufficiently validated
screening tools and many inappropriate online
patient resources highlight the requirement for
improved diagnostic algorithms and patient
resources®’*°. Early and accurate diagnosis is crucial
since cases with both surgical and non-surgical
indications vary dramatically according to the TN
phenotype. Given that traditional clinical and
radiological parameters are limited in terms of
sensitivity and specificity, there is a developing
interest in combining molecular biomarker research
with advanced image acquisition techniques for
improved diagnosis, prognostication, and treatment
stratification of TN. New advances in nerve
segmentation using deep learning machine learning
techniques, together with cerebrospinal fluid and
plasma-based proteomics, provide a roadmap for
multimodal precision diagnostics® . Here we
present TN as an exemplary use case, inviting
further inspection of how artificial intelligence, high-
resolution imaging, and molecular profiling might
converge to address wider challenges of neuropathic
pain syndromes.

Deep Learning in Neuropathic Pain

Imaging: Current Landscape

Deep learning (DL) models have revolutionized the
interpretation of medical images, notably in domains
with the need for high-resolution anatomical precision,
such as neuropathic pain syndromes. Methods
based on convolutional neural networks (CNNs), U-
Net architectures, as well as attention-based systems,
have become essential for segmenting peripheral
and central nervous system structures, detecting
microstructural  abnormalities, or extracting
quantitative radiomic features that are related to the
respective clinical phenotypes®3¢. In the setting of
TN, DL has held promise in automating the
segmentation of the trigeminal nerve from high-
resolution T2-weighted and diffusion tensor imaging
(DTI) volumes in the past, which require extensive

manual and time-consuming training tasks®?*>,

Over the last year, U-Net-based networks have

been used for the delineation of the Root Entry Zone

(REZ) of the trigeminal nerve and nearby vascular
loops and volume calculation of the neurovascular
contact and asymmetry metrics®*. Such novel
approaches may help in identifying objective
biomarkers for the differential diagnosis of classical
and idiopathic TN and of surgical indication. Besides
TN, DL-based radiomics have also shown value in
other neuropathic pain diseases. In sciatica, CNN-
based classification models trained on lumbar MRI
have been able to predict the compression of the
nerve roots and the severity of the related pain®
Additionally, in the field of diabetic neuropathy, DL
models fusing MRI and nerve conduction features
have increased the diagnostic accuracy and risk
stratification®’ . These findings highlight the promise
of multimodal DL pipelines in capturing subtle
structural and functional changes that may be
missed by the human eye (Table 1).

However, various obstacles limit the extent of their
clinical application. A significant limitation is the
variability of imaging protocols within and across
institutions, restricting the generalizability of the
model. Small sample sizes and a lack of external
validation are common problems, especially in rare
diseases such as TN. Third, DL is not intuitively
interpretable, which in turn reduces DL's potential
for adoption into regulation and trust among
clinicians®.These challenges may be partially
addressed by combining multi-center learning
frameworks and explainable Al techniques.
Insistence on multicenter harmonization of imaging
protocols, substantial external validation cohorts,
and prospective evaluation as part of clinical decision
pathways will be needed before exhaustive
deployment into the medical field.

© 2025 European Society of Medicine 3
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Table 1. Deep Learning Applications in Neuropathic Pain Imaging. Table summarizes key insights

demonstrating the role of DL models in imaging-based diagnosis and stratification of neuropathic pain

conditions, along with clinical benefits and current limitations.

Neuropathic Imaging DL Model Clinical Value Limitations
Pain Condition Modality Used
Trigeminal High-res T2- U-Net, CNNs | Automated Small sample sizes,
Neuralgia (TN) | weighted MRI, segmentation of the limited generalizability
DTI trigeminal nerve; across centers, and
stratification of classical | interpretability concerns
vs idiopathic TN
Sciatica Lumbar MRI CNN-based | Prediction of nerve root | Lack of standardization;
classifiers compression and pain | model transferability
severity issues
Diabetic MRI + Nerve Fusion DL Enhanced diagnostic Integration challenges of
Neuropathy Conduction models (MRl | accuracy and patient multimodal inputs; need
Studies + NCS) risk stratification for large external datasets

DL = Deep Learning; MRl = Magnetic Resonance Imaging; DTI = Diffusion Tensor Imaging; CNN = Convolutional Neural

Network; NCS = Nerve Conduction Studies.

