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ABSTRACT

This study highlights the roles of pentosan polysulfate as a decoy anti-viral
prophylactic that prevents severe acute respiratory syndrome coronavirus-2 infection.
PPS also has multifunctional cell and tissue protective properties relevant to the
treatment of the symptoms produced by long COVID disease. PPS has heparan
sulfate (HS)-like properties, a key functional component of the lung glycocalyx. The
glycocalyx is also rich in hyaluronan which has important cell shielding and cell
regulatory properties. A healthy glycocalyx prevents access of viral particles to cell
surface heparan sulfate-proteoglycans (syndecan, glypican) which act as viral
receptors. Pentosan polysulfate promotes hyaluronan synthesis by many cell types,
ensuring cells are surrounded by a healthy protective glycocalyx. Hyaluronan,
however, has a relatively short biological half-life and is susceptible to degradation
by hyaluronidases that are upregulated by inflammatory cytokines in acute respiratory
distress syndrome in COVID-19 disease. This results in the glycocalyx becoming
degraded and endothelial cells dysfunctional in COVID-19 disease. Prevention of viral
interaction with the host cell surface intercepted by pentosan polysulfate, a decoy
viral binding prophylactic agent, blocks viral interaction with cell-surface heparan
sulfate, preventing viral interactions with other cell surface receptors such as
neuropilin-1 and angiotensin-converting enzyme 2. Co-operation between heparan
sulfate, neuropilin-1 and angiotensin-converting enzyme 2 facilitates the infection of
host cells with severe acute respiratory syndrome coronavirus 2, thus if the initial
interaction with heparan sulfate is blocked this prevents the subsequent viral
interactive stages. Pentosan polysulfate also has multifunctional cell and tissue
protective properties, broad anti-oxidant and anti-inflammatory properties and
inhibits cytokine production in acute respiratory disease syndrome. Pentosan
polysulfate inhibits p38 mitogen-activated protein kinase and nuclear factor-«B
activation, reducing the production of pro-inflammatory cytokines such as tumor
necrosis factor-a, interleukin-1p and interleukin-6. Furthermore, pentosan polysulfate
is processed by enzymes of the gut microbiome into prebiotic xylo-oligosaccharides
that preserve gut health and combat gut dysbiosis seen in COVID-19 disease. Studies
are thus warranted to fully assess pentosan polysulfate as an anti-severe acute
respiratory syndrome coronavirus-2 prophylactic agent and its multifunctional cell
and tissue protective properties. Furthermore, from a practical and economic point
of view, treatment with pentosan polysulfate would offer substantial cost-benefit
advantages over conventional vaccine and antibiotic treatments and could also be
used in an adjunctive capacity with existing therapies, offering flexibility in its use.

Keywords: Pentosan polysulfate; SP54; Neuropilin-1; angiotensin-converting enzyme-
2; Heparan sulfate; SARS-CoV-2; HIV; Herpes simplex; Dengue virus; Papillomavirus.
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1. Introduction

The aim of this study was to highlight the roles of
pentosan polysulfate (PPS), a semisynthetic
heparinoid, as a decoy anti-viral prophylactic in the
prevention of SARS-CoV-2 infection of host cells.
The multifunctional cell and tissue protective
properties of PPS are also described illustrating
how PPS may be employed to treat the multi-
parameter symptomatology that characterises long
COVID disease (Figure 1).

1.1 COVID-19 IS A PANDEMIC VIRAL DISORDER
OF GLOBAL IMPACT

COVID-19 is a pandemic disease that emerged in
Wuhan, China in late 2019 with the emergence of
severe acute respiratory syndrome coronavirus-2
(SARS-Cov-2), a single strand RNA virus that is
96.2% identical in genomic sequence to the bat
CoV RaTG13 virus. SARS CoV-2 is highly
transmissible through aerosols, droplets, fomite
affected surfaces or direct skin contact®.
Historically, SARS-CoV-2 has demonstrated an
unprecedented infectious global profile and has
undergone rapid evolutionary mutational changes
as part of its natural life cycle into several variants
which avoid immune detection. Some of these
SARS-CoV-2 variants bind more efficiently and with
greater rapidity to respiratory epithelial cells,
rendering these viral forms significantly more
infectious?3. The Omicron variant is currently a
dominant global variant, 99% of all variants
circulating in the U.S. are mutations of Omicron,
most commonly EG.5 (24% of all SARS CoV-2 strains)
and FL 1.5.1 (14%) (https://covid.cdc.gov/covid-
data-tracker/#variant-proportions)*. A distinctive
feature of these Omicron variants is a change in
their infective profiles displaying more effective
infection of the nose and throat rather than the
original Wuhan and Delta variants which primarily
infected the lungs®. Respiratory distress is a
prominent feature of SARS CoV-2 infections, but
other organ systems can also be affected including
the brain, liver, heart, and kidney®®. Symptoms of
SARS CoV-2 infection include fever, anosmia,
ageusia, dry cough, fatigue, breathlessness, hair-

loss and so-called brain-fogging with a decline in
problem solving capability, cognition, ability to
concentrate, negative neurological impact and an
increase in long-term anxiety®!°. These symptoms
can be mild, moderate or severe and a fatality rate
of 1 in 100 is reported depending on the co-
morbidities that patients display; these can
significantly impact the severity of COVID-19. A
global systematic review of 76 studies that
examined a total of 17,860,001 patients across 14
countries showed that age >75 years, male sex,
severe obesity, lymphopenia, and cancer increased
the impact of SARS CoV-2 infection on health and
well-being*.

Viral recombination is a normal part of the viral life
cycle but results in an extremely wide spread in
epitope presentations and these continually
undergo changes in structure.
problematic to raise vaccines or antibodies to
current infectious viral strains and these require
continual updating putting enormous strain on viral
treatment resources. In the present study we have
shown how PPS can inhibit all viral classes by

This makes it

blocking the interaction of virion particles with cell
surface HS and we propose that this has
considerable merit as a preventative approach to
treatment of potential infections by SARS CoV-2
but is also applicable to other viral classes.
Furthermore, PPS is a pleotropic cell and tissue
protective agent*®'®* as we have outlined in this
review and is suitable for the treatment of many
facets of the varied symptomatology encountered
in COVID-19 infected tissues throughout the
human body. This is a further strength of PPS as a
therapeutic agent for viral conditions.
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PPS is a Anti-Viral Agent That Prevents SARS-CoV-2 infection.

Multi-organ symptoms effected by COVID-1% disease treatable by PPS
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Figure 1. The multifunctional properties of pentosan polysulfate. Multi-organ systems affected by COVID-19 treatable with pentosan polysulfate.

