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Abstract—The rapid transport of monocarboxylates, such as lactate, pyruvate and β-

hydroxybutyrate, across membranes is essential for maintaining cellular homeostasis. They are 

mainly transported by three well-characterized protein carrier families: SLC16/monocarboxylate 

transporters (MCTs), SLC5/sodium-coupled monocarboxylate transporters (SMCTs), and 

mitochondrial pyruvate carriers (MPCs). There are 14 members in the SLC16 family (MCT1-14), 

however, only 5 of them (MCT1-4 and MCT7) can transport monocarboxylates. This transport 

process is proton-linked, electroneutral and driven by a concentration gradient of their substrates. 

MCT1, MCT2 and MCT4 have a broad expression pattern in various tissues with affinities in the 

order of MCT2>MCT1>MCT4. They play important roles in local functions and malfunctions of 

MCTs have been associated with devastating disorders such as cancer, obesity and ischemia. 

Two members of the SLC5 family, SLC5A8 (SMCT1) and SLC5A12 (SMCT2), transport 

monocarboxylates in a Na
+
-dependent, electrogenic manner with a stoichiometry being 2:1 for 

Na
+
/substrate. They play particularly important roles in short-chain fatty acids uptake in large 

intestine and regulation of uric acid reabsorption in kidney. MPCs (MPC1-2) form a large 

heterocomplex at the inner membrane of mitochondria and are mainly responsible for pyruvate 

transport into mitochondrial matrix to fuel Krebs cycle. Genetic mutations within these 

monocarboxylates carrier genes have been identified as causal factors for many diseases. Thus, a 

better understanding of their functions and regulations will help advance novel therapeutic 

interventions under certain pathological conditions.   

Keywords—monocarboxylate transporter (MCT); sodium-coupled monocarboxylate transporter 

(SMCT); mitochondrial pyruvate carrier (MPC; lactate; pyruvate; metabolism; drug transport; 

cancer; diabetes   
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1. Introduction 

Monocarboxylates, such as lactate, pyruvate 

and ketone bodies (e.g. acetoacetate and β-

hydroxybutyrate), play essential roles in 

cellular metabolism. Their transport across 

biological membranes are restricted and can 

only be mediated by membrane embedded 

carrier proteins. So far, three known protein 

families have been identified that can 

transport monocarboxylates: SLC16 family 

of solute carriers, SLC5 family of solute 

carriers and mitochondrial pyruvate carriers 

(MPCs). Because monocarboxylates are 

critical intermediate metabolites, their rapid 

transport across membranes is critical to 

maintain a balanced carbohydrate, amino 

acid and fatty acid metabolism (Halestrap 

2012). This article will briefly review the 

key properties of the well-characterized 

members from the three families as well as 

their functional roles in a variety of 

biological processes.  

 

2. Slc16 family 

The SLC16 family of monocarboxylate 

transporters (MCTs) contains a total of 14 

members. They typically contain 12 

transmembrane domains (TMDs). Both the 

N- and C-terminal ends are intracellular, 

along with a large intracellular loop between 

TMD 6 and 7 (Halestrap 2012). However, 

only 5 out of the 14 members (MCT1-4 and 

-7) have been demonstrated as transporters 

for monocarboxylates, whereas the other 

MCT isoforms differ greatly in their 

substrates specificity. The electroneutral 

transport of monocarboxylates by MCTs are 

both pH-dependent and gradient-driven, 

with a cotransport of proton (Halestrap and 

Price 1999). MCT1, MCT2 and MCT4 are 

the most widely studied isoforms because of 

their broader expression patterns as well as 

critical roles in many biological functions. 

Each of the three MCTs will be discussed in 

more details later. MCT3 was first cloned 

from a chick cDNA retinal pigment 

epithelium (RPE) library, encoding 542 

amino acids (Yoon et al. 1997). It is 

uniquely expressed on the basolateral side of 

both RPE and choroid plexus epithelium 

(Philp, Yoon, and Lombardi 2001). The 

exact role of MCT7 had remained unknown 

until it was recently identified as a 

transporter for ketone bodies (e.g. β-

hydroxybutyrate) out of liver in zebrafish 

(Hugo et al. 2012). Its loss of function 

causes a failed export of ketone bodies and 

consequent accumulation of neutral lipids 

within hepatocytes during fasting.  

