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ABSTRACT 
This study highlights the roles of pentosan polysulfate as a decoy anti-viral 
prophylactic that prevents severe acute respiratory syndrome coronavirus-2 infection.  
PPS also has multifunctional cell and tissue protective properties relevant to the 
treatment of the symptoms produced by long COVID disease. PPS has heparan 
sulfate (HS)-like properties, a key functional component of the lung glycocalyx. The 
glycocalyx is also rich in hyaluronan which has important cell shielding and cell 
regulatory properties. A healthy glycocalyx prevents access of viral particles to cell 
surface heparan sulfate-proteoglycans (syndecan, glypican) which act as viral 
receptors. Pentosan polysulfate promotes hyaluronan synthesis by many cell types, 
ensuring cells are surrounded by a healthy protective glycocalyx. Hyaluronan, 
however, has a relatively short biological half-life and is susceptible to degradation 
by hyaluronidases that are upregulated by inflammatory cytokines in acute respiratory 
distress syndrome in COVID-19 disease.  This results in the glycocalyx becoming 
degraded and endothelial cells dysfunctional in COVID-19 disease. Prevention of viral 
interaction with the host cell surface intercepted by pentosan polysulfate, a decoy 
viral binding prophylactic agent, blocks viral interaction with cell-surface heparan 
sulfate, preventing viral interactions with other cell surface receptors such as 
neuropilin-1 and angiotensin-converting enzyme 2. Co-operation between heparan 
sulfate, neuropilin-1 and angiotensin-converting enzyme 2 facilitates the infection of 
host cells with severe acute respiratory syndrome coronavirus 2, thus if the initial 
interaction with heparan sulfate is blocked this prevents the subsequent viral 
interactive stages. Pentosan polysulfate also has multifunctional cell and tissue 
protective properties, broad anti-oxidant and anti-inflammatory properties and 
inhibits cytokine production in acute respiratory disease syndrome. Pentosan 
polysulfate inhibits p38 mitogen-activated protein kinase and nuclear factor-κB 
activation, reducing the production of pro-inflammatory cytokines such as tumor 
necrosis factor-α, interleukin-1β and interleukin-6.  Furthermore, pentosan polysulfate 
is processed by enzymes of the gut microbiome into prebiotic xylo-oligosaccharides 
that preserve gut health and combat gut dysbiosis seen in COVID-19 disease. Studies 
are thus warranted to fully assess pentosan polysulfate as an anti-severe acute 
respiratory syndrome coronavirus-2 prophylactic agent and its multifunctional cell 
and tissue protective properties. Furthermore, from a practical and economic point 
of view, treatment with pentosan polysulfate would offer substantial cost-benefit 
advantages over conventional vaccine and antibiotic treatments and could also be 
used in an adjunctive capacity with existing therapies, offering flexibility in its use. 
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1. Introduction 
The aim of this study was to highlight the roles of 
pentosan polysulfate (PPS), a semisynthetic 
heparinoid, as a decoy anti-viral prophylactic in the 
prevention of SARS-CoV-2 infection of host cells. 
The multifunctional cell and tissue protective 
properties of PPS are also described illustrating 
how PPS may be employed to treat the multi-
parameter symptomatology that characterises long 
COVID disease (Figure 1).  
 
1.1 COVID-19 IS A PANDEMIC VIRAL DISORDER 
OF GLOBAL IMPACT 
COVID-19 is a pandemic disease that emerged in 
Wuhan, China in late 2019 with the emergence of 
severe acute respiratory syndrome coronavirus-2 
(SARS-Cov-2), a single strand RNA virus that is 
96.2% identical in genomic sequence to the bat 
CoV RaTG13 virus.  SARS CoV-2 is highly 
transmissible through aerosols, droplets, fomite 
affected surfaces or direct skin contact1. 
Historically, SARS-CoV-2 has demonstrated an 
unprecedented infectious global profile and has 
undergone rapid evolutionary mutational changes 
as part of its natural life cycle into several variants 
which avoid immune detection. Some of these 
SARS-CoV-2 variants bind more efficiently and with 
greater rapidity to respiratory epithelial cells, 
rendering these viral forms significantly more 
infectious2,3. The Omicron variant is currently a 
dominant global variant, 99% of all variants 
circulating in the U.S. are mutations of Omicron, 
most commonly EG.5 (24% of all SARS CoV-2 strains) 
and FL 1.5.1 (14%) (https://covid.cdc.gov/covid-
data-tracker/#variant-proportions)4. A distinctive 
feature of these Omicron variants is a change in 
their infective profiles displaying more effective 
infection of the nose and throat rather than the 
original Wuhan and Delta variants which primarily 
infected the lungs5. Respiratory distress is a 
prominent feature of SARS CoV-2 infections, but 
other organ systems can also be affected including 
the brain, liver, heart, and kidney6-8. Symptoms of 
SARS CoV-2 infection include fever, anosmia, 
ageusia, dry cough, fatigue, breathlessness, hair-

loss and so-called brain-fogging with a decline in 
problem solving capability, cognition, ability to 
concentrate, negative neurological impact and an 
increase in long-term anxiety9,10. These symptoms 
can be mild, moderate or severe and a fatality rate 
of 1 in 100 is reported depending on the co-
morbidities that patients display; these can 
significantly impact the severity of COVID-19.  A 
global systematic review of 76 studies that 
examined a total of 17,860,001 patients across 14 
countries showed that age >75 years, male sex, 
severe obesity, lymphopenia, and cancer increased 
the impact of SARS CoV-2 infection on health and 
well-being11.  
 
Viral recombination is a normal part of the viral life 
cycle but results in an extremely wide spread in 
epitope presentations and these continually 
undergo changes in structure.  This makes it 
problematic to raise vaccines or antibodies to 
current infectious viral strains and these require 
continual updating putting enormous strain on viral 
treatment resources.  In the present study we have 
shown how PPS can inhibit all viral classes by 
blocking the interaction of virion particles with cell 
surface HS and we propose that this has 
considerable merit as a preventative approach to 
treatment of potential infections by SARS CoV-2 
but is also applicable to other viral classes.  
Furthermore, PPS is a pleotropic cell and tissue 
protective agent12,13  as we have outlined in this 
review and is suitable for the treatment of many 
facets of the varied symptomatology encountered 
in COVID-19 infected tissues throughout the 
human body. This is a further strength of PPS as a 
therapeutic agent for viral conditions. 
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Figure 1. The multifunctional properties of pentosan polysulfate.  Multi-organ systems affected by COVID-19 treatable with pentosan polysulfate. 
 