1.2 PENTOSAN POLYSULFATE, A PROPHYALACTIC than heparan sulfate (HS) or heparin but has a
ANTI-VIRAL PLEOTROPIC CELL AND TISSUE higher charge density and has many properties that

PROTECTIVE AGENT mimic HS found on cell surfaces and in extracellular
Pentosan polysulfate is a semi-synthetic sulfated matrix heparan sulfate proteoglycans (HSPGS)
xylan biomimetic heparinoid that has been (Figure 2). This provides PPS with a multifunctional
categorized as a disease modifying anti-arthritic cell and tissue protective profile that is discussed
drug (DMOAD). It has a smaller molecular weight more fully later in this review!2*3,
a.
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Figure 2. Sulfation patterns of heparan sulfate and pentosan polysulfate. Structural organization of a putative HS chain (a) and
pentosan polysulfate (PPS) with its 4- O-methyl-glucuronic acid monosaccharide side chain al-2 linked to every tenth xylose residue
(b), disaccharides HS is assembled from (c), saccharide structure of PPS (d), and two examples of HS disaccharides (e, f). Heparan
sulfate contains three substitution sites in the D-glucuronic acid 1-4 linked N-acetyl glucosamine repeat disaccharide, marked R1,
R2, R3 on HS can be occupied by combinations of hydroxyl, acetyl, and sulfate groups.
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2. The impact of Coronaviruses on
human health and well-being

Coronaviruses (CoVs) are enveloped viruses of the
Nidovirales order, Coronaviridae family**. Bats,
dogs, cats and humans can all be infected with
these viruses!. Seven species of CoVs have so far
been identified, four of these produce relatively
mild symptoms of the common cold* but severe
acute respiratory syndrome (SARS-CoV), Middle
East respiratory syndrome (MERS-CoV) and SARS-
CoV-2 have a higher impact and can be life-
threatening diseases'®. The SARS-CoV pandemic
of 2002-2003 resulted in 774 deaths and 8098
cases of infection distributed over 26 countries *'.
Middle East respiratory syndrome coronavirus
(MERS-CoV) emerged ten years later as the sixth
coronavirus and resulted in infections across 27
countries in the Middle East, Asia, North Africa and
Europe which resulted in 2040 infections and 712
deaths. Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) is the seventh
coronavirus (CoV) which has recently emerged
resulting in a global health pandemic. Severe acute
respiratory syndrome coronavirus 2 is closely
related to Severe acute respiratory syndrome
coronavirus (SARS-CoV) but has a far more
infectious profile and thus has a significantly
greater impact on global human health. As of 19™
Sept 2024 704 million confirmed cases of SARS-
CoV-2 infection in 223 countries and territories, 7
million deaths and 675 million cases of recovery
from infection have been reported by Worldometer
[https://www.worldometers.info/coronavirus/ accessed

on 19-9-2024]'®

2.1 PREVENTION OF VIRAL INFECTION OF HOST
CELLS BY PENTOSAN POLYSULFATE

To infect human cells, viruses must pass a dense
layer of carbohydrate (glycocalyx) attached to the
cell surface. Several viruses, including Herpes, HIV
and other coronaviruses, bind to HS during this
infection phase. HS and ACE2 are necessary for
SARS-CoV-2 infection and Nrp-1 has additional
roles to play as a co-receptor in this infective
process'®?. Molecular modeling, atomic force

measurements and X-ray crystallography have
shown that SARS-CoV-2 HS binds the Spike S1
receptor binding domain (RBD). Infection can be
prevented by enzymatic removal of HS from the
cell surface, demonstrating the importance of HS in
the initial viral attachment phase. Exogenous
heparin, LMW heparin and PPS block coronavirus
infections in lab-grown cells by binding to the
isolated SARS-CoV-2 viral particles dispersed in
biological fluids and this prevents them from
entering and infecting host cells. A GAG-binding
site in the N-terminal domain (NTD) of Spike
protein in 241-246% binds HS.
Prophylactic administration of HS oligosaccharides
also bind to this site and prevent productive
associations between Spike protein and ACE2
showing how PPS blocks SARS CoV-2 infection®.
Molecular dynamic simulations of the Spike trimer
interaction with HS dodecasaccharides (and PPS)

residues

indicate that when attached to this HS binding site
these GAG components span the RRAR (CendR)
furin cleavage site interfering with Spike protein
interactions with cell surface receptors essential for
SARS-CoV-2 infection?. Use of heparin in-vitro can
block this infective process in epithelial cells?.
Polysulfates block SARS-CoV-2 uptake into cells
showing electrostatic interactions are important in
this process?® explaining why PPS inhibits SARS-
CoV-2 infection of host cells. Biochemical,
biophysical, and genetic studies show HS induces
an open conformation in S protein required for
binding to ACE2%, a high degree of coordination
between host cell HS and S protein asparagine-
linked glycans enables ACE2 binding and host cell
infection®. Prophylactic use of PPS disrupts this
interaction with cell surface HS and prevents host
cell infection. SARS-CoV-2 Spike protein is
proteolytically processed by transmembrane
protease, serine 2 (TMPRSS2) and furin produced
by host cells to prime the S1 domain for binding to
ACE 221243035 Transmembrane protease, serine 2
(TMPRSS2), a respiratory and gastrointestinal
membrane anchored protease, plays a crucial role
in the activation of SARS-CoV-2 spike protein.
Endogenous serine protease inhibitory proteins in

© 2025 European Society of Medicine 4



tissues may have a protective role to play in the
prevention of this protease mediated remodeling
of SARS CoV-2 Spike protein required to facilitate
its interaction with ACE2. Small drug inhibitors
(Camostat, Nafamostat, and Bromhexine) have been
re-purposed from anti-tumor applications to inhibit
TMPRSS2 mediated SARS-CoV-2 S protein
priming®. Entry of SARS-CoV-2 into host cells via
the receptor binding domain (RBD) of S protein
after the S1 and S2 subunits dissociate from each
other by the action of TMPRSS2 allow
conformational rearrangement and prime it for
interaction with the host cell®°. Furin, a type 1
membrane protease, also cleaves between S1 and
S2 in SARS-CoV-2 S protein to facilitate binding to
ACEZ2 and viral membrane fusion with the host cell
plasma membrane, effecting internalisation of
SARS-CoV-2%. Transmembrane protease, serine 2
is part of a mucous secretory network highly
upregulated in inflammation by interleukin-13.
Interleukin-13 (IL13) and viral infection also
mediate effects on ACE2 expression in the airway
epithelium with interferon mediated responses to
respiratory viruses highly upregulating ACE2
expression’. Moreover, some viruses synthesize
their own TMPRSS2* and this also has roles in viral
activation***3, While ACE2 is considered to be the
primary host receptor in SARS-CoV-2 and SARS-
CoV infections these related viruses have vastly
different
involvement of factors in addition to ACE2 that