2.1 MCT1/SLC16A1 

2.1.1 Biochemical and molecular 

characteristics  

The encoding cDNA of MCT1 was first 

cloned from Chinese Hamster Ovary (CHO) 

cells. The gene for human MCT1 is located 

on chromosome 1 between bands p13.2 and 

p12 (1p13.2-12) (Garcia et al. 1994). It is 

composed of 5 exons encoding a protein of 

500 amino acids. Recent human genetic 

variation studies have identified single 

nucleotide polymorphisms (SNPs) within 

MCT1 gene that can impact its functions. 

For example, the carriers of A1470T 

polymorphism possess a worse lactate 

transport capacity out of muscle cells into 

venous blood (Cupeiro et al. 2010, Cupeiro 

et al. 2012).     

The successful targeting of MCT1 onto 

plasma membrane requires its association 

with a single transmembrane (TM) 

glycosylated protein. In most reported cases, 

this protein is CD147 (also known as basigin 

or emmprin) (Kirk et al. 2000), although a 

different protein embigin has been identified 

to serve the same function in rat 

erythrocytes (Ovens et al. 2010). The 

transport by MCT1 is pH dependent, 

saturable and stereospecific (Tamai et al. 
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1995). The Michaelis constant (Km) values 

for L-lactate, D-lactate and pyruvate are 

4.54, 27.5 and 0.72 mM, respectively. The 

stoichiometry of lactate transport by MCT1 

is one proton per substrate being transported 

(Carpenter and Halestrap 1994).  

2.1.2 Tissue distribution and subcellular 

localization 

MCT1 is the most widely expressed MCT 

isoform. Tissues with MCT1 expression 

include brain (Froberg et al. 2001, Leino, 

Gerhart, and Drewes 1999, Pierre et al. 2000, 

Takanaga et al. 1995), gastrointestinal (GI) 

tract (Englund et al. 2006, Gill et al. 2005, 

Ritzhaupt et al. 1998), retina (Bergersen, 

Rafiki, and Ottersen 2002, Gerhart, Leino, 

and Drewes 1999, Philp, Yoon, and 

Grollman 1998), kidney (Becker et al. 2010, 

Yanase et al. 2008), skeletal muscles 

(Fishbein, Merezhinskaya, and Foellmer 

2002, Hashimoto et al. 2005, Wilson et al. 

1998), heart (Bonen, Heynen, and Hatta 

2006, Bonen et al. 2000, Halestrap et al. 

1997), reproductive system (Goddard et al. 

2003, Kuchiiwa et al. 2011), placenta (Nagai 

et al. 2010, Settle et al. 2004), ear (Dai, 

Yang, and Shi 2011, Shimozono, Scofield, 

and Wangemann 1997), lung (Johnson et al. 

2011), mammary gland (Kirat and Kato 

2009, Takebe et al. 2009), adrenal gland 

(Kirat 2010), fat (Iwanaga, Kuchiiwa, and 

Saito 2009) and so forth. By transporting 

monocarboxylates across biological 

membranes, it plays critical roles in 

supporting local metabolism as well as 

maintaining pH homeostasis. Within a cell, 

MCT1’s expression pattern is not evenly 

distributed, but rather in a polarized manner. 

For example, in rat RPE, a strong MCT1 

signal is found in the apical membrane. No 

signal is detected in the basolateral side, nor 

in intracellular compartments (Bergersen et 

al. 1999, Philp, Yoon, and Grollman 1998). 

Although MCT1 is mainly expressed on 

plasma membrane, many studies have 

detected its expression in mitochondria 

within tissues like skeletal muscles (Brooks 

et al. 1999, Yoshida et al. 2007), large 

intestine (Welter and Claus 2008), brain 

(Hashimoto et al. 2008) and heart (Martinov 

et al. 2009).  

2.1.3 Gene regulation 

Given the critical roles of monocarboxylates 

in cellular metabolism, there have been 

multiple layers and levels of regulation to 

this most widely expressed MCT isoform. 