1.2 PENTOSAN POLYSULFATE, A PROPHYALACTIC 
ANTI-VIRAL PLEOTROPIC CELL AND TISSUE 
PROTECTIVE AGENT  
Pentosan polysulfate is a semi-synthetic sulfated 
xylan biomimetic heparinoid that has been 
categorized as a disease modifying anti-arthritic 
drug (DMOAD). It has a smaller molecular weight 

than heparan sulfate (HS) or heparin but has a 
higher charge density and has many properties that 
mimic HS found on cell surfaces and in extracellular 
matrix heparan sulfate proteoglycans (HSPGs) 
(Figure 2). This provides PPS with a multifunctional 
cell and tissue protective profile that is discussed 
more fully later in this review12,13. 

 

 
 

Figure 2. Sulfation patterns of heparan sulfate and pentosan polysulfate. Structural organization of a putative HS chain (a) and 
pentosan polysulfate (PPS) with its 4-O-methyl-glucuronic acid monosaccharide side chain α1-2 linked to every tenth xylose residue 
(b), disaccharides HS is assembled from (c), saccharide structure of PPS (d), and two examples of HS disaccharides  (e, f). Heparan 
sulfate contains three substitution sites in the D- -4 linked N-acetyl glucosamine repeat disaccharide, marked R1, 
R2, R3 on HS can be occupied by combinations of hydroxyl, acetyl, and sulfate groups. 

c.	

f.	

d.	

e.	
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2. The impact of Coronaviruses on 
human health and well-being  
Coronaviruses (CoVs) are enveloped viruses of the 
Nidovirales order, Coronaviridae family14. Bats, 
dogs, cats and humans can all be infected with 
these viruses14. Seven species of CoVs have so far 
been identified, four of these produce relatively 
mild symptoms of the common cold15 but severe 
acute respiratory syndrome  (SARS-CoV), Middle 
East respiratory syndrome (MERS-CoV) and SARS-
CoV-2 have a higher impact and can be life-
threatening diseases16. The SARS-CoV pandemic 
of 2002 2003  resulted in 774 deaths and 8098 
cases of infection distributed over 26 countries 17. 
Middle East respiratory syndrome coronavirus 
(MERS-CoV) emerged ten years later as the sixth 
coronavirus and resulted in infections across 27 
countries in the Middle East, Asia, North Africa and 
Europe which resulted in 2040 infections and 712 
deaths. Severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) is the seventh 
coronavirus (CoV) which has recently emerged 
resulting in a global health pandemic. Severe acute 
respiratory syndrome coronavirus 2 is closely 
related to Severe acute respiratory syndrome 
coronavirus (SARS-CoV) but has a far more 
infectious profile and thus has a significantly 
greater impact on global human health.  As of 19th 
Sept 2024 704 million confirmed cases of SARS-
CoV-2 infection in 223 countries and territories, 7 
million deaths and 675 million cases of recovery 
from infection have been reported by Worldometer 
[https://www.worldometers.info/coronavirus/ accessed 
on 19-9-2024]18  
 

2.1 PREVENTION OF VIRAL INFECTION OF HOST 
CELLS BY PENTOSAN POLYSULFATE 
To infect human cells, viruses must pass a dense 
layer of carbohydrate (glycocalyx) attached to the 
cell surface. Several viruses, including Herpes, HIV 
and other coronaviruses, bind to HS during this 
infection phase. HS and ACE2 are necessary for 
SARS-CoV-2 infection and Nrp-1 has additional 
roles to play as a co-receptor in this infective 
process19-24. Molecular modeling, atomic force 

measurements and X-ray crystallography have 
shown that SARS-CoV-2 HS binds the Spike S1 
receptor binding domain (RBD). Infection can be 
prevented by enzymatic removal of HS from the 
cell surface, demonstrating the importance of HS in  
the initial viral attachment phase. Exogenous 
heparin, LMW heparin and PPS block coronavirus 
infections in lab-grown cells by binding to the 
isolated SARS-CoV-2 viral particles dispersed in 
biological fluids and this prevents them from 
entering and infecting host cells. A GAG-binding 
site in the N-terminal domain (NTD) of Spike 
protein in residues 241 24625 binds HS.  
Prophylactic administration of HS oligosaccharides 
also bind to this site and prevent productive 
associations between Spike protein and ACE2 
showing how PPS blocks SARS CoV-2 infection25. 
Molecular dynamic simulations of the Spike trimer 
interaction with HS dodecasaccharides (and PPS) 
indicate that when attached to this HS binding site 
these GAG components span the RRAR (CendR) 
furin cleavage site interfering with Spike protein 
interactions with cell surface receptors essential for 
SARS-CoV-2 infection26. Use of heparin in-vitro can 
block this infective process in epithelial cells27. 
Polysulfates block SARS-CoV-2 uptake into cells 
showing electrostatic interactions are important in 
this process28 explaining why PPS inhibits SARS-
CoV-2 infection of host cells. Biochemical, 
biophysical, and genetic studies show HS induces 
an open conformation in S protein required for 
binding to ACE229, a high degree of coordination 
between host cell HS and S protein asparagine-
linked glycans enables ACE2 binding and host cell 
infection29. Prophylactic use of PPS disrupts this 
interaction with cell surface HS and prevents host 
cell infection. SARS-CoV-2 Spike protein is 
proteolytically processed by transmembrane 
protease, serine 2 (TMPRSS2) and furin produced 
by host cells to prime the S1 domain for binding to 
ACE 221,24,30-35. Transmembrane protease, serine 2 
(TMPRSS2), a respiratory and gastrointestinal 
membrane anchored protease, plays a crucial role 
in the activation of SARS-CoV-2 spike protein. 
Endogenous serine protease inhibitory proteins in 
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tissues may have a protective role to play in the 
prevention of this protease mediated remodeling 
of SARS CoV-2 Spike protein required to facilitate 
its interaction with ACE2. Small drug inhibitors 
(Camostat, Nafamostat, and Bromhexine) have been  
re-purposed from anti-tumor applications to inhibit 
TMPRSS2 mediated SARS-CoV-2 S protein 
priming36. Entry of SARS-CoV-2 into host cells via 
the receptor binding domain (RBD) of S protein 
after the S1 and S2 subunits dissociate from each 
other by the action of TMPRSS2 allow 
conformational rearrangement and prime it for 
interaction with the host cell37-39. Furin, a type 1 
membrane protease, also cleaves between S1 and 
S2 in SARS-CoV-2 S protein to facilitate binding to 
ACE2 and viral membrane fusion with the host cell 
plasma membrane, effecting internalisation of 
SARS-CoV-236. Transmembrane protease, serine 2 
is part of a mucous secretory network highly 
upregulated in inflammation by interleukin-13. 
Interleukin-13 (IL13) and viral infection also 
mediate effects on ACE2 expression in the airway 
epithelium with interferon mediated responses to 
respiratory viruses highly upregulating ACE2 
expression40. Moreover, some viruses synthesize 
their own TMPRSS241 and this also has roles in viral 
activation42,43. While ACE2 is considered to be the 
primary host receptor in SARS-CoV-2 and SARS-
CoV infections these related viruses have vastly 
different infection rates, suggesting the 
involvement of factors in addition to ACE2 that 
promote SARS-CoV-2 infection. Severe acute 
respiratory syndrome coronavirus-1 (SARS CoV-1) 
and SARS CoV-2 both bind to the ACE-2 receptor 
on host cells, however the latter is considerably 
more infectious, utilising multiple factors to 
achieve this higher infection rate (Table 1). Severe 
acute respiratory syndrome coronavirus-2 is 
particularly good at infecting cells, in the upper 
respiratory tract, and deeper in the lungs44. 
Neuropilin-1 (NRP-1) is another host cell co-
receptor that SARS-CoV-2 also uses for cellular 
attachment35. Furin generates a C-end rule motif 
(CendR) in the SARS-CoV-2 spike protein and this 