infection  rates, suggesting the
promote SARS-CoV-2 infection. Severe acute
respiratory syndrome coronavirus-1 (SARS CoV-1)
and SARS CoV-2 both bind to the ACE-2 receptor
on host cells, however the latter is considerably
more infectious, utilising multiple factors to
achieve this higher infection rate (Table 1). Severe
acute respiratory syndrome coronavirus-2 is
particularly good at infecting cells, in the upper
respiratory tract, and deeper in the lungs*.
Neuropilin-1 (NRP-1) is another host cell co-
receptor that SARS-CoV-2 also uses for cellular
attachment®. Furin generates a C-end rule motif
(CendR) in the SARS-CoV-2 spike protein and this

interacts with a CendR receptor in Nrp-1
promoting the internalisation of CoV-2 viral
particles by endocytosis®”*%“® (Table I). The greater
infective efficiency of the Omicron CoV-2 variant
suggests it utilises these additional cell surface
motifs to infect host cells. Cell surface HS is used
by many viruses as a docking module in host cell
infection (Table 2). Heparan sulfate proteoglycans
(HSPGs) are endocytic receptors that viruses use
for cell entry*®*. NRP-1 is also an endocytic
receptor®. Herpes simplex, hepatitis, papilloma,
flaviviruses and respiratory syncytial virus all utilize
multiple cell surface receptors as part of their
internalization strategy to infect host cells®
. Viruses do not bind to the non-sulfated HA
component of the glycocalyx, and this acts as a
barrier to viral penetration®*®8, It has been
proposed that COVID-19 is an endothelial
disease® brought on by the cytokine storm of
ARDS that produces destructive changes in the
endothelial cell glycocalyx®*®.  Significantly,
binding of viral particles to PPS in biological fluids
prevents them from interacting with the HS chains
of syndecan (SDC) or glypican (GPC) to gain access
to the Nrp-1 or ACE2 receptors on host cells. As
shown in Table Il, many human and animal viruses
utilize cell surface HS as a docking module to
facilitate infection of host cells.

© 2025 European Society of Medicine 5



Table | ACE2, cell surface HSPGs and Nrp-1 interact with SARS CoV-2 Spike protein facilitating viral entry

to host cells.

Receptor Physiological properties

Evidence for roles as a SARS CoV-2
receptor

Ref

Cell-ECM signaling
HS Cell adhesion
Cell growth factor and cytokine interactions

Direct interaction of HS with S glycoprotein
in ECM, GAG microarray, co-precipitation
experiments. Enzymatic removal of HS or HS
knockdown results in reduced SARS CoV-2
infection levels.

62-64

ACE2 Regulation of blood pressure

Cryo EM images/ X ray crystallography
demonstrate ACE2 bound to S RBD. ACE2
over-expression in cells results in enhanced
CoV-2 infection. Human ACE2 over-
expression in mice results in enhanced CoV-
Inhibition of SARS CoV-2
infection is evident in ACE2 knockout cells

65-70

2 infection.

Regulation of neural network development

Nrp-1 . L
and angiogenesis in tissue development

Demonstration of binding of Nrp-1 to Furin
generated C-end rule (CendR) motif in Spike
protein. Overexpression of Nrp-1 in cells
results in enhanced SARS CoV-2 infection.
Nrp-1 KO results in a reduced SARS CoV-2
infection

37,39,71,72

Viruses utilize cell surface syndecan and glypican
HS-proteoglycan as docking structures as part of
the infective process of prospective host (Table II).

These proteoglycans have a ubiquitous cellular
distribution.

Table Il Cell surface HS Proteoglycans that act as viral receptors

HSPG receptor

Viruses Ref

Syndecan-1 Hepatitis C virus I8

Syndecan-2 Hepatitis B virus, Dengue virus strain DEN2 16681 7475

Syndecan-3 HIV-1 76
Adeno-Associated Virus 9, Porcine reproductive and respiratory

Syndecan-4 i s
syndrome virus

Glypican-5 Hepatitis B and D viruses &

Syndecans and glypicans

Porcine hemagglutinating encephalomyelitis virus, Papilloma viruses.

80-82

Syndecan

SARS-CoV-2

83

Syndecans

HIV-1

84-86

2.2 CELL SURFACE GLYCOSAMINOGLYCANS
AND VIRAL INFECTION OF HOST CELLS.

2.2.1 Anionic anti-viral compounds

Anionic polysulfate GAGs have inhibitory effects
on host cell infection with multiple viruses including
SARS-CoV-2%" and AIDS; PPS has been proposed
as a drug for the prevention of infection with AIDS

and SARS-CoV-2%, It has been proposed that these
compounds should be administered as aerosols
inhaled
potency®. Administration of sulfated hyaluronan
derivatives delivered by aerosol prolong the
survival of K18 ACE2 mice infected with a lethal
dose of SARS-CoV-2%. PPS (SP 54), a low molecular
weight sulfated polysaccharide is one of the most

into lung tissues to increase their

© 2025 European Society of Medicine 6



active /n vitro inhibitors of retrovirus-specific
reverse transcriptase® and is a selective anti-HIV
and anti-SARS-CoV-2 agent in  vitro™*%.
Polysulfated polyxylan (HOE/BAY 946) completely
inhibited syncytium formation induced by HIV
infection of T-lymphocytes as well as viral
replication and inhibited HIV reverse transcriptase.
Furthermore, a drastic decrease in the release of
viral particles in HIV infected U937 pro-monocytic
cells was also elicited by HOE/BAY 946%, this
increases membrane hydrophobicity of human
lymphocytes and specifically suppresses HIV-
protein synthesis®, and also inhibits HIV replication
in  human  monocytes/macrophages®. The
pharmaco-kinetics of intravenous HOE/BAY 946
has been examined in HIV patients®. Sulfated
polysaccharides have also been shown to inhibit
lymphocyte-to-epithelial transmission by HIV-1%.
Chemically oversulfated galactosaminoglycan
sulfates inhibit the enveloped viruses HIV-1, HSV-1
and HCMV?®8, Chondroitin polysulfate displays anti-
HIV-1 activity /n vitro®®. A synthetic polysulfonated
naphthalene polymer (PRO 2000) binds to HIV-1
gpl20 glycoprotein and interferes with viral
binding to CD4* T cells but also interacts with CD4
and CXCR4, a G-protein coupled chemokine
receptor that can induce expression of selective
chemokines with potential anti-viral activity'*%, it
also inhibits infection of host cells with HIV and
SARS-CoV-2%, pentosan polysulfate also ameliorates
the symptoms of human T lymphotropic virus type
| (HTLV-I)-associated myelopathy/tropical spastic
paraparesis (HAM/TSP) which is characterized by
lower extremity motor dysfunction®Z,