Ketogenic diet, commonly used for seizure 

control in epileptic patients, increases 

MCT1’s expression on rat brain endothelial 

cells by several folds (Leino et al. 2001, 

Pifferi et al. 2011). During development, a 

peak expression of brain MCT1 is observed 

at early postnatal life followed by a rapid 

decrease to adult level (Leino, Gerhart, and 

Drewes 1999, Pellerin et al. 1998). As 

MCT1’s substrates, both lactate and butyrate 

have been shown to regulate its expression. 

In colonic epithelial cells, butyrate both 

increases MCT1’s transcription and 

maintains its mRNA stability (Borthakur et 

al. 2008, Cuff, Lambert, and Shirazi-

Beechey 2002). A rapid regulation of MCT1 

expression at both mRNA and protein levels 

by lactate was also observed in L6 skeletal 

muscle cell line (Hashimoto et al. 2007). 

Since MCT1 is implicated in a variety of 

pathological conditions, changes of its 

expression have been associated with and 

regulated by these diseases. During ischemic 

stroke, the expression levels of brain MCT1 

in various cell types, including neurons, 

astrocytes and endothelial cells, are all 

elevated (Zhang et al. 2005). Temporal lobe 

epilepsy greatly decreases its expression on 

microvessels in hippocampus, but increases 

the same transporter on astrocytes 

(Lauritzen et al. 2011). Tumor cells are 

hypothesized to exploit a metabolic 

symbiosis by using MCT1 to uptake lactate 

as fuels from the glycolytic compartment 
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into oxidative cells (Sonveaux et al. 2008). 

As a result, increases of MCT1 expression 

are commonly observed in various tumors, 

e.g. breast (Pinheiro et al. 2010, Whitaker-

Menezes et al. 2011), ovarian (Chen et al. 

2010), prostate (Fiaschi et al. 2012), 

melanoma (Ho et al. 2012, Shimoyama et al. 

2007), non-small cell lung carcinoma (Lee 

et al. 2011) and leukemia (Birsoy et al. 

2013).  

2.2 MCT2/SLC16A7 

2.2.1 Biochemical and molecular 

characteristics  

MCT2 was first cloned from a hamster liver 

cDNA library. It shares 60% identity to 

MCT1 (Garcia et al. 1995). MCT2 is less 

conserved between species than MCT1 

(Jackson et al. 1997). In human, MCT2 is 

mapped to chromosome 12q13. Human 

version of MCT2 cDNA is 1,907 bp long 

and encodes a polypeptide of 478 amino 

acids (Lin et al. 1998). The targeting of 

MCT2 onto plasma membrane requires its 

association with another ancillary protein, 

embigin (Ovens et al. 2010). 

Monocarboxylates transport via MCT2 is 

also driven by an H
+
 gradient, and is 

strongly increased with decreasing pH 

(Broer et al. 1999). The Km values of MCT2 

in transporting its substrates are generally 

lower than MCT1 and are reported to be 

0.74, 1.2, and 2.6 mM for L-lactate, D,L-β-

hydroxybutyrate, and acetate respectively, 

implying that this is a MCT with high 

affinity.         

2.2.2 Tissue distribution and subcellular 

localization 

MCT2 expression is detected in most of the 

tissues where MCT1 is present. This is not 

unexpected because it has been reported that 

many tissues can coexpress 4-5 MCTs 

(Bonen, Heynen, and Hatta 2006). Tissues 

with detected MCT2 expression include 

brain (Baud et al. 2003, Chiry et al. 2008, 

Cortes-Campos et al. 2013, Fayol et al. 2004, 

Gerhart et al. 1998, Hanu et al. 2000), eye 

(Chidlow et al. 2005, Gerhart, Leino, and 

Drewes 1999), inner ear (Okamura, Spicer, 

and Schulte 2001, Shimozono, Scofield, and 

Wangemann 1997), GI tract (Iwanaga et al. 

2006, Sepponen et al. 2007), kidney (Becker 

et al. 2010, Wang, Darling, and Morris 2006, 

Yanase et al. 2008), liver (Jackson et al. 