interacts with a CendR receptor in Nrp-1 
promoting the internalisation of CoV-2 viral 
particles by endocytosis37-39,45 (Table I).  The greater 
infective efficiency of the Omicron CoV-2 variant 
suggests it utilises these additional cell surface 
motifs to infect host cells. Cell surface HS is used 
by many viruses as a docking module in host cell 
infection (Table 2). Heparan sulfate proteoglycans 
(HSPGs) are endocytic receptors that viruses use 
for cell entry46-48. NRP-1 is also an endocytic 
receptor49. Herpes simplex, hepatitis, papilloma, 
flaviviruses and respiratory syncytial virus all utilize 
multiple cell surface receptors as part of their 
internalization strategy to infect host cells50-

53.Viruses do not bind to the non-sulfated HA 
component of the glycocalyx, and this acts as a 
barrier to viral penetration54-58. It has been 
proposed that COVID-19 is an endothelial 
disease59 brought on by the cytokine storm of 
ARDS that produces destructive changes in the 
endothelial cell glycocalyx60,61. Significantly, 
binding of viral particles to PPS in biological fluids 
prevents them from interacting with the HS chains 
of syndecan (SDC) or glypican (GPC) to gain access 
to the Nrp-1 or ACE2 receptors on host cells. As 
shown in Table II, many human and animal viruses 
utilize cell surface HS as a docking module to 
facilitate infection of host cells. 
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Table I ACE2, cell surface HSPGs and Nrp-1 interact with SARS CoV-2 Spike protein facilitating viral entry 
to host cells. 
 

Receptor Physiological properties 
Evidence for roles as a SARS CoV-2 
receptor Ref 

HS 
Cell-ECM signaling 
Cell adhesion 
Cell growth factor and cytokine interactions 

Direct interaction of HS with S glycoprotein 
in ECM, GAG microarray, co-precipitation 
experiments. Enzymatic removal of HS or HS 
knockdown results in reduced SARS CoV-2 
infection levels.  

62-64 

ACE2 Regulation of blood pressure 

Cryo EM images/ X ray crystallography 
demonstrate ACE2 bound to S RBD. ACE2 
over-expression in cells results in enhanced 
CoV-2 infection. Human ACE2 over-
expression in mice results in enhanced CoV-
2 infection. Inhibition of SARS CoV-2 
infection is evident in ACE2 knockout cells 

65-70 

Nrp-1 Regulation of neural network development 
and angiogenesis in tissue development 

Demonstration of binding of Nrp-1 to Furin 
generated C-end rule (CendR) motif in Spike 
protein. Overexpression of Nrp-1 in cells 
results in enhanced SARS CoV-2 infection. 
Nrp-1 KO results in a reduced SARS CoV-2 
infection  

37,39,71,72 

 
Viruses utilize cell surface syndecan and glypican 
HS-proteoglycan as docking structures as part of 
the infective process of prospective host (Table II).  

These proteoglycans have a ubiquitous cellular 
distribution. 

 
Table II Cell surface HS Proteoglycans that act as viral receptors 
 

HSPG receptor Viruses Ref 
Syndecan-1 Hepatitis C virus 73 
Syndecan-2 Hepatitis B virus, Dengue virus strain DEN2 16681  74,75 
Syndecan-3 HIV-1 76 

Syndecan-4 
Adeno-Associated Virus 9, Porcine reproductive and respiratory 
syndrome virus 

77,78 

Glypican-5 Hepatitis B and D viruses 79 
Syndecans and glypicans Porcine hemagglutinating encephalomyelitis virus, Papilloma viruses. 80-82 
Syndecan SARS-CoV-2 83 
Syndecans  HIV-1 84-86 

 
2.2 CELL SURFACE GLYCOSAMINOGLYCANS 
AND VIRAL INFECTION OF HOST CELLS. 
 
2.2.1 Anionic anti-viral compounds 
Anionic polysulfate GAGs have inhibitory effects 
on host cell infection with multiple viruses including 
SARS-CoV-287 and AIDS; PPS has been proposed 
as a drug for the prevention of infection with AIDS 

and SARS-CoV-288. It has been proposed that these 
compounds should be administered as aerosols 
inhaled into lung tissues to increase their 
potency89. Administration of sulfated hyaluronan 
derivatives delivered by aerosol prolong the 
survival of K18 ACE2 mice infected with a lethal 
dose of SARS-CoV-290. PPS (SP 54), a low molecular 
weight sulfated polysaccharide is one of the most 
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active in vitro inhibitors of retrovirus-specific 
reverse transcriptase90 and is a selective anti-HIV 
and anti-SARS-CoV-2 agent in vitro91,92. 
Polysulfated polyxylan (HOE/BAY 946) completely 
inhibited syncytium formation induced by HIV 
infection of T-lymphocytes as well as viral 
replication and inhibited HIV reverse transcriptase. 
Furthermore, a drastic decrease in the release of 
viral particles in HIV infected U937 pro-monocytic 
cells was also elicited by HOE/BAY 94693, this 
increases membrane hydrophobicity of human 
lymphocytes and specifically suppresses HIV-
protein synthesis94, and also inhibits HIV replication 
in human monocytes/macrophages95. The 
pharmaco-kinetics of intravenous HOE/BAY 946 
has been examined in HIV patients96. Sulfated 
polysaccharides have also been shown to inhibit 
lymphocyte-to-epithelial transmission by HIV-197. 
Chemically oversulfated galactosaminoglycan 
sulfates inhibit the enveloped viruses HIV-1, HSV-1 
and HCMV98. Chondroitin polysulfate displays anti-
HIV-1 activity in vitro99. A synthetic polysulfonated 
naphthalene polymer (PRO 2000) binds to HIV-1 
gp120 glycoprotein and interferes with viral 
binding to CD4+ T cells but also interacts with CD4 
and CXCR4, a G-protein coupled chemokine 
receptor that can induce expression of selective 
chemokines with potential anti-viral activity100,101, it 
also inhibits infection of host cells with HIV and 
SARS-CoV-2100. Pentosan polysulfate also ameliorates 
the symptoms of human T lymphotropic virus type 
I (HTLV-I)-associated myelopathy/tropical spastic 
paraparesis (HAM/TSP) which is characterized by 
lower extremity motor dysfunction102.  
 

