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ABSTRACT

Randomized controlled trials are widely regarded as the gold standard in
clinical research and public health. However, they have been criticized for
potentially lacking generalizability, as trial participants may not fully
represent the target patient population due to the inability to obtain a
truly random sample for enrollment. Assessing and evaluating the
generalizability of randomized controlled trials is an important issue that
has not been addressed adequately in literature. Additionally, although
the importance of describing clinical trial generalizability is recognized by
clinical trial reporting guidelines (e.g., CONSORT), it provides no clear
guidance on statistical tests or estimation procedures. In this paper, we
compare five generalizability indexes, including Standardized Mean
Difference, C-Statistic, B-Index, Kolmogorov-Smirnov Distance, and Lévy
Distance. We simulate a patient population with a treatment effect size of
0.5 (Cohen's d ) and seven covariates that include gender, health insurance,
race, baseline symptoms, comorbidity, age, and motivation. We then
evaluate the performance of the five generalizability indexes using
selected nonrandom and random clinical trial samples under different
number of covariates and sample sizes. Our work supports the use of 3-
index and C-statistic due to their strong statistical performance, ease of
interpretation and ability to clearly categorize generalizability into levels
such as very high, high, medium or low. A B-index value between 1 and
0.8 (inclusive) or a C-statistic value between 0.5 and 0.8 (inclusive)
indicates that the trail sample is very highly or highly representative of the
patient population.

Keywords: clinical trial; generalizability; measurement; effect size; bias;
simulation
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1. Introduction

The primary interest of medical research is whether the
intervention will be effective in the target population
where the intervention may be implemented!. To
generalize the research finding from a study to the target
population, a study requires both random assignment of
treatments to experimental units within the sample and
random sampling from the population. The randomized
controlled trial (RCT) is widely accepted as the gold
standard in assessing the effectiveness of an intervention
in medical research, as its random treatment assignment
assures a causal treatment effect in expectation2-4,
Despite the popularity of RCTs, random sampling or
generalizability of RCTs has received less attention and
is often ignored57. RCTs with low generalizability raises
doubt about the effect of the intervention in the target
population. In practice, most RCTs are limited in size due
to geographical, logistical and budgetary issues, and
patients in RCTs are rarely selected on a random basis
from a well-defined population of interest3.48, A previous
review of a cohort of 122 trials funded by the United
Kingdom Medical Research Council and the National
Institute for Health and Care Research (NIHR) Health
Technology Assessment discovered that only 31% of the
trials achieved their targeted patient recruitment size and
45.1% achieved less than 80% of their original size?-1°.
Women, children, the elderly, and those with common
comorbidities are frequently underrepresented or
excluded from medial clinical trials''-15. Moreover,
elderly patients may be underrepresented in clinical trials
of drugs that are most likely to be prescribed for heart
failure!!, diabetes'4, osteoarthritis'é, cancer'”, and
cardiovascular disease’8-19, In cancer trials, less than 5%
of elderly patients are enrolled217.2021 and only 27%
adequately represented older adults and only 11% met
the bar for minority racial and ethnic groups22. That
underrepresentation is attributable primarily to age,
race, performance status, comorbid conditions, and other
factors such as gender, cancer type, cancer stage, and
socioeconomic status20.21.23.24. Despite the increasing
number of the elderly in the population and the relatively
high incidence of cancer in this age group, most cancer
trial participants are younger'220.21, Additionally, Black
cancer patients are less likely to participate in cancer
trials compared to their White counterparts23. Currently,
less than 1% of adult cancer trial participants are
minorities, even though the minority population represents
about one-third of the total US population2°. Moreover,
most trial enrollees had no or fewer comorbidities and
better performance status than nonparticipants!217.:20,21,23,
whereas cancer patients residing in rural areas and living
on lower incomes or without health insurance are
underrepresented7.20.21,

In November 2020, U.S. Food and Drug Administration
(FDA) issued a detailed guidance to enhance the diversity
of RCT participants?5. To improve participation, the
guidance discusses how to broaden eligibility criteria,
how to conduct consideration for logistical and
participant-related factors, and how to broaden
eligibility criteria for clinical trials of investigational drugs
intended to treat rare diseases?5. Since January 2022,
the New England Journal of Medicine requires all
research studies provide background information on the

race, ethnicity, age, sex, and gender of the broader
population in a supplementary table2é. The FDA will soon
require researchers and companies seeking approval for
late-stage clinical trials to submit a plan for ensuring
diversity among ftrial participants and increase the
number of participants from under-represented groups in
drug testing?’. Although the importance of describing
clinical trial generalizability is recognized by clinical trial
reporting guidelines (e.g., CONSORT), it provides no
clear guidance on tests of or estimation procedures for
the generalizability of the results from RCTs28.