1997), lung (Johnson et al. 2011), testis 

(Boussouar et al. 2003, Brauchi et al. 2005), 

osteoblasts (Hinoi et al. 2006), and prostate 

(Pertega-Gomes et al. 2013, Pertega-Gomes 

et al. 2011).  Like MCT1, the subcellular 

localization of MCT2 is also polarized in a 

tissue-specific manner. For example in the 

brain, MCT2 has been widely reported to be 

concentrated at postsynaptic membranes 

such as parallel fiber-Purkinje cell synapses 

(Baud et al. 2003, Bergersen, Magistretti, 

and Pellerin 2005, Chiry et al. 2008). This 

unique localization implies that this 

transporter is mainly responsible for 

controlling the influx of energetic substrates 

in synaptic cleft by neuronal action 

(Bergersen et al. 2001). Besides, MCT2’s 

expression colocalizes with a peroxisomal 

marker, rendering it an important redox 

regulator (Jansen, Pantaleon, and Kaye 

2008).  

2.2.3 Gene regulation 

Similar to MCT1, the expression of MCT2 

in rodent brain also shows a regulatory 

pattern by development. Specifically, in situ 

hybridization shows that its expression 

peaks around early postnatal days (day 15) 

but rapidly declines to its adult level by 

postnatal day 30 (Pellerin et al. 1998). 

Hormones regulate cellular metabolism and 

neuronal plasticity. Acute injection of brain-

derived neurotrophic factor (BDNF) into 

mouse hippocampal area causes an isoform 

specific upregulation of MCT2 (Robinet and 

Pellerin 2011). Under various pathological 

conditions, MCT2 expression can also be 
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changed. In spontaneous hypertensive rats, 

five days after a permanent occlusion of the 

left middle cerebral artery (MCAO), a well-

established ischemic model, brain MCT2 

mRNA level increases in cells within the 

infarct and bordering the scar, suggesting a 

possible role of hypoxia dependent 

regulation (Zhang et al. 2005). In the 

development of obesity, as shown by mice 

fed on a high fat diet and genetically obese 

animals, the expression of MCT2 is 

increased throughout the brain but 

prominently in cortex and hippocampus 

(Pierre et al. 2007). Analysis of human 

gastrointestinal stromal tumor samples 

reveals a high expression of MCT2 (de 

Oliveira et al. 2012), supporting the critical 

role of MCTs in transporting lactate 

generated by the aerobic glycolysis in 

tumors.   

2.3 MCT4/SLC16A4 

2.3.1 Biochemical and molecular 

characteristics  

MCT4 (formerly designated as MCT3) is 

identified as the major MCT isoform in fast-

twitching fibers and responsible for the 

efflux of glycolytic lactate out of white 

skeletal muscles (Wilson et al. 1998). 

Human MCT4 gene is localized on 

chromosome 1p13.3. The Km values of 

MCT4 for L-lactate, D-lactate and pyruvate 

are 28, 519 and 153 mM, respectively. 

Genetic variations of MCT4 gene in Chinese 

and Indian groups of Singaporean 

population identify multiple polymorphisms 

spreading over all the parts of its genomic 

sequences, including promoter region, 5’-

UTR, coding exons, introns and 3’UTR 

(Lean and Lee 2012). Out of all the variants, 

only 44C>T (Ala15Val) missense mutation 

is predicted to have a potentially damaging 

effect on MCT4 protein function. The 

successful targeting of MCT4 onto plasma 

membrane also requires its association with 

the same ancillary protein as that of MCT1, 

namely CD147 (Kirk et al. 2000).  

2.3.2 Tissue distribution and subcellular 

localization 

Expression of MCT4 has been demonstrated 

in tissues including brain (Bergersen et al. 

2001, Pellerin et al. 2005, Rafiki et al. 2003), 

skeletal muscles (Bonen, Heynen, and Hatta 

2006, Dubouchaud et al. 2000, Pilegaard et 

al. 1999), adipocytes (Perez de Heredia, 

Wood, and Trayhurn 2010), blood cells 

(Merezhinskaya, Ogunwuyi, and Fishbein 

2006, Moreau et al. 2011), eye (Chidlow et 

al. 2005, Philp et al. 2003, Vellonen et al. 