2.3 SEVERE ACUTE RESPIRATORY SYNDROME 
VIRUS-2 VARIANTS 
A highly virulent Delta SARS-CoV-2 variant (B 
1.617.2) emerged in India in 2020 becoming the 
dominant global strain.  On 24 November 2021, a 
further highly infectious SARS-CoV-2 variant 
(B.1.1.529/BA.1) was reported, this has also had a 
significant global impact displacing the delta 
variant as the dominant SARS Cov-2 strain103. The 
World Health Organization Technical Advisory 
Group on SARS-CoV-2 Viral Evolution designated 

this emergent CoV variant as B.1.1.529, the fifth 
Coronavirus variant and named it Omicron104. 
Several Omicron variants have emerged since then 
with the BA-4 and BA-5 variants becoming firmly 
established. Vaccines raised to the original Wuhan 
strain of SARS CoV-2 offer incomplete coverage of 
these variants and multiple COVID-19 re-infections 
two or three times have been reported. This 
emphasizes the need to develop alternative 
preventative strategies to prevent COVID-19 
infections rather than vaccines or antibodies that 
treat the symptoms. It is not known to what extent 
all of the symptoms of long COVID disease are 
treatable or whether full recovery is possible, however 
besides acting as a viral anti-infective agent, PPS 
also treats COVID-19 disease symptomatology105. 
 

The BA-4 and BA-5 Omicron variants are the most 
infectious forms of SARS-CoV-2 and are of major 
concern; their greater infectivity is related to 32 
mutations in their S protein compared to the 
original Wuhan CoV-2 strain, 15 of these mutations 
specifically affect the CoV-2 RBD of S protein106 
(Figure 2).  The high infective rate of the Omicron 
variants suggest these utilise a more effective 
range of cell surface binding motifs in addition to 
the ACE2 receptor and Nrp-1. A further Omicron 
sub-variant, a so-called second generation sub-
variant, BA.2.75 has emerged in India, unofficially 
named Centaurus107-110 and has been detected in 
Germany, The Netherlands, Japan, UK, US, 
Australia and New Zealand.  
 

Two mutations in the BA.2.75 variant (G446S and 
R493Q) allow it to escape immune detection and 
to bind more strongly to the ACE2 receptor, it is 
predicted that this increases its infectivity. Prior 
COVID-19 immunizations may limit the infectiousness 
of this new sub-variant however it is not known how 
effective pre-existing antibody preparations will be 
against this new Omicron variant. 
 

2.4 MUTATIONS IN S1 SPIKE GLYCOPROTEIN IN 
SEVERE ACUTE RESPIRATORY SYNDROME VIRUS 
-2 VARIANTS. 
Examination of amino acid sequences in the S1 
glycoprotein of SARS-CoV-2 variants demonstrates 
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significant substitutions of native SARS-CoV-2 
sequence which partly explains the waning 
effectiveness of vaccines and therapeutic antibodies 
in the treatment of COVID-19 disease and the 

evasion of immune detection of these variant forms 
of SARS-CoV-2.  Of the viral strains of SARS-CoV-2 
so far identified, the Omicron strain has the highest 
number of S1 RBD substitutions  (Figure 3). 

 

 
 

Figure 3. Point mutations in the receptor binding domain of spike protein in coronavirus variants.  Amino acid sequences in the receptor 
binding domain of the SARS CoV-2 Spike protein in the original Wuhan strain and the mutations in its variant forms. Figure from111. 
 
Table III. A.Viruses that gain access to cells through interaction with cell surface HS and B. antiviral sulfated 
polysaccharides that block such viral interactions 
 

Virus Docking module Ref 
Viruses that utilize HS or related GAGs for infection of host cells A 

Adeno-associated virus 2 
Adeno associated virus serotype 3B HS 

 
112-114 

Akabane and Schmallenberg Viruses. HS 115 
Chikungunya Virus Strains  Sulfated GAGs 116 
Coxsackievirus B3 variant , Coxsackievirus 
A16, B4 N- and 6-O-sulfated HS 117-119 

Dengue Viruses HS 120-122 
Duck Tembus virus HS 123 
Ebola virus HS 124 
Echovirus 5 HS 125 
Enterovirus A71 HS 118,126,127 
Filovirus HS 128 
Henipavirus HS 129 
Hepatitis B virus HSPG 130 
Hepatitis delta virus HSPG 131 
Hepatitis C HS, HS-proteoglycans 132,133 
Human herpes virus 8 HS 134 
Herpes simplex virus type 1 HS 135 
Human meta pneumo virus HS 136 
Herpes simplex virus type 1 Syndecan-1 137,138 
HIV HS 139-141 
Human, monkey, rodent Foamy virus HS 142,143 
Human papillomavirus 16 virus HS 144 
Human respiratory syncytial virus HS 145 
Human meta pneumovirus HS 146 
Human Parechovirus  HS 117 
Japanese encephalitis virus HS 147 
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Virus Docking module Ref 
Merkel cell polyomavirus  HS, sialylated glycans 148 
Murine leukemia virus HS 149 
Murine herpes virus 68 HS 150 
Moloney Murine leukemia virus HS 140 
Porcine epidemic diarrhea virus HS 151 
Pseudorabies virus HS 152 
Rabies virus HS 153 
Respiratory syncytial virus G Heparin 154,155 
SARS CoV-2 HS, HSPGs 21,24,28,33,64,156 
Swine vesicular disease virus HS 157 
Sindbis virus HS 158 
Swine fever virus HS 159 
Vaccinia virus HS 160 
Zika virus HS 161 

Inhibition of viral attachment to host cells using sulfated polysaccharides B 
Virus Blocking polysaccharide Ref 
African swine fever virus PPS and Sulfated polysaccharides 162 
Herpes simplex, Cytomegalovirus, Vesicular 
stomatis virus, Sindbis virus HIV 

PPS and Sulfated polysaccharides 163,164 

T cell leukemis virus type-1 PPS 165 
Chikungunya virus PPS 166 
Ross river virus PPS 166,167 

SARS-CoV-2 PPS, Polysulfates, heparin, 
enoxaparin 

24,28,64,156,168 
 

3. Anti-inflammatory and tissue 
protective properties of pentosan 
polysulfate 
Pentosan polysulfate has anti-inflammatory 
properties in knee OA, reducing joint swelling and 
pain169 and has reno-protective effects in kidney 
injury, nephrectomy and diabetic nephropathy170. 
Pentosan polysulfate is also effective against 
arthritogenic alphaviruses such as Ross River virus 
(RRV) and chikungunya virus (CHIKV) which cause 
cartilage destruction, crippling pain and joint 
inflammation166. Pentosan polysulfate increases 
production of the anti-inflammatory cytokine IL-10 
and reduces production of proinflammatory cytokines, 
modulates growth factor signaling and lymphocyte 
activation and reduces inflammatory infiltrates in 
joint fluids in chikungunya infected mice171. 
Pentosan polysulfate has systemic and local anti-
inflammatory activity in post-acute pulmonary 
inflammation in an influenza virus A induced 
pulmonary inflammation model172. The beneficial 

effects of PPS are due to a combination of its anti-
viral and anti-inflammatory properties173. Pentosan 
polysulfate  also supports tissue repair processes in 
the degenerate IVD13, representing part of its 
pleotropic tissue and cell protective properties105.  
 