2.3 SEVERE ACUTE RESPIRATORY SYNDROME
VIRUS-2 VARIANTS

A highly virulent Delta SARS-CoV-2 variant (B
1.617.2) emerged in India in 2020 becoming the
dominant global strain. On 24 November 2021, a
further highly infectious SARS-CoV-2 variant
(B.1.1.529/BA.1) was reported, this has also had a
significant global impact displacing the delta
variant as the dominant SARS Cov-2 strain'®. The
World Health Organization Technical Advisory
Group on SARS-CoV-2 Viral Evolution designated

this emergent CoV variant as B.1.1.529, the fifth
Coronavirus variant and named it Omicron®,
Several Omicron variants have emerged since then
with the BA-4 and BA-5 variants becoming firmly
established. Vaccines raised to the original Wuhan
strain of SARS CoV-2 offer incomplete coverage of
these variants and multiple COVID-19 re-infections
two or three times have been reported. This
emphasizes the need to develop alternative
preventative strategies to prevent COVID-19
infections rather than vaccines or antibodies that
treat the symptoms. It is not known to what extent
all of the symptoms of long COVID disease are
treatable or whether full recovery is possible, however
besides acting as a viral anti-infective agent, PPS
also treats COVID-19 disease symptomatology*®.

The BA-4 and BA-5 Omicron variants are the most
infectious forms of SARS-CoV-2 and are of major
concern; their greater infectivity is related to 32
mutations in their S protein compared to the
original Wuhan CoV-2 strain, 15 of these mutations
specifically affect the CoV-2 RBD of S protein'®
(Figure 2). The high infective rate of the Omicron
variants suggest these utilise a more effective
range of cell surface binding motifs in addition to
the ACE2 receptor and Nrp-1. A further Omicron
sub-variant, a so-called second generation sub-
variant, BA.2.75 has emerged in India, unofficially
named Centaurus'®** and has been detected in
Germany, The Netherlands, Japan, UK, US,
Australia and New Zealand.

Two mutations in the BA.2.75 variant (G446S and
R493Q) allow it to escape immune detection and
to bind more strongly to the ACE2 receptor, it is
predicted that this increases its infectivity. Prior
COVID-19 immunizations may limit the infectiousness
of this new sub-variant however it is not known how
effective pre-existing antibody preparations will be
against this new Omicron variant.

2.4 MUTATIONS IN S1 SPIKE GLYCOPROTEIN IN
SEVERE ACUTE RESPIRATORY SYNDROME VIRUS
-2 VARIANTS.

Examination of amino acid sequences in the S1
glycoprotein of SARS-CoV-2 variants demonstrates

© 2025 European Society of Medicine 7



significant substitutions of native SARS-CoV-2 evasion of immune detection of these variant forms
sequence which partly explains the waning of SARS-CoV-2. Of the viral strains of SARS-CoV-2
effectiveness of vaccines and therapeutic antibodies so far identified, the Omicron strain has the highest
in the treatment of COVID-19 disease and the number of S1 RBD substitutions (Figure 3).

Amino acid position Viral
339 371 373 375 417 440 446 452 477 478 484 493 496 498 501 503 strain

® 000 ©® ® OO OO OOOA®®
Dett

©
(D)mm(S (S (S) O=G= L= OO OGO OO= camma
O=(® O=E U= O~-OQOQO@QWV= teta

D= (NS (O qD=()=(L=( = ®) @@= Alpha

O Parental sequences .Mutated sequences

Figure 3. Point mutations in the receptor binding domain of spike protein in coronavirus variants. Amino acid sequences in the receptor
binding domain of the SARS CoV-2 Spike protein in the original Wuhan strain and the mutations in its variant forms. Figure from?*1,

Table Ill. A.Viruses that gain access to cells through interaction with cell surface HS and B. antiviral sulfated
polysaccharides that block such viral interactions

Virus Docking module Ref
Viruses that utilize HS or related GAGs for infection of host cells A
Adeno-associated virus 2
Adeno associated virus serotype 3B HS 112-114
Akabane and Schmallenberg Viruses. HS 115
Chikungunya Virus Strains Sulfated GAGs 116
Coxsackievirus B3 variant , Coxsackievirus
AL6, B4 N- and 6-O-sulfated HS 117-119
Dengue Viruses HS 120122
Duck Tembus virus HS 123
Ebola virus HS 124
Echovirus 5 HS 125
Enterovirus A71 HS 118,126,127
Filovirus HS 128
Henipavirus HS 129
Hepatitis B virus HSPG 130
Hepatitis delta virus HSPG 131
Hepatitis C HS, HS-proteoglycans 182,133
Human herpes virus 8 HS 134
Herpes simplex virus type 1 HS 135
Human meta pneumo virus HS 136
Herpes simplex virus type 1 Syndecan-1 187,138
HlV HS 139-141
Human, monkey, rodent Foamy virus HS 142,143
Human papillomavirus 16 virus HS 144
Human respiratory syncytial virus HS 145
Human meta pneumovirus HS 146
Human Parechovirus HS 17
Japanese encephalitis virus HS 47

© 2025 European Society of Medicine 8



Virus

Docking module Ref

SARS-CoV-2

Merkel cell polyomavirus HS, sialylated glycans 148
Murine leukemia virus HS 149
Murine herpes virus 68 HS 150
Moloney Murine leukemia virus HS 140
Porcine epidemic diarrhea virus HS 151
Pseudorabies virus HS 152
Rabies virus HS 153
Respiratory syncytial virus G Heparin 154,155
SARS CoV-2 HS, HSPGs 21,24,28,33,64,156
Swine vesicular disease virus HS 157
Sindbis virus HS 158
Swine fever virus HS 159
Vaccinia virus HS 160
Zika virus HS 161
Inhibition of viral attachment to host cells using sulfated polysaccharides B
Virus Blocking polysaccharide Ref
African swine fever virus PPS and Sulfated polysaccharides 162
Herpes. sm.1plex,.Cytc.)m?galowrus, Vesicular PPS and Sulfated polysaccharides 163164
stomatis virus, Sindbis virus HIV
T cell leukemis virus type-1 PPS 165
Chikungunya virus PPS 166
Ross river virus PPS 166,167

PPS, Polysulfates, heparin,

24,28,64,156,168
enoxaparin

3. Anti-inflammatory and tissue
protective properties of pentosan
polysulfate

Pentosan polysulfate has
properties in knee OA, reducing joint swelling and
pain'® and has reno-protective effects in kidney
injury, nephrectomy and diabetic nephropathy*™.