2010), reproductive system (Brauchi et al. 

2005, Galardo et al. 2008, Herubel et al. 

2002, Rato et al. 2012), GI tract (Kirat et al. 

2007, Sepponen et al. 2007), placenta 

(Nagai et al. 2010, Settle et al. 2004) and 

lung (Johnson et al. 2011). At subcellular 

level, MCT4 has been detected in 

sarcolemma-enriched fraction and this 

subcellular localization is correlated 

positively to a net lactate release, consistent 

with its role of transporting lactate across 

plasma membrane out of glycolytic muscle 

cells (Dubouchaud et al. 2000, Hashimoto et 

al. 2005). Although MCT4 is well known 

positioned on plasma membrane, expression 

of this transporter has been detected in 

mitochondria (Benton et al. 2004). Species 

difference of MCT4 polarity has been 

reported since it is found on apical surface 

of corneal endothelial cells in bovine, but on 

the lateral membrane of the same cells in 

rabbit (Nguyen and Bonanno 2011, 2012).  

2.3.3 Gene regulation 

The expression of MCT4 can be regulated 

by a variety of factors, such as 

development/aging, differentiation, diet, 

exercise, hormones, hypoxia and pathologies. 

For example, both mRNA and protein 

expression of MCT4 in rat heart is only 

detectable by postnatal day 10 and 
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disappears afterwards (Hatta et al. 2001). In 

the rat brain, MCT4 expression is very low 

at birth but reaches adult level by postnatal 

day 14 (Rafiki et al. 2003). Hormones can 

regulate a wide range of cellular metabolism; 

as a result, evidences of their modulation on 

MCT4 have been reported. In rat skeletal 

muscles, testosterone increases MCT4 

protein levels without altering its mRNA 

(Enoki et al. 2006). MCT4 expression has 

been associated with and regulated by the 

progression of various cancer types. For 

example, compared with control tissues, the 

cytosolic expression of MCT4 in prostate 

tumor samples is dramatically increased 

(Pertega-Gomes et al. 2011). Besides, 

MCT4 is strongly implicated in metastasis 

and a significantly higher expression of 

MCT4 has been reported in metastatic renal 

carcinomas (Keshari et al. 2013). Regulation 

of MCT4 by other forms of pathologies 

include mitochondrial myopathy (MM), 

pulmonary diseases, ischemia and obesity. 

Specifically, expression of MCT4 in the 

skeletal muscles of a patient with MM is 

increased in order to extrude excessive 

lactate out of cells to avoid lactic acidosis 

(Baker, Tarnopolsky, and Bonen 2001). 

During ischemic insult, MCT4 expression 

increases in cells within the infarct and 

bordering the scar, similar to the findings of 

MCT1 and MCT2 (Zhang et al. 2005).       

2.4 Functional roles of MCTs 

2.4.1 Skeletal muscles 

The expression patterns of MCTs in the 

metabolically heterogeneous skeletal 

muscles reflect different roles of these 

isoforms. MCT1 is highly expressed in 

oxidative fibers but is almost absent in 

glycolytic fast-twitch fibers where MCT4 is 

predominantly expressed (Fishbein, 

Merezhinskaya, and Foellmer 2002, Wilson 

et al. 1998). Consistent with MCT1 being 

the isoform of higher affinity whereas 

MCT4 has a lower affinity but a higher 

transport capacity, their divergent locations 

indicate that MCT4 is mainly responsible for 

efflux of excessive lactate out of glycolytic 

muscles, whereas MCT1 takes up lactate as 

fuels into oxidative muscles for 

mitochondrial consumption (Bonen, Baker, 

and Hatta 1997, McCullagh et al. 1996). 

Because muscle fatigue can be partially 

contributed to an increased accumulation of 

lactate within muscle cells, an enhanced 

lactate transport across sarcolemmal 

membranes via MCT1 and MCT4 could 

constitute an advantage during intense 

muscle activities (Messonnier et al. 2006).  