Till now, several generalizability metrics have been
proposed. Stuart et al. (2011)' suggested to use the
standardized mean difference  (SMD) between
propensity scores from a RCT sample and propensity
scores from the target population to measure the
generalization of the RCT sample. Tipton (2014)2?
proposed generalizability metric B-index which measures
the distributional similarity between the propensity scores
from an RCT sample and the target population. Wang et
al. (2017)3 proposed to use the C-statistic to quantify the
concordance of the two model-based propensity
distributions. Kolmogorov—Smirnov Distance (KSD) and
Lévy Distance (LD) are used to measure imbalance in an
observational study30:31,

Generalizability Index

STANDARDIZED MEAN DIFFERENCE

Standardized mean difference (SMD) was proposed to
quantify the similarity between target population and
trial sample by using standardized mean difference of
propensity scores from a target population and sample’.
The propensity score is the conditional probability of
treatment assignment given a vector of observed
covariates32, Here, the propensity score is the conditional
probability of selection in an RCT given preexisting
covariates. SMD is defined as:

1 N 1 ~
SMD = (- Z P, — Z P)/o
(n iesi=1y = N —n Lujes;=o0 o/

Where S; indicates the membership in the sample (S; =

1) or in the population (S; =0 ); P; is the estimated
propensity score for the ith subject; N and n represent the
size of population and clinical trial sample, respectively;
and 62 is the estimate of the variance of the population
propensity score. SMD is a modification to the propensity
score methods commonly used in quasi experiments and
observational studies to address treatment selection
bias32.

B-Index

Tipton (2014)2° proposed the B-index to measure the
distributional similarity between the propensity scores
from experimental samples and the target population.
For a set of covariates X and propensity score s = s(X),
the index is defined as

B —index = [ /fs(s)f,(s)ds,

where f;(s) is the distribution of propensity scores (or
their logits) for the experimental sample and f,(s) is the
distribution of propensity scores (or their logits) for the
population.
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B-index ranges from O to 1. A value of O indicates that
the experimental sample and population are distantly
different in the aspect of covariates X, while a value of
1 indicates that the experimental sample is like a random
sample from the population. Possible rules of thumbs
divide B-index into four categories: 1.00 = B-index =
0.90 indicating a very high level of generalization; 0.90 >
B-index = 0.80 indicating a high level of generalization;
0.80 > B-index = 0.50 representing a medium level of
generalization; and B-index < 0.50 indicating a low level
of generalization.

C-STATISTIC

C-statistic or area under the receiver operating
characteristic curve (AUC) was proposed by Wang et al.
(2017)3 to quantify the concordance of the two model-
based propensity score distributions33. The C-statistic has
long been understood to quantify the strength of a set of
covariates to discriminate between two classes and is a
measure of goodness of fit for binary outcomes in logistic
regression models. The C-statistic is equal fo the area
under receiver operating characteristic (ROC) curve,

which is a plot of sensitivity versus 1 minus specificity.
1

C — statistic = f ROC(t)dt
0

Hosmer and Lemeshow (2000)34 suggested cut off points
of the C-statistic for assessing discrimination of a model.
Here, we applied their rules but in the opposite way when
assessing generalizability of RCT. If the experimental
sample is approximately a simple random sample from
the target population, then C-statistic = 0.5 is considered
as no discrimination (random selection); 0.5 < C-statistic
< 0.7 is considered as poor discrimination (outstanding
generalizability); 0.7 < C- statistic <0.8 is considered as
acceptable discrimination (excellent generalizability);
0.8 < C- statistic < 0.9 is considered as excellent
discrimination (acceptable generalizability); C- statistic >
0.9 is considered as outstanding discrimination (poor
generalizability).