Pentosan polysulfate is also effective against

anti-inflammatory

arthritogenic alphaviruses such as Ross River virus
(RRV) and chikungunya virus (CHIKV) which cause
cartilage destruction, crippling pain and joint
inflammation®®. Pentosan polysulfate increases
production of the anti-inflammatory cytokine IL-10
and reduces production of proinflammatory cytokines,
modulates growth factor signaling and lymphocyte
activation and reduces inflammatory infiltrates in
joint fluids in chikungunya infected mice'™.
Pentosan polysulfate has systemic and local anti-
inflammatory activity in post-acute pulmonary
inflammation in an influenza virus A induced
pulmonary inflammation model*”2. The beneficial

effects of PPS are due to a combination of its anti-
viral and anti-inflammatory properties!”. Pentosan
polysulfate also supports tissue repair processes in
the degenerate IVD*®, representing part of its
pleotropic tissue and cell protective properties!®.

3.1 THE HYPERCOAGULATIVE STATE OF COVID-
19 IMPAIRS PLATELET FUNCTION AND TISSUE
REPAIR RESPONSES, WEAKENING NORMAL
LUNG FUNCTION

Corona virus-2 infected patients that develop a
severe pro-inflammatory state are also frequently
associated with a procoagulant endothelial
phenotype'™ that produces an elevation in
fibrinogen and D-dimer/fibrin(ogen) degradation
products associated with systemic
hypercoagulability'®. Fibrinogen D-dimer levels
positively correlate with mortality rates in COVID-
19 patients and lead to arterial thrombotic events
including stroke, ischemia and microvascular
thrombotic events in the pulmonary vascular

beds'’®. Heparan sulfate is a critical regulator of the
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immunoreceptor tyrosine-based inhibition motif
(ITIM) receptor G6b-B-R that regulates platelet
production and activation!’’. Binding of G6b-B-R to
the HS side chains of perlecan and multivalent
heparin inhibits platelet and megakaryocyte
function by inducing downstream signaling via the
protein tyrosine phosphatases Shpl and Shp2.
SARS-CoV-2 initiates programmed cell death in
platelets'’® thus G6b-B-R has important roles to
play maintaining platelet levels in wound healing
responses'’®. Perlecans interaction with G6b and
G6b-R regulates fibrotic changes in tissues
produced by excessive levels of platelet activation
180 perlecan HS also regulates cell adhesion,
proliferation and growth factor signaling in tissue
repair responses in tissue homeostasis and optimal
tissue function, features mimicked by PPS*8%.181,

3.2 A DYNAMIC BALANCE BETWEEN THE
FIBRINOLYTIC AND COAGULATION SYSTEMS IS
CRITICAL TO NORMAL LUNG FUNCTION AND
HOMEOSTASIS.

The fibrinolytic and coagulation system are inter-
COVID-19 can be
overwhelmed by a hypercoagulative state that

connected however in

prevails. Plasmin is a major clot dissolving
fibrinolytic enzyme produced with elevated levels
of tissue plasminogen activator (tPA) which in turn
is regulated by plasminogen activator inhibitors-1
and -2 (PAI-1, PAI-2). Autopsies of COVID-19
fatalities shows thrombosis, micro-angiopathy,
haemorrage and damage. The
dyslipidemia displayed by COVID-19 patients
results in abnormally high levels of low density
lipoproteins (LDLs) and low levels of high density
lipoproteins (HDLs) in serum.

alveolar

3.3 LUNG HEPARAN SULFATE PROTEOGLYCANS
AND THEIR CELL REGULATORY PROPERTIES

Cell surface HSPGs in the lung are growth factor
coreceptors binding these through HS and core
protein interactions®®?. Instructive interactions with
growth factors, morphogens, chemokines and
ECM components, regulate cell
migration,

adhesion,
proliferation, and differentiation,

regulating pathophysiological processes in tissue

development and repair, inflammation, infection,
and tumor development'®183 HS-proteoglycans in
the lung have instructive roles critical to regulation
of tissue development, organ structure, and the
control of resident cell populations®*188,
Pikachurin, agrin, perlecan are HSPG components
of the lung interactome with essential roles in lung
development, homeostasis and function and roles
in tissue fibrosis in lung disease!’1#°,
Fragmentation of lung ECM components due to
endogenous protease activity or by proteases
produced by an influx of inflammatory cells in lung
disease leads to the release of bioactive protein
fragments (matricryptins, matrikines) which can
regulate cell metabolism. Matrikines have been
identified with tissue repair properties'®®t, While
ACE?2 is the primary receptor for SARS CoV-2 entry
other cell surface and ECM proteins may also bind
to the SARS CoV-2 spike RBD such as perlecan LG3
and may potentially RBD-ACE2
interactions representing a potential therapeutic

enhance

target?®2. Proteoglycans embedded in the vascular
endothelial glycocalyx, regulate the activity of
cytokines and inflammatory responses but are
proteolytically cleaved in inflammatory diseases
and modulate  pathological inflammatory
responses. Soluble forms of SDC-1, SDC-3 and
BGN are suppress
proinflammatory  cytokine  expression and

leukocyte migration, and induce autophagy of

anti-inflammatory,

proinflammatory M1 macrophages. However,
soluble versikine, SDC-2, mimecan and DCN are
proinflammatory increasing inflammatory cytokine
synthesis and leukocyte migration. This contrasts
with SDC-4 and perlecan which have anti-
inflammatory  properties’®®* promoting tissue
repair*®*. Glypicans also regulate Hh and Wnt
signaling in systemic inflammation. Collectively,
vascular endothelial glycocalyx-derived SDC-1-4
ectodomains, BGN, versikine, mimecan, perlecan,
GPC and DCN are thus of therapeutic potential in
the regulation of cytokine and leukocyte responses
in lung inflammatory diseases'*®. Pentosan polysulfate
down regulates the secretion of a range of
inflammatory cytokines and has potent anti-oxidant
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activity. Both of these properties exert protective
properties on cells and preserves tissue function®.

4. Depolymerisation of HA in

COVID-19 disease.