2.4.2. Brain functions 

Like in skeletal muscles, MCTs show a 

heterogeneous expression pattern across the 

brain on different cell types, with MCT1 

being mostly expressed on brain endothelial 

cells, astroglia, oligodendrocytes and a 

subset of neurons, MCT2 being mainly on 

neurons and MCT4 on astrocytes (Canis et 

al. 2009, Debernardi et al. 2003, Gerhart et 

al. 1997, Leino, Gerhart, and Drewes 1999, 

Mac and Nalecz 2003). The neuronal 

expression of MCT2, the MCT isoform with 

highest affinity, ensures a successful 

delivery of lactate and other energetic 

monocarboxylates into neurons for 

consumption, even at their low 

concentrations. Consistent with their 

localizations, an astrocyte-neuron lactate 

shuttle hypothesis has been proposed that 

lactate is generated and mobilized from 

astrocytes through MCT1/4 and transported 

into neurons via MCT2 for oxidative 

metabolism (Pellerin et al. 1998). Although 

this hypothesis is still controversial, lactate 

transport through MCTs between different 

brain compartments has been shown to be 

critical for various brain functions. For 

example, during long term memory (LTM) 

formation in hippocampus, astrocytic lactate 

generated through glycogenolysis is first 

extruded out via MCT1/4 and then taken up 
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via MCT2 into neighboring neurons. This 

lactate transport between the two 

compartments is essential for strengthening 

synaptic plasticity that is required for LTM 

formation, because blocking MCTs on either 

side compromises this process (Suzuki et al. 

2011). These findings all poise proper 

MCTs expression in the brain an essential 

role in maintaining important functions.  

2.4.3 Drug transport 

Many pharmaceutical agents containing 

monocarboxylate group(s) can be 

recognized and thus transported by MCTs. 

The broad expression patterns of MCTs in a 

lot of tissues, including GI tract, blood-brain 

barrier, retina and kidney, make them suited 

for an efficient absorption or extrusion of 

monocarboxylic drugs. For example, the 

transport of benzoic acid, a drug that has 

been used for treating fungal skin diseases, 

is mediated via MCT1 in both porcine brain 

capillary endothelial cells and corneal 

epithelium (Kido et al. 2002, Vellonen et al. 

2010). Valproic acid is widely used as an 

antiepileptic drug; its transport across 

intestinal epithelium and brain endothelium 

in order to reach brain parenchyma is 

mediated by an unknown H
+
-dependent 

MCT and MCT1 at the two sites, 

respectively (Fischer et al. 2008). The 

transport of γ-hydroxybutyrate (GHB), an 

approved therapeutic agent for treating 

cataplexy with narcolepsy, into an intestinal 

cell line Caco-2 is mediated by an H
+
-

dependent MCT. More interestingly, 

concomitant administration of GHB with 

flavonoids decreases the former’s 

reabsorption at kidney, thus leading to an 

increased rate of clearance (Wang and 

Morris 2007a, b). These findings may have 

important clinical implications because 

GHB is a widely abused euphoriant.  

 

 

3. SLC5 FAMILY 

3.1 Biochemical and molecular 

characteristics 

SLC5 family of solute carriers are also 

known as sodium-coupled monocarboxylate 

transporters (SMCTs). SMCT1 (SLC5A8) 

was originally cloned from a human kidney 

cDNA library in the attempt to identify new 

iodide transporters in thyrocytes (Rodriguez 

et al. 2002). Human SMCT1 gene is 

localized on chromosome 12q23.1, 

composed of 15 exons and encoding a 

protein of 610 amino acids. SMCT1 is a 

sodium-coupled and electrogenic transporter 

for monocarboxylates (Ganapathy et al. 

2005, Gopal, Umapathy, et al. 2007, Martin 

et al. 2006). The stoichiometry for SMCT1 

is shown to be an invariant 2:1 for 

Na+/substrate (Coady et al. 2007). The Km 

of SMCT1 is 0.18 mM for L-lactate, 1.4 

mM for β-D-hydroxybutyrate, 0.39 mM for 

pyruvate and 0.21 mM for acetoacetate 

(Martin et al. 2006). SMCT2 (SLC5A12) 

was first isolated from a mouse kidney 

cDNA library and identified as the twelfth 

member of the SLC5 family (Srinivas et al. 