3.1 THE HYPERCOAGULATIVE STATE OF COVID-
19 IMPAIRS PLATELET FUNCTION AND TISSUE 
REPAIR RESPONSES, WEAKENING NORMAL 
LUNG FUNCTION 
Corona virus-2 infected patients that develop a 
severe pro-inflammatory state are also frequently 
associated with a procoagulant endothelial 
phenotype174 that produces an elevation in 
fibrinogen and D-dimer/fibrin(ogen) degradation 
products associated with systemic 
hypercoagulability175. Fibrinogen D-dimer levels 
positively correlate with mortality rates in COVID-
19 patients and lead to arterial thrombotic events 
including stroke, ischemia and microvascular 
thrombotic events in the pulmonary vascular 
beds176. Heparan sulfate is a critical regulator of the 
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immunoreceptor tyrosine-based inhibition motif 
(ITIM) receptor G6b-B-R that regulates platelet 
production and activation177. Binding of G6b-B-R to 
the HS side chains of perlecan and multivalent 
heparin inhibits platelet and megakaryocyte 
function by inducing downstream signaling via the 
protein tyrosine phosphatases Shp1 and Shp2. 
SARS-CoV-2 initiates programmed cell death in 
platelets178 thus G6b-B-R  has important roles to 
play maintaining platelet levels in wound healing 
responses179. Perlecans interaction with G6b and 
G6b-R regulates fibrotic changes in tissues 
produced by excessive levels of platelet activation 
180. Perlecan HS also regulates cell adhesion, 
proliferation and growth factor signaling in tissue 
repair responses in tissue homeostasis and optimal 
tissue function, features mimicked by PPS180,181. 
 

3.2 A DYNAMIC BALANCE BETWEEN THE 
FIBRINOLYTIC AND COAGULATION SYSTEMS IS 
CRITICAL TO NORMAL LUNG FUNCTION AND 
HOMEOSTASIS. 
The fibrinolytic and coagulation system are inter-
connected however in COVID-19 can be 
overwhelmed by a hypercoagulative state that 
prevails. Plasmin is a major clot dissolving 
fibrinolytic enzyme produced with elevated levels 
of tissue plasminogen activator (tPA) which in turn 
is regulated by plasminogen activator inhibitors-1 
and -2 (PAI-1, PAI-2).  Autopsies of COVID-19 
fatalities shows thrombosis, micro-angiopathy, 
haemorrage and alveolar damage. The 
dyslipidemia displayed by COVID-19 patients 
results in abnormally high levels of low density 
lipoproteins (LDLs) and low levels of high density 
lipoproteins (HDLs) in serum. 
 

3.3 LUNG HEPARAN SULFATE PROTEOGLYCANS 
AND THEIR CELL REGULATORY PROPERTIES 
Cell surface HSPGs in the lung are growth factor 
coreceptors binding these through HS and core 
protein interactions182. Instructive interactions with 
growth factors, morphogens, chemokines and 
ECM components, regulate cell adhesion, 
proliferation, migration, and differentiation, 
regulating pathophysiological processes in tissue 

development and repair, inflammation, infection, 
and tumor development182,183. HS-proteoglycans in 
the lung have instructive roles critical to regulation  
of tissue development, organ structure, and the 
control of resident cell populations184-188. 
Pikachurin, agrin, perlecan are HSPG components 
of the lung interactome with essential roles in lung 
development, homeostasis and function and roles 
in tissue fibrosis in lung disease179,189. 
Fragmentation of lung ECM components due to 
endogenous protease activity or by proteases 
produced by an influx of inflammatory cells in lung 
disease leads to the release of bioactive protein 
fragments (matricryptins, matrikines) which can 
regulate cell metabolism. Matrikines have been 
identified with tissue repair properties190,191. While 
ACE2 is the primary receptor for SARS CoV-2 entry 
other cell surface and ECM proteins may also bind 
to the SARS CoV-2 spike RBD such as perlecan LG3 
and may potentially enhance RBD-ACE2 
interactions representing a potential therapeutic 
target192. Proteoglycans embedded in the vascular 
endothelial glycocalyx, regulate the activity of 
cytokines and inflammatory responses but are 
proteolytically cleaved in inflammatory diseases 
and modulate pathological inflammatory 
responses. Soluble forms of SDC-1, SDC-3 and 
BGN are anti-inflammatory, suppress 
proinflammatory cytokine expression and 
leukocyte migration, and induce autophagy of 
proinflammatory M1 macrophages. However, 
soluble versikine, SDC-2, mimecan and DCN are 
proinflammatory increasing inflammatory cytokine 
synthesis and leukocyte migration. This contrasts 
with SDC-4 and perlecan which have anti-
inflammatory properties193 promoting tissue 
repair194. Glypicans also regulate Hh and Wnt 
signaling in systemic inflammation. Collectively, 
vascular endothelial glycocalyx-derived SDC-1-4 
ectodomains, BGN, versikine, mimecan, perlecan, 
GPC and DCN are thus of therapeutic potential in 
the regulation of cytokine and leukocyte responses 
in lung inflammatory diseases195. Pentosan polysulfate 
down regulates the secretion of a range of 
inflammatory cytokines and has potent anti-oxidant 
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activity.  Both of these properties exert protective 
properties on cells and preserves tissue function105.  
 

4. Depolymerisation of HA in 
COVID-19 disease. 
 

4.1 CELL MIGRATION-INDUCING AND 
HYALURONAN-BINDING PROTEIN (CEMIP, 
KIAA1199) IS A DEAFNESS GENE LINKED WITH 
DEPOLYMERISATION OF HYALURONAN 
KIAA1199 knockdown abolishes HA degradation 
by human skin fibroblasts, cellular transfection of 
KIAA1199 cDNA confers an ability to catabolize HA 
in an endo-β-N-acetylglucosaminidase-dependent 
manner196. The enhanced degradation of HA that 
occurs in synovial fibroblasts in OA197 and RA 
correlates with elevated KIAA1199 expression and 
can be abrogated by knockdown of KIAA1199198.  
 