Molecular Biomarkers in Neuropathic

Pain: Proteomics and Beyond

In tandem with imaging, molecular diagnostics for
neuropathic pain have been progressing rapidly
with the development of high-throughput proteomics,
metabolomics, and transcriptomic technologies**“'.
In TN, profiling of the proteome of cerebrospinal
fluid (CSF) and serum has revealed different molecular
signatures that distinguish TN from healthy controls
and neuroinflammatory controls, such as individuals
with multiple sclerosis (MS)*2. A recent study from
Lafta et al. used the proximity extension assay (PEA)
technology to study 92 neurologically relevant
proteins in TN, MS, and control individuals. Among
the 19 TN patients analyzed, 15 exhibited upregulation
of proteins linked to neuroinflammation (SFRP1),
glucocorticoid signaling and stress induction
(FKBP5), as well as cytoskeletal remodeling of cells
(TBCB), reflecting mutual pathophysiologic factors
involving immune activation, chronic stress, and
Interestingly, surgical

axonal degeneration®?,

treatment by microvascular decompression tended
to normalize several of these protein levels,
supporting their disease association rather than
reflecting downstream effects of chronic pain
behavior.

Furthermore, the very limited overlap of trigeminal
neuralgia and multiple sclerosis proteomic signatures
calls into question the conventional wisdom of
common inflammatory etiologies, favoring the
concept of biologic heterogeneity. In addition to
TN, other neuropathic pain syndromes have shown
proteomic and metabolomic abnormalities in both
CSF and plasma. In complex regional pain syndrome
(CRPS), there is increased pro-inflammatory cytokines
such as TNF-a, IL-1B, and IL-6, and components of
the complement cascade such as C3a, C5a, and
Cl1qg. In diabetic neuropathy, however, there is
upregulation of the markers of oxidative stress (8-
MDA),
(cytochrome c, ATP synthase subunits), and deranged

isoprostane, mitochondrial ~ damage

lipid metabolism (ceramides, acylcarnitines) “°.

© 2025 European Society of Medicine 4
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These observations support a model in which
distinct molecular cascades underlie divergent
neuropathic pain phenotypes, ultimately converging
on shared downstream effectors such as neuronal
sensitization and glial activation. Therapeutic
targets aligned with these mechanisms have been
increasingly identified through molecular profiling
and differential gene expression studies®. As an
inhibitor of Wnt signaling and microglia—astrocyte
crosstalk, SFRP1 may contribute to sustaining
neuroinflammation in TN and might serve as a new
therapeutic target”. FKBP5, previously associated
with glucocorticoid resistance and stress-induced
synaptic remodeling, has received much attention
in both psychiatric and neurodegenerative disorders,

and it may be similarly important, and under study,

in  chronic pain*. Furthermore, changes in
inflammation-related molecules such as GRO-
alpha and EGF have been shown to accompany
symptom remission in late-life depression, further
recapitulating the broader relevance of immune
changes in treatment response across neurologic
and neuropsychiatric conditions and neuropathic
pain syndromes®”. Such findings may be used to
inform biomarker-based clinical trials, in which
molecular genotyping guides the selection of
patients, monitoring of response to treatment, and
development of novel pain management therapeutics

(Figure 1).

Figure 1. Precision Diagnostics in Trigeminal Neuralgia: Multimodal Integration of Imaging, Biomarkers, and
Deep Learning. This figure illustrates a diagnostic pathway for accuracy in trigeminal neuralgia (TN) involving high-
resolution imaging, deep learning analysis, and molecular biomarker profiling. Convolutional neural networks and
U-Net segmentation improve automated REZ compression detection and support TN subtype classification.
Simultaneously, proteomic analysis of cerebrospinal fluid and serum detects disease-specific biomarkers associated
with neuroinflammation, stress signaling, and axonal injury. Machine learning integrates radiomic and molecular
data to develop disease phenotypes that inform surgical candidacy and therapeutic response prediction. Figure

created using BioRender.com.
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Integrating Imaging and Molecular
Biomarkers: Toward Precision