2005). Its human orthologue is localized on 

chromosome 11p14.2, encoding a protein of 

618 amino acids (Gopal, Umapathy, et al. 

2007). It shares a similar substrate 

specificity to that of SMCT1, however, the 

substrate affinities of SMCT2 are much 

lower than those of SMCT1. 

3.2 Tissue distribution and subcellular 

localization 

Reported tissues expressing SMCT1 include 

brain, kidney, large intestine, retina and 

thyroid gland (Cui and Morris 2009, Gopal, 

Umapathy, et al. 2007, Martin et al. 2007, 

Martin et al. 2006, Srinivas et al. 2005), 

whereas the documented expression patterns 

of SMCT2 are limited to tissues like 

intestine, kidney and retina. On subcellular 

level, polarized expression of SMCTs has 
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been reported, as in the case of MCTs. In 

intestine, SMCT1 mainly localizes on the 

luminal membrane of intestinal epithelial 

cells and, together with SMCT2, on the 

brush border of enterocytes in the intestinal 

villi (Gopal, Miyauchi, et al. 2007, Teramae 

et al. 2010). In kidney, both SMCTs are 

mostly expressed on cortex and localized on 

the apical membrane of the tubular cells 

(Gopal, Umapathy, et al. 2007).  

3.3 Gene regulation 

Multiple regulatory mechanisms for SMCTs 

have been documented, mainly in tissues of 

colon and kidney. In colonic epithelium, 

transcription factors CDX1 and CDX2 bind 

the promoter region and upregulate 

expression of SMCT1 (Kakizaki et al. 2010). 

In the same cell type, probiotic 

Lactobacillus species induce the promoter 

activity and mRNA expression of SMCT1 

(Borthakur et al. 2010). Sex hormones have 

differential roles in regulating SMCT1, since 

testosterone enhances both mRNA and 

protein expression in kidney, whereas 

progesterone suppresses SMCT1 protein 

levels in the same tissue (Hosoyamada et al. 

2010, Takiue et al. 2011).  

3.4 Functional roles 

3.4.1 Cancer 

One of the major mechanisms of SMCT1 as 

a tumor suppressor gene is its function to 

transport butyrate across intestinal 

epithelium. Butyrate is a byproduct of 

bacterial fermentation of dietary fibers in 

large intestine and serves as a major fuel for 

colonocytes. It not only maintains a 

balanced homeostasis by ameliorating 

mucosal inflammation, but also protects 

against colorectal cancer by inhibiting 

histone deacetylases (HDACs) (Gupta et al. 

2006, Treem et al. 1994). In fact, many 

pathological changes leading to the 

development of colorectal cancer have been 

shown to work through SMCT1. For 

example, oxidative stress has 

proinflammatory and procarcinogenic 

effects by inhibiting SMCT1 mediated 

uptake of butyrate into intestinal epithelium, 

although the expression levels of SMCT1 is 

not altered here (Goncalves et al. 2013).  

3.4.2 Drug transport 

SMCT1 exhibits substrates specificity 

similar to that of the SLC16/MCTs family. 

So, SMCT1 can also transport a lot 

monocarboxylate drugs in intestinal tract for 

their absorption, such as benzoate, salicylate, 

and 5- aminosalicylate (Gopal, Miyauchi, et 

al. 2007). Moreover, nicotinic acid, a 

precursor for nicotinamide adenine 

dinucleotide (NAD), is an efficient substrate 

of SMCT1 with Km=0.23 mM. In RPE, 

transport of 2-oxothiazolidine-4-carboxylate 

(OTC) via SMCT1 is saturable with Kt=104 

µM (Babu et al. 2011). OTC can increase 

intracellular glutathione levels and protect 

RPE cells from oxidative stress induced cell 

death.  