4.1 CELL MIGRATION-INDUCING AND
HYALURONAN-BINDING  PROTEIN  (CEMIP,
KIAA1199) IS A DEAFNESS GENE LINKED WITH
DEPOLYMERISATION OF HYALURONAN
KIAA1199 knockdown abolishes HA degradation
by human skin fibroblasts, cellular transfection of
KIAA1199 cDNA confers an ability to catabolize HA
in an endo-B-N-acetylglucosaminidase-dependent
manner!®®. The enhanced degradation of HA that
occurs in synovial fibroblasts in OA™ and RA
correlates with elevated KIAA1199 expression and
can be abrogated by knockdown of KIAA11999%,

Depolymerisation of HA in long COVID-19 disease
is associated with loss of hearing. Auditory
neuropathy (deafness) is caused by disruption of
nerve impulses travelling from the inner ear to the
brain. Viral infection with mumps, measles,
meningitis, SARS-CoV-2 and cytomegalovirus can
all result in hearing loss. COVID-19 does not cause
a sudden hearing loss but irreversible hearing loss
and tinnitus can develop as a complication of
SARS-CoV-2 infection*®. KIAA1199, a deafness
gene of unknown function, plays a central role in
HA binding and depolymerization independently
of CD44 and HYAL-1 and HYAL-2'¢. Pentosan
polysulfate stimulates HA production in a number
of cell types®® and also inhibits hyaluronidase®*
helping to maintain a healthy glycocalyx.

4.2 ROLES FOR ENDOTHELIAL CELLS AND
HYALURONAN IN TISSUE MORPHOGENESIS
AND EXTRACELLULAR MATRIX REPAIR

Hyaluronan promotes proliferation and migration
of many cell types, and has important roles in tissue
morphogenesis, wound healing, inflammation,
angiogenesis, and tissue repair processes?®,
responsive to HA
oligosaccharides which stimulate proliferation,
migration, new vessel formation and tissue repair

Endothelial cells are

responses?®*2%, pulmonary stromal fibroblasts and

myofibroblasts synthesise HA contributing to the
deposition of HA in the endothelial glycocalyx?”,
COVID-19 has been proposed to be an endothelial
cell dysfunction disease. Angiotensin converting
enzyme is highly expressed by endothelial cells,
ACE2 has critical roles that impact on the
progression of COVID-19 disease®®®%%,

5. A summation of the pleotropic
cell and tissue protective properties

of Pentosan polysulfate

Supplementary Figure 1 summarises the major
changes that have been documented in COVID-19
and studies which have utilized PPS to treat the
multiple symptoms which arise from viral
infection®2!2, Besides having the ability to prevent
attachment of a large range of viruses to host cells
which occur through cell surface HS interactions
(Table I, Table IlI) PPS also has many cell and tissue
protective properties. These include application in
the treatment of cystitis and painful bowel
disease?*?1°, as a tissue protective enzyme
inhibitor?®223, promotion of cartilage and IVD
repair®®*??’, healing of OA cartilage and the
degenerate 1VD?*12?23228229 ppS has been used in
bioscaffolds in tissue engineering applications?*
232 PPS regulates Complement activation?®323,
coagulation/fibrinolysis®52%®, thrombocytopenia?®2+
and induces HA production by many cell
types®®?4!  Pentosan polysulfate inhibits NGF
production by osteocytes which reduces bone pain
in OA/RA?*? and promotes lipid removal from
subchondral blood vessels engorged with lipid in
OA/RA reducing pain in these conditions??,
Regulation of cytokine and inflammatory mediator
production by PPS in ARDS reduces inflammation
in tissues. PPS also has anti-viral activity®>1%¢1¢7 and
is an anti-tumor agent in a number of cancers®*,

5.1 PENTOSAN POLYSULFATE AND THE GUT
MICROBIOME

The gut microbiome is disturbed in COVID-19
disease, with alterations in cell populations and
imbalance in beneficial symbionts and opportunistic
pathogens®*>#¢, Xylan is the second most
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abundant plant carbohydrate biomass found in
nature. Accumulated evidence shows that xylans
interact with gut microbiota in a beneficial way?*.
Humans cannot digest xylans but they act as
bulking material aiding in the throughput of
digested food items through the gut. The gut
microbiome produce a number of xylanolytic
enzymes that allow the gut microbiome to utilize
xylans as a nutrient source, the generated xylo-
oligosaccharides have pre-biotic properties that
aid in gut homeostasis®*® countering the gut
dysbiosis that occurs in COVID-19 disease?®®.
Endoxylanases produced by the gut microbiota
generate xylo-oligosaccharides (xylo-oligos)?*°25
promoting beneficial symbiont microbes such as
Bifidobacterium and Lactobacillus populations in
the human gut improving mucosal health and
immune function®? and inhibit colonization of the
gut by pro-infammatory bacteria such as
Salmonella sp. This improves gut barrier
properties, and plasma lipid levels attenuating pro-
inflammatory effects of a high fat diet and
decreases blood LPS levels and the damaging
effects of IL-1B and IL-13.

6. Multi-organ involvement in

Severe acute respiratory syndrome

coronavirus 2 infection

SARS-CoV-2 is implicated in the clinical pathology
of multiple organs and organ systems (Figure 4).
Severe acute respiratory syndrome coronavirus 2
canonical mediators, ACE2, and TMPRSS2 are
assisted by other coronavirus-associated receptors
and factors, including basigin (BSG/CD147),
dipeptidyl peptidase-4 (DPP4/CD26), cathepsin
B/L, furin, interferon-induced transmembrane
protein (IFTM1-3) and Nrp-1. The localization of
these SARS-CoV-2 receptors, proteases, and
genes involved in coding proteins that drive viral
pathogenesis predisposes to  SARS-CoV-2
infection in a number of tissues®3, COVID-19
infection thus involves the hACE2 receptor and its
co-receptors Nrp-1 and DPP4/CD26 which engage
with the SARS CoV-2 spike protein®?. In-silico

development of a bispecific antibody against SARS
CoV-2 spike glycoprotein and DPP4 receptors
(Regdanvimab and Begelomab) has been shown to
block the D614G mutated spike glycoprotein of
SARS-CoV-2 variants and host DPP4 receptor,
respectively. This demonstrates the co-
involvement of SARS CoV-2 S protein, hACE2 and
DPP4/CD26 in the infective process in multi-organ
viral infection3+2>,