Depolymerisation of HA in long COVID-19 disease 
is associated with loss of hearing. Auditory 
neuropathy (deafness) is caused by disruption of 
nerve impulses travelling from the inner ear to the 
brain. Viral infection with mumps, measles, 
meningitis, SARS-CoV-2 and cytomegalovirus can 
all result in hearing loss. COVID-19 does not cause 
a sudden hearing loss but irreversible hearing loss 
and tinnitus can develop as a complication of 
SARS-CoV-2 infection199. KIAA1199, a deafness 
gene of unknown function, plays a central role in 
HA binding and depolymerization independently 
of CD44 and HYAL-1 and HYAL-2196. Pentosan 
polysulfate stimulates HA production in a number 
of cell types200 and also inhibits hyaluronidase201 
helping to maintain a healthy glycocalyx. 
 

4.2 ROLES FOR ENDOTHELIAL CELLS AND 
HYALURONAN IN TISSUE MORPHOGENESIS 
AND EXTRACELLULAR MATRIX REPAIR 
Hyaluronan promotes proliferation and migration 
of many cell types, and has important roles in tissue 
morphogenesis, wound healing, inflammation, 
angiogenesis, and tissue repair processes202. 
Endothelial cells are responsive to HA 
oligosaccharides which stimulate proliferation, 
migration, new vessel formation and tissue repair 
responses203-206. Pulmonary stromal fibroblasts and 

myofibroblasts synthesise HA contributing to the 
deposition of HA in the endothelial glycocalyx207, 
COVID-19 has been proposed to be an endothelial 
cell dysfunction disease.  Angiotensin converting 
enzyme is highly expressed by endothelial cells, 
ACE2 has critical roles that impact on the 
progression of COVID-19 disease208-211. 
 

5. A summation of the pleotropic 
cell and tissue protective properties 
of Pentosan polysulfate  
Supplementary Figure 1 summarises the major 
changes that have been documented in COVID-19 
and studies which have utilized PPS to treat the 
multiple symptoms which arise from viral 
infection105,212. Besides having the ability to prevent 
attachment of a large range of viruses to host cells 
which occur through cell surface HS interactions 
(Table II, Table III) PPS also has many cell and tissue 
protective properties.  These include application in 
the treatment of cystitis and painful bowel 
disease213-219, as a tissue protective enzyme 
inhibitor220-223, promotion of cartilage and IVD 
repair224-227, healing of OA cartilage and the 
degenerate IVD221,223,228,229. PPS has been used in 
bioscaffolds in tissue engineering applications230-

232. PPS regulates Complement activation233,234, 
coagulation/fibrinolysis235-238, thrombocytopenia239,240 
and induces HA production by many cell 
types200,241. Pentosan polysulfate inhibits NGF 
production by osteocytes which reduces bone pain 
in OA/RA242 and promotes lipid removal from 
subchondral blood vessels engorged with lipid in 
OA/RA reducing pain in these conditions243. 
Regulation of cytokine and inflammatory mediator 
production by PPS in ARDS reduces inflammation 
in tissues. PPS also has anti-viral activity162,166,167 and 
is an anti-tumor agent in a number of cancers244. 
 

5.1 PENTOSAN POLYSULFATE AND THE GUT 
MICROBIOME 
The gut microbiome is disturbed in COVID-19 
disease, with alterations in cell populations and 
imbalance in beneficial symbionts and opportunistic 
pathogens245,246. Xylan is the second most 
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abundant plant carbohydrate biomass found in 
nature. Accumulated evidence shows that xylans 
interact with gut microbiota in a beneficial way247. 
Humans cannot digest xylans but they act as 
bulking material aiding in the throughput of 
digested food items through the gut. The gut 
microbiome produce a number of xylanolytic 
enzymes that allow the gut microbiome to utilize 
xylans as a nutrient source, the generated xylo-
oligosaccharides have pre-biotic properties that 
aid in gut homeostasis248 countering the gut 
dysbiosis that occurs in COVID-19 disease249. 
Endoxylanases produced by the gut microbiota 
generate xylo-oligosaccharides (xylo-oligos)250,251 
promoting beneficial symbiont microbes such as 
Bifidobacterium and Lactobacillus populations in 
the human gut improving mucosal health and 
immune function252 and inhibit colonization of the 
gut by pro-inflammatory bacteria such as 
Salmonella sp. This improves gut barrier 
properties, and plasma lipid levels attenuating pro-
inflammatory effects of a high fat diet and 
decreases blood LPS levels and the damaging 
effects of IL-1β and IL-13.  
 
6. Multi-organ involvement in 
Severe acute respiratory syndrome 
coronavirus 2 infection 
SARS-CoV-2 is implicated in the clinical pathology 
of multiple organs and organ systems (Figure 4). 
Severe acute respiratory syndrome coronavirus 2 
canonical mediators, ACE2, and TMPRSS2 are 
assisted by other coronavirus-associated receptors 
and factors, including basigin (BSG/CD147), 
dipeptidyl peptidase-4 (DPP4/CD26), cathepsin 
B/L, furin, interferon-induced transmembrane 
protein (IFTM1-3) and Nrp-1. The localization of 
these SARS-CoV-2 receptors, proteases, and 
genes involved in coding proteins that drive viral 
pathogenesis predisposes to SARS-CoV-2 
infection in a number of tissues253, COVID-19 
infection thus involves the hACE2 receptor and its 
co-receptors Nrp-1 and DPP4/CD26 which engage 
with the SARS CoV-2 spike protein254. In-silico 

development of a bispecific antibody against SARS 
CoV-2 spike glycoprotein and DPP4 receptors 
(Regdanvimab and Begelomab) has been shown to 
block the D614G mutated spike glycoprotein of 
SARS-CoV-2 variants and host DPP4 receptor, 
respectively. This demonstrates the co-
involvement of SARS CoV-2 S protein, hACE2 and 
DPP4/CD26 in the infective process in multi-organ 
viral infection254,255. 
 