Kolmogorov—=Smirnov Distance

Kolmogorov-Smirnov distance (KSD) is defined as the
maximum vertical distance between two cumulative
distribution functions30.31,

KSD = max,|F(x) — F,(0)I,

where F(x) and F'p(x) represent cumulative functions

from two distributions. KSD reaches 0 when F(x) and
Fp(x) are equivalent, and the similarity decreases when
KSD increases, with a maximum value of 1. Low KSD
indicates better balance in a cohort study or better RCT
generalizability when F(x) and Fp(x) are cumulative
distribution of propensity scores from the sample and
population.

LEVY DISTANCE

Compared to Kolmogorov-Smirnov distance, Lévy
distance (LD) measures both horizontal and vertical
distance30-31. LD is the side length of the largest square
that can be inscribed between two cumulative distribution
functions:

LD=m€m{6>0:1@7(%—‘?)—6S ) < FBG+e)+

€ for all x},

where E(x) and Fp(x) represent cumulative functions
from two distributions. LD ranges from O to 1, with lower
values indicating better balance in a cohort study or
better RCT generalizability.

Unfortunately, there is still no consensus on which metrics
should be used to measure the generalizability of an RCT.
In this paper, we aim to compare various existing
statistical indices for assessing the generalizability of
RCTs. The remainder of this article is organized as
follows. In Section 2, we simulate a target population with
treatment effect size of 0.5 and 7 covariates. From the
simulated population, random and nonrandom clinical
trials with different covariates and sample sizes were
created. In Section 3, we calculate and evaluate the 5
indexes described above. We aim to identify indices that
are minimally affected by small sample sizes and limited
observed covariates, while reliably capturing the bias
introduced by trial selection. Our findings and conclusions
are discussed in Section 4 and Section 5, respectively.

2. Methodology

2.1 TARGET POPULATION

To simulate the target population, we started with a
Bernoulli random variable, X, with marginal probability
0.5 for treatment assignment (new treatment versus a
placebo). The outcome was a continuous variable (Y)
conditioning on treatment and covariates via a linear
regression model with an error term that follows the
standard normal distribution. The population regression
coefficient of the treatment was 0.5, which resulted in an
effect size of 0.5 (Cohen's d, new treatment was 0.5 SD
better than the placebo on a continuous outcome). Age
was simulated under a truncated normal distribution with
mean =50 and SD = 14, and it ranged from 18 to 90.
The regression coefficient of age was — 0.01. The
interaction coefficient between age and treatment was -
0.01. A measure of motivation was simulated with
mean =4.5, SD=2, and ranged from O to 10. The
regression coefficient of motivation was 0.06. There was
an interaction (0.06) between motivation and treatment.
Baseline symptoms (BL) was simulated with mean=10 and
SD=2. Regression coefficient of BL and interaction
coefficient between BL and treatment were -0.03.
Gender (coded 1 as female), race (coded 1 as white),
comorbidity (coded 1 as having common medical
conditions) and health insurance (coded 1 as having
insurance) were simulated as dichotomous covariates with
probabilities of 0.5, 0.7, 0.4, and 0.4, respectively. The
regression coefficients were 0.1, 0.1, —0.1 and 0.1 for
gender, race, comorbidity and insurance, respectively.
The regression coefficients for the interactions with the
treatment were 0.1, 0.1, —0.1 and 0.1 for gender, race,
comorbidity and insurance, respectively We then
calculated Y using intercept f§; =20 from a linear
regression model (see reference 3 for details)3.

2.2 RANDOM TRIALS
Performances of generalizability metrics were first
assessed under random trials, where the standard values
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of SMD, KSD and LD are O, standard values of B-Index
is 1, and the standard value of C-Statistic is 0.5. Absolute
bias and mean square error were used as two evaluation
criteria. Absolute bias was defined as the absolute
deviation of one index value from its standard values.
Mean square error measured the average of the squares

of the deviation. Metrics were assessed under two aspects:

1. robustness to sample size (from n=20 to n=1000) and
2. robustness to the number of observed covariates (from
1 to 7).

2.2.1 Robustness to Sample Size

Due to geographical, logistical and budgetary issues,
most clinical trials are limited in size compared to
observational studiesé8. Therefore, investigating the
performance of different generalizability indexes with
random trials of varying sample size is critically
important. A functional generalizability measure should
be least affected by the sample size, especially when
sample size is small. An index which is closest to its
standard value under random sampling regardless of
sample size is favored. We generated 18 random clinical
trials with sample sizes ranging from 20 to 1000 from the
target population. 100 repeated trials were generated
for each sample size.