3.4.3 Urate homeostasis  

Urate, the end product of purine degradation 

in human, not only maintains in vivo 

homeostasis but also is capable of removing 

60% free radicals from the serum (Waring, 

Webb, and Maxwell 2001). Abnormal levels 

of urate are associated with multiple 

diseases, such as Hodgkin’s disease, 

Alzheimer’s disease, gout, hypertension, 

cardiovascular diseases and type 2 diabetes 

(Choi et al. 2005, Ioachimescu et al. 2008, 

Kutzing and Firestein 2008, Lu, Nakanishi, 

and Tamai 2013, So and Thorens 2010, 

Tykarski 1988). Urate is mainly excreted 

into urine and cleared through kidney. There 

is a urate transporter 1 (URAT1) located on 

the apical side of the renal proximal tube to 

reabsorb and thus regulate the blood level of 

urate (Enomoto et al. 2002). SMCTs at the 

same site are proposed to enhance URAT1-

mediated urate reabsorption by providing 
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exchanging monocarboxylates (e.g. lactate 

and nicotinate), indicating that SMCTs 

could be potential targets for indirectly 

modulating urate serum levels (Lu, 

Nakanishi, and Tamai 2013). Pyruvate is at 

the diverging 

4. MPCs 

4.1 Discovery, structure and molecular 

characteristics  

 point for fermentative and oxidative 

metabolism. The presence of a pyruvate 

transporter at mitochondria had been 

hypothesized based on kinetics and inhibitor 

studies (Halestrap 1975); however, only 

recently was it identified and characterized 

(Bricker et al. 2012, Herzig et al. 2012). 

Two evolutionally conserved proteins, 

MPC1 and MPC2 (formerly known as 

BRP44L and BRP44, respectively), form a 

large heterocomplex that is responsible for 

taking up pyruvate across the inner 

mitochondrial membrane. Human MPC1 

gene is located on chromosome 6q27, 

encoding two variants of 109 or 66 amino 

acids. MPC2, the paralog of MPC1, is 

located on chromosome 1q24, coding for a 

protein of 127 amino acids.  

4.2. Functional roles in metabolism and 

diseases 

Altered MPCs activity can impact numerous 

diseases and biological functions, such as 

cancer, insulin secretion from β cells as well 

as insulin sensitization in peripheral tissues. 

Specifically, the relative usage of pyruvate 

for oxidative phosphorylation in cancerous 

mitochondria is usually decreased. However, 

the metabolic flux through Krebs cycle is 

maintained by deriving compensatory 

acetyl-CoA molecules from glutaminolysis, 

a process that is highly favored by cancer 

cells (Vander Heiden, Cantley, and 

Thompson 2009). Concomitant 

administration of inhibitors to MPCs and 

glutaminolysis depletes both sources of 

acetyl-CoA and significantly impairs tumor 

growth (Yang et al. 2014). In pancreatic β 

cells, pyruvate transport into mitochondria 

plays an important role in stimulating insulin 

release. Mice with genetically disturbed 

Mpc2 gene show a reduced pyruvate 

oxidation ability and an impaired glucose 

tolerance due to a decreased secretion of 

insulin from β cells (Vigueira et al. 2014). 

Recent findings have linked MPCs with the 

action of thiazolidinediones (TZDs), the 

widely used insulin sensitizing drugs in type 

2 diabetes. Evidences show that TZDs target 

and inhibit MPC complex. This acute 

inhibition significantly enhances glucose 

uptake in human skeletal muscle myocytes 

(Colca et al. 2013, Divakaruni et al. 2013). 

As a result, MPCs may reveal a valuable 

therapeutic target for improving peripheral 

insulin sensitivity.  

 

5. Conclusions 

Given the central role of monocarboxylates, 

such as lactate, pyruvate and β-

hydoxybutyrate, in cellular energy 

metabolism, it is not surprising that their 

transporters are involved in so many 

biological functions and pathological states. 

Further studies to decipher more regulatory 

mechanisms will be necessary in order to 

manipulate the transport activities of 

MCTs/SMCTs/MPCs as needed. In addition, 

future characterization of the so far 

unknown MCTs will provide new routes for 

drug delivery options. Together, a better 

understanding of all the monocarboxylates 

transporters, under both physiological and 

pathological conditions, is beneficial for 

novel therapeutic design to diseases such as 

cancer, diabetes and ischemia.     
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