6.1 HEMOLYSIS IN COVID 19 INFECTED LUNG 
TISSUES 
Hemolysis is a common feature of COVID-19 
infected tissues256, fibrotic changes in tissues also 
occurs resulting in a reduction in tissue elastic 
properties and lung function257. Pro-coagulant 
activity also results in thrombus formations in 
tissues impairing their functional properties258,259. 
This leads to further detrimental effects on these 
tissues with free heme release resulting in oxidative 
stress, local generation of oxygen free radicals and 
mitochondrial and ER distress, leukocyte 
recruitment, vascular permeabilization, platelet 
and Complement activation, thrombosis, and 
fibrosis leading to impaired lung function. Platelets 
initiate blood clotting, severely affected COVID-19 
patients display a high incidence of 
hypercoagulation in the lungs and brain. Plasma 
fibrinogen levels are also elevated with advancing 
age, high cholesterol, being female, menopause, 
obesity, smoking, inactivity and stress.  Most of 
these features are putative risk factors for COVID-
19260,261. Heparin treatment of COVID-19 patients 
displaying enhanced coagulation levels results in 
an improved prognosis however heparin will only 
prevent thrombus formation and will not dissolve 
existing fibrin clots, thus is palliative and not 
curative.  Prevention of SARS-CoV-2 infection of 
host cells by PPS represents a more effective 
treatment strategy and has the added advantage 
of minimizing inflammatory cytokine production 
and exacerbation of inflammatory conditions in 
tissues262. Heme is a prosthetic group with 
functional roles in a wide variety of heme proteins 
such as hemoglobin and the cytochromes. Release 
of free heme in injured lung tissues promotes 
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adhesion molecule expression, leukocyte 
recruitment, vascular permeabilization, platelet 
activation, complement activation and thrombosis. 
Heme, however, can be degraded by the anti-
inflammatory enzyme heme oxygenase (HO-1) 
generating biliverdin/bilirubin, iron/ferritin and 
carbon monoxide263. Free heme promotes lung 
inflammation in critically ill COVID-19 patients. 
Heme oxygenase -1 has anti-oxidative and anti-
inflammatory properties and may represent a 
specific means of targeting hemolysis 
therapeutically in COVID-19 disease264.  
 

6.2 COVID AND COGNITIVE DECLINE   
COVID-19 infected patients frequently exhibit 
neurological symptoms of anosmia and fatigue and 
long-term neurological deficits post-infection such 
as cognitive decline and brain-fogging 168,265,266. 
Positron emission tomography (PET) and SPECT 
(Single-photon emission computed tomography) 
molecular imaging techniques have been used to 
shed light on how COVID-19 affects human brain 
structure267. Human brain structure is affected by 
long COVID-19 disease even after recovery of 
respiratory function and has been referred to as 
Post COVID Syndrome268,269. It is not known how 
long such neurological deficits will persist in cases 
of severe SARS CoV-2 infection following recovery 
of respiratory function270 however reports of a 
reduction in IQ and altered immune regulation in 
young children effected by even very mild COVID-
19 respiratory disease are particularly 
concerning271,272. Long-term CNS neuro-
inflammation following COVID-19 infection in 
children may deleteriously affect brain 
development273. Disturbing reports are emerging 
of learning difficulties and a decline in the 
educational status of 9 year olds affected by 
COVID-19, an effect which may be exacerbated in 
individuals who also display underlying 
neurological deficits274-276. 
 

6.2.1 The impact of COVID-19 on patients 
suffering from neurological deficits 
The COVID‐19 pandemic has disproportionately 
impacted patients suffering from AD and dementia 

who have a reduced capacity to understand and 
comply with pandemic health care restrictions and 
may represent a spreader risk for COVID-19277. 
Present day AD/dementia patient numbers of 47 
million are projected to triple by 2050 and this will 
be further compounded by the impact of the 
COVID-19 pandemic. It is thus predicted that 
neurological disorders will likely make a greater 
impact on general health even in patients who have 
only been impacted by mild symptoms of COVID-
19. Cognitive deficits have been reported in 
patients after recovery from COVID-19 respiratory 
disease.  An inability to concentrate and a fogging 
of thought processes, impaired concentration and 
problem-solving capability coupled with feelings of 
long-term anxiety and insecurity have all been 
reported278-282. Anecdotal reports of COVID-19 
infection resulting in a reduction in IQ in children is 
particularly alarming. COVID-19 disease is often 
referred to as a mild disorder in children based on 
its relative impact on respiratory function however 
little regard is made of the potential long-term 
effects of COVID-19 disease on brain function.  
Long-term fatigue with COVID also impacts on the 
development of neuropsychiatric disorders283. 
 

7. Conclusions 
Use of PPS as a prophylactic that intercepts SARS 
Cov-2 virion particles in the glycocalyx prevents 
their binding to cell surface HS in all viral strains 
and is not impeded by point mutations arising from 
recombination as part of the natural viral life-cycle. 
SARS-CoV-2 possesses 24 spike glycoproteins per 
virion particle which have central roles in binding 
to cell surface ACE2 facilitating viral entry into host 
cells.  This occurs through the RBD of spike protein 
however this is buried within the S1 domain which 
is exposed by a conformational change upon 
interaction with cell surface HS.  PPS prevents such 
HS interactions occurring and viral infection and 
warrant further investigation.  PPS is effective 
against all classes of viruses and its anti-viral 
properties are not diminished by viral mutations. 
The emergence of a further bat coronavirus, HKU5-
CoV-2 related to SARS CoV2284,285 and of a mink 
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respiratory coronavirus (MRCoV)286 related to 
MERS and SARS CoV2 indicates that due diligence 
is essential.  PPS would be expected to be an 
effective blocking agent for these new CoV strains, 
however vaccines or antibodies have yet to be 
developed. It may thus be a prime time to adopt 
PPS in preventative anti-viral strategies. 
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Supplemental Figure 

 
 

Supplementary Figure 1. Illustration of how the multifunctional properties of pentosan polysulfate (PPS) can be used to treat COVID-19 infected tissues. 

PPS is a semisynthetic sulfated xylan manufactured from beechwood hemicellulose by 
bene-Arzneimittel GmBH in Germany.1,2 Approved in Australia, USA and Europe 
(Elmiron®capsules) for oral use as a treatment for people with interstitial cystitis. 

Safe and non-toxic,3,4 no SAE or deaths after millions of oral doses. 

Why use pentosan 
polysulfate (PPS) for 

long COVID?

PPS is antiviral and variant-independent; it can bind to any 
variant that can bind to cells70,71 and prevent cell entry.72

Many ACE2 receptors on alveolar epithelium;31 fibrotic lung 
remodeling32 with reduced diffusion capacity;33 activated 
cytotoxic T-cells with greater airway dysfunction;34,35 tissue 
damage from cytokine storm;36,37 microclots in circulation.20

PPS reduces inflammatory infiltrates in virus-infected mice.65.66

Oral PPS is a mild anti-coagulant,56 an anti-thrombotic57 and a 
strong fibrinolytic.58-60 PPS stabilized the peripheral vascular 
system and improved the microcirculation in inflamed tissue.61,62

PPS inhibits histamine secretion by mucosal 
mast cells63 and in a model of allergic rhinitis.64

PPS lowers serum TNFα and IL-6.74,75 PPS reduced 
TNFα-levels in aging diabetic kidneys, suppressed 
TNFα-stimulated NF-kB activation76 and lowered 
cytokine levels77 in proximal tubular cells. 

PPS improved systolic function in the 
pressure-overloaded rat heart.73

Some oral PPS is degraded82 into probiotic metabolites.83

PPS inhibited TNFα-induced levels of proNGF secretion and may act 
to suppress NGF release to ameliorate pain.48 In a rat BBB model, 
PPS reversed negative effects of added β-amyloid peptides.49

PPS transiently prevents T cells from entering perivascular 
spaces.50 PPS stops  T cells being activated by target B 
cells and triggering neurological adverse events.