6.1 HEMOLYSIS IN COVID 19 INFECTED LUNG
TISSUES

Hemolysis is a common feature of COVID-19
infected tissues®®, fibrotic changes in tissues also
occurs resulting in a reduction in tissue elastic
properties and lung function®’. Pro-coagulant
activity also results in thrombus formations in
tissues impairing their functional properties?®®2%,
This leads to further detrimental effects on these
tissues with free heme release resulting in oxidative
stress, local generation of oxygen free radicals and
mitochondrial and ER distress, leukocyte
recruitment, vascular permeabilization, platelet
and Complement activation, thrombosis, and
fibrosis leading to impaired lung function. Platelets
initiate blood clotting, severely affected COVID-19
patients display a high incidence of
hypercoagulation in the lungs and brain. Plasma
fibrinogen levels are also elevated with advancing
age, high cholesterol, being female, menopause,
obesity, smoking, inactivity and stress. Most of
these features are putative risk factors for COVID-
19%0261  Heparin treatment of COVID-19 patients
displaying enhanced coagulation levels results in
an improved prognosis however heparin will only
prevent thrombus formation and will not dissolve
existing fibrin clots, thus is palliative and not
curative. Prevention of SARS-CoV-2 infection of
host cells by PPS represents a more effective
treatment strategy and has the added advantage
of minimizing inflammatory cytokine production
and exacerbation of inflammatory conditions in
tissues®?, Heme is a prosthetic group with
functional roles in a wide variety of heme proteins
such as hemoglobin and the cytochromes. Release
of free heme in injured lung tissues promotes
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adhesion  molecule  expression, leukocyte
recruitment, vascular permeabilization, platelet
activation, complement activation and thrombosis.
Heme, however, can be degraded by the anti-
inflammatory enzyme heme oxygenase (HO-1)
generating biliverdin/bilirubin, iron/ferritin and
carbon monoxide®3. Free heme promotes lung
inflammation in critically ill COVID-19 patients.
Heme oxygenase -1 has anti-oxidative and anti-
inflammatory properties and may represent a
specific means of targeting  hemolysis

therapeutically in COVID-19 disease?®.

6.2 COVID AND COGNITIVE DECLINE

COVID-19 infected patients frequently exhibit
neurological symptoms of anosmia and fatigue and
long-term neurological deficits post-infection such
as cognitive decline and brain-fogging 6826526¢,
Positron emission tomography (PET) and SPECT
(Single-photon emission computed tomography)
molecular imaging techniques have been used to
shed light on how COVID-19 affects human brain
structure®®’. Human brain structure is affected by
long COVID-19 disease even after recovery of
respiratory function and has been referred to as
Post COVID Syndrome?®82%° |t is not known how
long such neurological deficits will persist in cases
of severe SARS CoV-2 infection following recovery
of respiratory function?”® however reports of a
reduction in 1Q and altered immune regulation in
young children effected by even very mild COVID-
19  respiratory particularly
concerning?:272, Long-term  CNS
inflammation following COVID-19 infection in
children may  deleteriously affect brain
development?”. Disturbing reports are emerging

disease are
neuro-

of learning difficulties and a decline in the
educational status of 9 year olds affected by
COVID-19, an effect which may be exacerbated in
individuals who also

display  underlying

neurological deficits?’42%®,

6.2.1 The impact of COVID-19 on patients
suffering from neurological deficits

The COVID-19 pandemic has disproportionately
impacted patients suffering from AD and dementia

who have a reduced capacity to understand and
comply with pandemic health care restrictions and
may represent a spreader risk for COVID-19?",
Present day AD/dementia patient numbers of 47
million are projected to triple by 2050 and this will
be further compounded by the impact of the
COVID-19 pandemic. It is thus predicted that
neurological disorders will likely make a greater
impact on general health even in patients who have
only been impacted by mild symptoms of COVID-
19. Cognitive deficits have been reported in
patients after recovery from COVID-19 respiratory
disease. An inability to concentrate and a fogging
of thought processes, impaired concentration and
problem-solving capability coupled with feelings of
long-term anxiety and insecurity have all been
reported®’®?%2,  Anecdotal reports of COVID-19
infection resulting in a reduction in IQ in children is
particularly alarming. COVID-19 disease is often
referred to as a mild disorder in children based on
its relative impact on respiratory function however
little regard is made of the potential long-term
effects of COVID-19 disease on brain function.
Long-term fatigue with COVID also impacts on the
development of neuropsychiatric disorders?,

7. Conclusions

Use of PPS as a prophylactic that intercepts SARS
Cov-2 virion particles in the glycocalyx prevents
their binding to cell surface HS in all viral strains
and is not impeded by point mutations arising from
recombination as part of the natural viral life-cycle.
SARS-CoV-2 possesses 24 spike glycoproteins per
virion particle which have central roles in binding
to cell surface ACE2 facilitating viral entry into host
cells. This occurs through the RBD of spike protein
however this is buried within the S1 domain which
is exposed by a conformational change upon
interaction with cell surface HS. PPS prevents such
HS interactions occurring and viral infection and
PPS is effective
against all classes of viruses and its anti-viral

warrant further investigation.

properties are not diminished by viral mutations.
The emergence of a further bat coronavirus, HKU5-
CoV-2 related to SARS CoV2?#42%° gnd of a mink
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respiratory coronavirus (MRCoV)?® related to
MERS and SARS CoV2 indicates that due diligence
is essential. PPS would be expected to be an
effective blocking agent for these new CoV strains,
however vaccines or antibodies have yet to be
developed. It may thus be a prime time to adopt
PPS in preventative anti-viral strategies.
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PPS is a Anti-Viral Agent That Prevents SARS-CoV-2 infection.
Supplemental Figure

PPS is a semisynthetic sulfated xylan manufactured from beechwood hemicellulose by
Why use pentosan bene-Arzneimittel GmBH in Germany.>? Approved in Australia, USA and Europe

(EImiron°capsules) for oral use as a treatment for people with interstitial cystitis.
pOIYSUIfate (PPS) for Safe and non-toxic,3# no SAE or deaths after millions of oral doses.
long COVID?

PPS action

SARS-CoV-2 RNAS and spike protein® PPS inhibited TNFa-induced levels of proNGF secretion and may act
Probable cause

still present in most tissues. to suppress NGF release to ameliorate pain.*® In a rat BBB model,
Symptom /

PPS reversed negative effects of added B-amyloid peptides.*®
Coronaviruses induce neuronal injuries in pre-clinical studies.” COVID causes

- - neuroinflammation, demyelination, neurodegeneration, and conscious d PPS transiently prevents T cells from entering perivascular
Anmety; dePV?SS'D”F » disturbance.®® SARS-CoV-2 dysregulates the BBB.!%!! Fog may be due to spaces.®0 PPS stops T cells being activated by target B
PTSD; insomnia; Cognitive amyloid-like folding of viral proteins,'>* or the presence of neurotoxins.'* cells and triggering neurological adverse events.
disturbances (brain fog)

\ SARS-CoV-2 infection caused reduced grey matter thickness and global brain size.* PPS prevents protein mediators and other cells binding
\ Memory loss

to epithelium®! and can regenerate epithelium.5?
SARS-CoV-2 protein ORF10 interferes with epithelial cilia function.®
Anosmia;

PPS can activate lipoprotein lipase and normalize blood
/| loss of taste Correlated with endothelial dysfunction;*”leads I | lipids.53 PPS inhibits PCSK9, competes with HS-PG
/ to reduced defense against oxidative stress.'® receptors and increases LDLR, facilitating LDL clearance.*
Peripheral neuropathy (nerve damage)*® or
X poor peripheral circulation due to microclots.?
Paresthaesia;
burning pain