Neuropathic Pain Care

The whole picture of neuropathic pain demands an
integration of structural, functional, and molecular
dimensions. High-resolution imaging techniques,
such as diffusion tensor imaging (DTI), magnetic
resonance neurography (MRN), and high-resolution
3D MRI, enable the characterization of trigeminal
nerve compression, demyelination, and central white
matter changes®. Concurrently, proteomic and
transcriptomic studies have identified molecular
derangements in the neurovascular interface of TN
patients undergoing microvascular decompression
(MVD), such as upregulation of axonal injury markers

(NEFL), endothelial signaling proteins (vWF, ICAM1),
and inflammatory mediators such as CXCL13 and
IL-1B%,

This multimodal approach allows for the generation
of disease phenotypes that link radiographic
abnormalities with molecular states (Table 2). For
instance, a patient with loss of DTl-derived
fractional anisotropy in the trigeminal nerve root
entry zone with an increase in markers of axonal
degeneration in CSF or peripheral blood would be
a mechanistic subtype that would be optimally
treated by decompressive rather than ablative
procedures, such as microvascular decompressions
(MVD) through retrosigmoid craniotomy>'.

Table 2. Key Molecular Biomarkers in Trigeminal Neuralgia. Biomarkers were selected based on their

relevance to neuroinflammation, immune dysregulation, stress signaling, and axonal injury in trigeminal neuralgia.

These candidates may support subtype stratification and guide biomarker-informed treatment strategies.

Biomarker Pathophysiologic Role Clinical Implications

IL-1B Pro-inflammatory cytokine; contributes | Potential marker of inflammatory subtype;
to glial activation candidate for immunomodulatory treatment

CXCL13 B cell chemokine; involved in Suggests autoimmune-like features;
meningeal inflammation differentiator from idiopathic TN

FKBP5 Stress response mediator; linked to May serve as a stress-related biomarker;
glucocorticoid signaling possible psychiatric overlap

SFRP1 Wnt pathway inhibitor; modulates Therapeutic target for sustaining
microglial/astrocyte interactions neuroinflammation

TBCB Cytoskeletal regulation; implicated in | Supports the axonal degeneration mechanism
axonal degeneration in TN

NEFL Marker of axonal injury; reflects white | Predictor of surgical response; correlates with
matter damage imaging changes

IL-1B = Interleukin-1 beta; CXCL13 = C-X-C motif chemokine ligand 13; FKBP5 = FK506-binding protein 5; SFRP1 =
Secreted frizzled-related protein 1; TBCB = Tubulin-folding cofactor B; NEFL = Neurofilament light chain.
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Findings in TN may be generalizable to other
neuropathic pain syndromes, such as diabetic
peripheral neuropathy and complex regional pain
syndrome (CRPS), that share molecular signatures,
such as axonal degeneration, neuroinflammation,
and aberrant glial signaling®+4%2, Radiomic features
from high-resolution MR neurography or spinal
imaging may unmask conserved structural patterns
(such as dorsal root ganglia hypertrophy, white matter
tract reorganization) among them. Moreover,
proteomic markers identified in TN, such as S100B,
PRDX1, and GFAP, may be universal biomarkers of
neuropathic pain severity and therapeutic response®.
Hence, the application of integrative machine learning
methods to these datasets allows for elucidation of
common pathogenic mechanisms, prediction of
therapeutic response, and the development of
unified biomarker panels for application across a
spectrum of pain etiologies.

Graph-based and deep learning artificial intelligence
(Al) models enable the integration of heterogeneous
datasets spanning imaging, proteomics, genomics,
and clinical variables. Autoencoders, CNNs, and
attention-based transformers represent some of
the models that can learn complex interactions
between radiomic and molecular features, ending
in exact stratification of patient subtypes®=°. Multi-
omics platforms also strengthen such models by
adding transcriptomic, proteomic, and epigenomic
data layers, resulting in unprecedented granularity
in the description of neuropathic pain biology®. In
TN, for example, the fusion of pre-operative MRI
radiomics and label-free quantification (LFQ)
proteomics of CSF or blood samples was able to
predict MVD responders from non-responders™.
Such models can also be used to guide treatment
in CRPS or diabetic neuropathy by identifying
those patients most likely to respond to immune-

modulating therapies or neuromodulation.