Better sensory nerve function after PPS  in diabetic patients.55

PPS prevents protein mediators and other cells binding 
to epithelium51 and can regenerate epithelium.52

PPS reduced pain in patients with OA67 and RRV arthralgia68

and improved myalgia in chronic prostatitis patients.69

PPS reversed AGE-induced fibrosis in mesangial cells78,79 and 
decreased collagen type I production in cultured muscle cells.80

PPS can activate lipoprotein lipase and normalize blood 
lipids.53 PPS inhibits PCSK9, competes with HS-PG 
receptors and increases LDLR, facilitating LDL clearance.54

IM PPS normalized lymphocytes in OA patients.53

PPS prevents impairment of renal autoregulation 
despite persistent hypertension.81 Approved for cystitis. 

Dyspnoea (breathlessness); 
hypoxia; chest tightness, 
chest heaviness; fatigue 

Rhinorrhoea; sore 
throat; dry cough

Diarrhoea; nausea; vomiting; 
loss of appetite; abdominal 
pain; constipation

Heart palpitations, chest pain

Expectoration

Anxiety; depression; 
PTSD; insomnia; Cognitive 
disturbances (brain fog)

Memory loss

Paresthaesia; 
burning pain

Anosmia; 
loss of taste

Arthralgia; myalgia 
(joint and muscle pain)

Stroke; hypercoagulation; 
procoagulant state; 
thromboembolisms

Chronic kidney disease

Dyslipidaemia

Lymphopenia

Overactive bladder 
(COVID-associated cystitis)

Mucus production to remove accumulation of white cells attempting repair.25

Symptom
Probable cause

PPS action

SARS-CoV-2 in heart tissue,38 with elevated TNF, IL-6.39 Viral Nsp6 
can cause cardiac defects.40 Overexertion; depression; insomnia.

Direct infection of gut cells;43 direct infection of gut bacteria;44 gut 
microbiome dysbiosis;45,46 autonomic nerves which control digestion affected.

Coronaviruses induce neuronal injuries in pre-clinical studies.7 COVID causes 
neuroinflammation, demyelination, neurodegeneration, and conscious 
disturbance.8,9 SARS-CoV-2 dysregulates the BBB.10,11 Fog may be due to 
amyloid-like folding of viral proteins,12,13 or the presence of neurotoxins.14

SARS-CoV-2 infection caused reduced grey matter thickness and global brain size.15

Peripheral neuropathy (nerve damage)19 or 
poor peripheral circulation due to microclots.20

SARS-CoV-2 protein ORF10 interferes with epithelial cilia function.16

IL-6-mediated inflammation and fibrosis of joint soft tissues26 and impaired 
microvascular in subchondral bone (microclots);20 direct infection of myocytes;27

myopathy from cytokine storm,27,28 hypoxia or peripheral neuropathy.30

Brain hypercoagulation, excessive inflammation, platelet activation and 
endothelial dysfunction.21 Endothelial cell infection reduces integrity of 
blood vessel barrier and promotes a pro-coagulative state.22 Microclots may 
be due to amyloidosis of fibrin20 or excessive complement activation.22

SARS-CoV-2 infects the human kidney, activates profibrotic signaling 
pathways, increases collagen type I and drives fibrosis in kidney organoids.41

Correlated with endothelial dysfunction;17 leads 
to reduced defense against oxidative stress.18

Nasal epithelium is initial site of infection;23 evading 
response by innate immune system.24

Virus induces lymphopenia by promoting systemic inflammation 
and direct neutralization in human spleen and lymph nodes.47

Direct viral infection; systemic inflammation, neuropathy.42

SARS-CoV-2 RNA5 and spike protein6

still present in most tissues. 
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ACE2  Angiotensin-converting enzyme 2 
ADAMTS A Disintegrin and Metalloproteinase with Thrombospondin motifs 
AD   
ADHD  Attention deficit hyperactivity disorder  
ARDS  Acute respiratory distress syndrome 
AT  Antithrombin 
BSG/CD147 Basigin 
BGN  Biglycan 
BMP  Bone morphogenetic protein 
CendR  C-end Rule protein motif, interacts with NRP-1 
CoV  Coronavirus 
COVID Coronavirus disease 2019 
CoV RaTG13 Bat coronavirus RaTG13 
CVI  Chronic venous insufficiency  
CSF  Cerebrospinal fluid 
DPP4/CD26 Dipeptidyl peptidase-4  
DCN  Decorin 
DMOAD Disease modifying anti-arthritic drug 
DVT  Deep vein thrombosis 
ECM  Extracellular matrix protein 
ERK1/2 Extracellular signal-regulated kinase 1 and 2 
GPC  Glypican 
HS  Heparan sulfate 
HSPG  Heparan sulfate proteoglycan   
HUVEC Human umbilical vein endothelial cells 
IAV  Influenza A virus  
IFTM1-3 Interferon-induced transmembrane protein  
IL  Interleukin 
iNOS   Inducible nitric oxide synthase   
IQ  Intelligence quotient 
ITI  Inter--trypsin inhibitor 
ITIM  Immunoreceptor tyrosine-based inhibitory motif 
KIAA1199 CEMIP (cell migration inducing protein) deafness gene 
LDL  Low density lipoprotein 
LMW-HA Low molecular weight hyaluronan 
MAPK  Mitogen-activated protein kinase 
MERS  Middle East respiratory syndrome 
MSCs  Mesenchymal stromal stem cells  
NDST-2 N-Deacetylase/N-Sulfotransferase-2 
NF-κB  Nuclear factor kappa-light-chain-enhancer of activated B cells 
NGF  Nerve growth factor 
NMJ  Neuromuscular junction 
NRP-1  Neuropilin-1 
NTD  N-terminal domain (of Spike protein) 
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OA, RA Osteoarthritis, Rheumatoid arthritis 
OCD  Obsessive compulsive disorder  
PAI-1, 2 Plasminogen activator inhibitor-1, 2 
PCSK9 Proprotein convertase subtilisin/kexin type 9  
PET   Positron emission tomography 
PPS  Pentosan polysulfate 
RBD  Receptor binding domain (of Spike protein) 
ROS  Reactive Oxygen species 
SARS CoV-2  Severe acute respiratory syndrome coronavirus-2 
S  Spike protein of SARS CoV-2 
SDC  Syndecan 
SPECT  Single-photon emission computed tomography 
TAZ  Transcriptional co-activator with PDZ binding motif 
TLR4  Toll-like receptor-4 
TMPRSS2 Transmembrane protease, serine 2 

  Tumor necrosis factor alpha 
tPA  Tissue plasminogen activator 
TRAF-6 Tumor necrosis factor receptor associated factor 6  
TS  Tourette Syndrome  
TSG-6  Tumor necrosis factor-inducible gene 6 protein 
YAP  Yes associated protein 