2.2.2 Robustness to Number of Observed Covariates
It is well known that the propensity score is a conditional
probability of assignment to one group vs. another group
given the observed covariates32. Yet, failing to consider
influential unobserved covariates results in potential
hidden bias, which directly impairs the accuracy of the
metrics built on propensity scores, e.g. SMD, B-Index, C-
statisticc, KSD, and LD. We selected 100 repeated
random clinical trials with sample size 100 from the
target population (n=1000000). Propensity scores were
generated based on different numbers of observed
covariates. Aggregated values of 5 metrics from 100
repetitions were calculated based on propensity scores
for each set of observed covariates.

2.3 NONRANDOM TRIALS

Inference from clinical trial results to a population
requires that the trial subjects are randomly selected from
the target population and that the treatment is randomly
assigned within the trial. While randomization within the
trial can usually be achieved, the randomness of the trial
regarding the target population is hardly met. Therefore,
comparing indexes and finding which one could measure
the deviation of a trial from the patient population has
extreme importance in accessing the quality of a trial. In
order to explore how sample size and the number of
observed covariates impact metrics for assessing the
generalizability of nonrandom trials, we compared
metrics among 5 circumstances: 1) nonrandom frial with
sample size 400 and metrics calculated from 7 observed
covariates, 2) nonrandom trial with sample size 100 and

metrics calculated from 7 observed covariates, 3)
nonrandom trials with sample size 40 and metrics
calculated from 7 observed covariates, 4) nonrandom
trial with sample size 100 and metrics calculated from 3
observed covariates (motivation, race, and baseline
symptom), and 5) nonrandom trial with sample size 100
and metrics calculated from 5 observed covariates
(comorbidity, age, motivation, race, and BL). Nonrandom
samples were generated from the population by
adijusting the distributions of different covariates. The
degree of non-randomness of a trial is quantified by bias
(%), which was defined as 100 * (sample treatment effect
— population treatment effect) / population treatment
effect. Biased samples with bias ranging between 1% to
100% were generated and all metrics were calculated
for each selected sample 3. When bias increases, SMD
should increase from O to positive infinity; C-Statistic
should increase from 0.5 to 1; B-Index should decrease
from 1 to 0; and LD and KSD should increase from O to
1. Except for SMD, all other metrics have both lower
bound and upper bound. Mean absolute error (MAE) and
R square (R2) from a simple linear regression model were
used to evaluate the metrics in predicting bias, with metric
as a predictor and bias as the outcome. MAE was
calculated as the average absolute error between
predicted Bias from a linear fitted model and the true
bias. 50 nonrandom samples were selected for each of
the 5 scenarios, with bias ranging from 1.0% to 100.0%.
For each defined bias, 100 repeated random clinical
trials were selected. All 5 metrics were calculated for
each sample, and the results from 100 samples were
aggregated. MAE, and R2 are reported for each metric.

3. Results

3.1 RANDOM TRIAL

3.1.1 Varying Sample Size

Table 1 presents the values of all metrics with increasing
sample size for randomly selected trials, as well as their
absolute bias (ABS) and mean square bias (MSE). SMD,
C-statistics, B-index, KSD, and LD were closer to their
standard values when sample size increased from 20 to
1000 (Figure 1). B-index (0.08851) had the least
magnitude of change, compared to C-statistics (0.1366),
LD (0.2011), KSD (0.2735), and SMD (0.5203). Both
absolute bias and mean square bias decreased with
increasing sample size for SMD, C-statistics, B-index, KSD
and LD (Table 1, Figure 1). The absolute bias of B-index
followed by LD and C-statisticc were smallest, while
absolute bias of SMD was largest for all pre-defined
sample sizes. Mean square bias, which presents the
variation of metrics within repeated trials for each
sample size, for B-index, followed by LD and C-statistics,
was smallest among all metrics. Based on the results from
random trials and varying sample size, B-index was least
affected by small sample size and had the least variation
within repeated trials.