Clinical Translation: Challenges

and Opportunities

Despite the potential of multimodal data fusion,

clinical translation is held back by formidable

barriers. These include a lack of standardization
across imaging modalities, limited interoperability of
electronic health records, batch effects of proteomic
assays, and a shortage of validated thresholds for
interpretation of radiomic or molecular biomarkers.
Uncertainty regarding the regulation of Al-based
diagnostic devices also prevents full implementation

of such techgiques”.

To address these issues, federated learning is a
potential solution. This distributed machine learning
framework allows institutions to collaboratively
train models across locally retained data without
sharing sensitive patient information®**°. Such
strategies are particularly relevant in neuropathic
pain research, in which cohort sizes at an individual
center are generally small and heterogeneous.
Federated learning can aid model generalizability
while preserving privacy and embracing institutional
variability in imaging and proteomic protocols. As
Al and biomarker-guided decision tools become
more widely adopted in clinical practice, it is essential
to address ethical concerns in advance. Such concerns
encompass potential algorithmic  prejudice,
underrepresentation of minority groups in training
datasets, and low-specificity biomarker signatures
leading to medical overdiagnosis. Clear model
explainability and oversight frameworks are critical
to the fair deployment of such technologies® %',

A sequential approach to using these tools in the
clinic could be: (1) establishing the validity of
combined imaging and molecular markers in real
patients; (2) using these markers to guide treatment
choices such as MVD surgery vs. radiation for
trigeminal neuralgia, or immunotherapy vs. nerve
ablation for complex regional pain syndrome; and
(3) building shared databases that integrate imaging,
laboratory results, and outcomes. This strategy could
begin with patients who have severe, treatment-
resistant, and medication-refractory neuropathic
pain, where no alternative managements currently

exist.

© 2025 European Society of Medicine 7
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Future Directions in Neuropathic

Pain Research

Achieving precision in pain medicine will require
next-generation, large-scale trials that integrate
imaging, proteomics, single-cell transcriptomics,
and clinical outcomes across diverse patient cohorts.
Improved single-cell proteomics and spatial
transcriptomics will enable cell-type-specific mapping
of neuropathic pain drivers in pain-affected nerves,
DRG, and spinal cord segments®?. Concurrently,
radiogenomic models that link genotype, molecular
phenotype, and imaging biomarkers are poised to
enhance subtype-specific diagnosis and guide
individualized treatment. Within TN specifically, they
may elucidate unresolved biological heterogeneity,
such as why some patients manifest exclusively
paroxysmal pain and others develop continuous
pain, or why just a proportion of patients respond
therapeutically in a stable fashion to surgical
decompression.  Radiogenomic  frameworks
incorporating MRI-derived neurovascular contact
patterns with transcriptomic and proteomic data
could potentially delineate mechanistic TN subtypes

to inform patient-stratified therapy.

More broadly, these radiogenomic approaches will
be capable of enhancing subtype-specific diagnosis
across neuropathic pain syndromes and identifying
predictive biomarkers of treatment response®?®,
Large-scale initiatives such as NIH's Bridge2Al and
Pain Consortium® or the European IMI-PainCare
platform® can form the foundation for data-sharing
consortia, model training, and cross-validation across
diverse institutions. Open-source, privacy-preserving
repositories will be necessary to allow for equitable
global participation and ensure TN and other focal

neuropathic syndromes are represented.

Conclusion

The integration of high-resolution imaging with
molecular and proteomic biomarkers offers an
unprecedented chance to transform the treatment
of neuropathic pain patients. By bridging molecular

phenotypes to structural change, clinicians can move

beyond symptom-based diagnosis to mechanism-
based precision medicine. Instantiation of such
precision-based prognostication of neuropathic
pain can only be achieved through a combined
team effort of neurology, neurosurgery, radiology,
bioinformatics, and ethics in defining, validating, and
implementing multimodal approaches for guiding
diagnosis, predicting treatment effects, and
personalizing care trajectories. By integrating high-
level  machine  leamning, inter-professional
collaboration, and standardization of diagnostic data
(e.g., MRI sequences), the practice of neuropathic
pain medicine can provide substantial improvements
in diagnostic precision, therapeutic efficacy, and
long-term patient outcomes, with the hope of
ultimately setting a new standard for personalized

neurological care.
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