Better sensory nerve function after PPS in diabetic patients.>>

Oral PPS is a mild anti-coagulant,>® an anti-thrombotic®” and a
strong fibrinolytic.58%0 PPS stabilized the peripheral vascular
system and improved the microcirculation in inflamed tissue.t162

Brain hypercoagulation, excessive inflammation, platelet activation and

endothelial dysfunction.?* Endothelial cell infection reduces integrity of <
Stroke; hypercoagulation; blood vessel barrier and promotes a pro-coagulative state.?? Microclots may

procoagulant state; be due to amyloidosis of fibrin?® or excessive complement activation.?
thromboembolisms

PPS inhibits histamine secretion by mucosal
mast cells®3 and in a model of allergic rhinitis.®

Nasal epithelium is initial site of infection;?* evading

Rhinorrhoea; sore response by innate immune system.?*

throat; dry cough

PPS reduces inflammatory infiltrates in virus-infected mice.566

Mucus production to remove accumulation of white cells attempting repair.2s

PPS reduced pain in patients with OA®” and RRV arthralgia®®
IL-6-mediated inflammation and fibrosis of joint soft tissues?¢ and impaired

and improved myalgia in chronic prostatitis patients.5®
microvascular in subchondral bone (microclots);?° direct infection of myocytes;?” . .. . . . .
Arthralgia; myalgia myopathy from cytokine storm, %28 (hypoxia or )peripheral neuropathy az ve PPS is antiviral and variant-independent; it can bind to any
(joint and muscle pain) M . variant that can bind to cells’%’! and prevent cell entry.”2
Many ACE2 receptors on alveolar epithelium;3! fibrotic lung . . L

Dyspnoea (breathlessness); remodeling?? with reduced diffusion capacity;*? activated PPS |mpr0vedlsys(§o::||c fl:r;]cm:;? the
hypoxia; chest tightness, cytotoxic T-cells with greater airway dysfunction;*35 tissue pressure-overioaded rat heart.
chest heaviness; fatigue

damage from cytokine storm;3¢:3” microclots in circulation.?®

PPS lowers serum TNFa and IL-6.747% PPS reduced
TNFa-levels in aging diabetic kidneys, suppressed
TNFo-stimulated NF-kB activation”® and lowered
cytokine levels”” in proximal tubular cells.

SARS-CoV-2 in heart tissue,?® with elevated TNF, IL-6.3 Viral Nsp6

can cause cardiac defects.*® Overexertion; depression; insomnia.
Chronic kidney disease

SARS-CoV-2 infects the human kidney, activates profibrotic signaling )
Overactive bladder pathways, increases collagen type | and drives fibrosis in kidney organoids.*!
(COVID-associated cystitis)

PPS reversed AGE-induced fibrosis in mesangial cells’87° and
decreased collagen type | production in cultured muscle cells.8

Direct viral infection; systemic inflammation, neuropathy.*?

PPS prevents impairment of renal autoregulation
Diarrhoea; nausea; vomiting; Direct infection of gut cells;*? direct infection of gut bacteria;** gut ) despite persistent hypertension.8! Approved for cystitis.
loss of appetite; abdominal microbiome dysbiosis;*>“¢ autonomic nerves which control digestion affected.
pain; constipation

Some oral PPS is degraded®? into probiotic metabolites.83 |
Virus induces lymphopenia by promoting systemic inflammation
Lymphopenia

[ . . .
and direct neutralization in human spleen and lymph nodes.*’ b\—l IM PPS normalized lymphocytes in OA patients.>3 |

Supplementary Figure 1. lllustration of how the multifunctional properties of pentosan polysulfate (PPS) can be used to treat COVID-19 infected tissues.
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Abbreviations used:

ACE2 Angiotensin-converting enzyme 2

ADAMTS A Disintegrin and Metalloproteinase with Thrombospondin motifs
AD  Alzheimer's disease

ADHD Attention deficit hyperactivity disorder

ARDS Acute respiratory distress syndrome

AT  Antithrombin

BSG/CD147 Basigin

BGN Biglycan

BMP Bone morphogenetic protein

CendR C-end Rule protein motif, interacts with NRP-1
CoV Coronavirus

COVID Coronavirus disease 2019

CoV RaTG13Bat coronavirus RaTG13

CVI  Chronic venous insufficiency

CSF Cerebrospinal fluid

DPP4/CD26 Dipeptidyl peptidase-4

DCN Decorin

DMOADDisease modifying anti-arthritic drug

DVT Deep vein thrombosis

ECM Extracellular matrix protein

ERK1/2 Extracellular signal-regulated kinase 1 and 2
GPC Glypican

HS  Heparan sulfate

HSPG Heparan sulfate proteoglycan

HUVEC Human umbilical vein endothelial cells

IAV  Influenza A virus

IFTM1-3 Interferon-induced transmembrane protein

IL Interleukin

iINOS Inducible nitric oxide synthase

IQ Intelligence quotient

ITI Inter--trypsin inhibitor

ITIM Immunoreceptor tyrosine-based inhibitory motif
KIAA1199 CEMIP (cell migration inducing protein) deafness gene
LDL Low density lipoprotein

LMW-HA Low molecular weight hyaluronan

MAPK Mitogen-activated protein kinase

MERS Middle East respiratory syndrome

MSCs Mesenchymal stromal stem cells

NDST-2 N-Deacetylase/ N-Sulfotransferase-2

NF-kB  Nuclear factor kappa-light-chain-enhancer of activated B cells
NGF Nerve growth factor

NMJ Neuromuscular junction

NRP-1 Neuropilin-1

NTD N-terminal domain (of Spike protein)
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OA, RA Osteoarthritis, Rheumatoid arthritis

OCD  Obsessive compulsive disorder

PAI-1, 2 Plasminogen activator inhibitor-1, 2

PCSK9 Proprotein convertase subtilisin/kexin type 9
PET Positron emission tomography

PPS Pentosan polysulfate

RBD Receptor binding domain (of Spike protein)

ROS Reactive Oxygen species

SARS CoV-2 Severe acute respiratory syndrome coronavirus-2
S Spike protein of SARS CoV-2

SDC Syndecan

SPECT Single-photon emission computed tomography
TAZ Transcriptional co-activator with PDZ binding motif
TLR4  Toll-like receptor-4

TMPRSS2 Transmembrane protease, serine 2

TNF  Tumor necrosis factor alpha

tPA  Tissue plasminogen activator

TRAF-6 Tumor necrosis factor receptor associated factor 6
TS  Tourette Syndrome

TSG-6 Tumor necrosis factor-inducible gene 6 protein
YAP Yes associated protein
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