© 2025 European Society of Medicine 4



Table 1: Comparison of five generalizability metrics based on random trials with varying sample size

SMD C-statistic B-index KSD LD
Sample
Size SMD ABS MSE C ABS MSE B ABS MSE KSD ABS MSE LD ABS MSE

20 0.6052 | 0.6052 | 0.4063 | 0.6604 0.1604 0.0278 | 0.9089 0.0911 | 0.0102 | 0.3209 | 0.3209 | 0.1086 | 0.2070 | 0.2070 | 0.0473
30 0.4775 | 0.4775 | 0.2493 | 0.6292 0.1292 0.0181 | 0.9413 0.0587 | 0.0043 | 0.2584 | 0.2584 | 0.0702 | 0.1516 | 0.1516 | 0.0253
40 0.4081 | 0.4081 | 0.1807 | 0.6093 0.1093 0.0130 | 0.9557 0.0443 | 0.0026 | 0.2239 | 0.2239 | 0.0529 | 0.1230 | 0.1230 | 0.0172
50 0.3792 | 0.3792 | 0.1582 | 0.6018 0.1018 0.0115 | 0.9633 0.0367 | 0.0017 | 0.2034 | 0.2034 | 0.0440 | 0.1073 | 0.1073 | 0.0130
60 0.3473 | 0.3473 | 0.1310 | 0.5960 0.0960 0.0099 | 0.9687 0.0313 | 0.0013 | 0.1952 | 0.1952 | 0.0398 | 0.0970 | 0.0970 | 0.0104
70 0.3022 | 0.3022 | 0.0977 | 0.5850 0.0850 0.0077 | 0.9747 0.0253 | 0.0008 | 0.1720 | 0.1720 | 0.0306 | 0.0798 | 0.0798 | 0.0071
80 0.2827 | 0.2827 | 0.0865 | 0.5785 0.0785 0.0066 | 0.9776 0.0224 | 0.0007 | 0.1608 | 0.1608 | 0.0270 | 0.0715 | 0.0715 | 0.0057
90 0.2737 | 0.2737 | 0.0805 | 0.5760 0.0760 0.0062 | 0.9807 0.0193 | 0.0005 | 0.1534 | 0.1534 | 0.0248 | 0.0659 | 0.0659 | 0.0049
100 0.2723 | 0.2723 | 0.0793 | 0.5748 0.0748 0.0060 | 0.9807 0.0193 | 0.0005 | 0.1503 | 0.1503 | 0.0235 | 0.0647 | 0.0647 | 0.0047
200 0.1776 | 0.1776 | 0.0336 | 0.5506 0.0506 0.0027 | 0.9897 0.0103 | 0.0003 | 0.1035 | 0.1035 | 0.0111 | 0.0325 | 0.0325 | 0.0012
300 0.1460 | 0.1460 | 0.0227 | 0.5418 0.0418 0.0019 | 0.9929 0.0071 | 0.0001 | 0.0865 | 0.0865 | 0.0078 | 0.0228 | 0.0228 | 0.0006
400 0.1235 | 0.1235 | 0.0164 | 0.5351 0.0351 0.0013 | 0.9935 0.0065 | 0.0002 | 0.0716 | 0.0716 | 0.0054 | 0.0158 | 0.0159 | 0.0003
500 0.1203 | 0.1203 | 0.0154 | 0.5336 0.0336 0.0012 | 0.9959 0.0041 | 0.0000 | 0.0662 | 0.0662 | 0.0045 | 0.0141 | 0.0141 | 0.0002
600 0.1041 | 0.1041 | 0.0117 | 0.5295 0.0295 0.0009 | 0.9963 0.0037 | 0.0000 | 0.0590 | 0.0590 | 0.0036 | 0.0105 | 0.0107 | 0.0002
700 0.0965 | 0.0965 | 0.0098 | 0.5273 0.0273 0.0008 | 0.9961 0.0039 | 0.0000 | 0.0546 | 0.0546 | 0.0031 | 0.0088 | 0.0088 | 0.0001
800 0.0933 | 0.0933 | 0.0093 | 0.5266 0.0266 0.0008 | 0.9951 0.0049 | 0.0002 | 0.0526 | 0.0526 | 0.0029 | 0.0075 | 0.0080 | 0.0001
900 0.0858 | 0.0858 | 0.0078 | 0.5243 0.0243 0.0006 | 0.9958 0.0042 | 0.0001 | 0.0496 | 0.0496 | 0.0026 | 0.0075 | 0.0076 | 0.0001
1000 0.0849 | 0.0849 | 0.0078 | 0.5238 0.0238 0.0006 | 0.9974 0.0026 | 0.0000 | 0.0474 | 0.0474 | 0.0024 | 0.0059 | 0.0065 | 0.0001
Change 0.5203 0.1366 0.0885 0.2735 0.2011

Note: ABS represents absolute bias; MSE represents mean square error; population treatment effect = 0.5 and there are 7 covariates;
Standard values of SMD, C-statistic, B-index, KSD and LD are 0, 0.5, 1, 0 and 0.
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Figure 1: Value of generalizability metrics
and their absolute bias and mean square
error with increasing sample size



3.1.2 Varying Number of Observed Covariates

Tables 2 presents the values, absolute bias (ABS) and mean square bias (MSE) of all
indexes with increasing number of observed covariates, for random samples of size 100.
The magnitude of change for B-index (0.0375) was smaller compared to LD (0.0481), C-
statistics (0.0523), KSD (0.062), and SMD (0.1861) with increasing number of covariates.
The absolute bias and mean square bias of SMD, C-statistic, KSD, and LD increased with

increasing/decreasing pattern for the absolute bias and mean square bias for B-index
(Table 2). The absolute bias of B-index was almost O for all pre-defined covariate numbers
and was smallest among all the metrics when number of covariates > 2 (Table 2, Figure
2). The mean square bias for B-index was smaller compared to other metrics when number
of covariates > 3. Overall, B-index seemed to be least affected by the varying number
of covariates.

increasing number

of

observed

covariates,

while

there

wdas no

constant

Table 2: Comparison of five generalizability metrics based on random trials with different number of observed covariates (from 1 to 7) for sample size of 100

SMD C-statistic B-index KSD LD

Covariate SMD ABS MSE C ABS MSE B ABS MSE KSD ABS MSE LD ABS MSE

1 0.0770 0.0770 0.0095 | 0.5219 0.0219 0.0007 | 0.9736 0.0264 0.0201 0.0847 0.0847 0.0078 |0.0140 0.0140 0.0004
2 0.1200 0.1200 0.0180 | 0.5334 0.0334 0.0014 | 0.9500 0.0500 0.0120 | 0.0966 0.0966 0.0101 0.0303 0.0303 0.0014
3 0.1604 0.1604 0.0298 | 0.5457 0.0457 0.0025 | 0.9773 0.0227 0.0022 |0.1122 0.1122 0.0134 |0.0370 0.0370 0.0018
4 0.1949  0.1949 0.0430 | 0.5555 0.0555 0.0035 |0.9875 0.0126 0.0002 |0.1237 0.1237 0.0162 | 0.0427 0.0427 0.0023
5 0.2205 0.2205 0.0534 | 0.5626 0.0626 0.0043 | 0.9844 0.0156 0.0003 |0.1307 0.1307 0.0179 | 0.0497 0.0497 0.0029
6 0.2416 0.2416 0.0634 | 0.5686 0.0686 0.0051 0.9833 0.0167 0.0004 |[0.1399 0.1399 0.0205 | 0.0563 0.0563 0.0037
7 0.2631 0.2631 0.0750 | 0.5742 0.0742 0.0060 | 0.9828 0.0172 0.0004 | 0.1467 0.1467 0.0228 | 0.0621 0.0621 0.0045
Change 0.1861 0.0523 0.0375 0.062 0.0481

Note: ABS represents absolute bias; MSE represents mean square error; population treatment effect = 0.5

Standard values of SMD, C-statistic, B-index, KSD and LD are 0, 0.5, 1, 0 and O.
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Figure 2: Value of generalizability metrics and
their absolute bias and mean square error with
varying number of observed covariates.



3.2 NONRANDOM TRIAL random trial) increased from 0.57 to 0.98, B-index (1 for random trial) decreased from
Based on 7 observed covariates and sample sizes 40, 100, and 400, we selected 0.98 to 0.22, KSD (0 for random trial) increased from 0.12 to 0.88, and LD (O for random
nonrandom trials with bias from 1.8% to 99.4%. Table 3 presents all metrics with increasing trial) increased from 0.06 to 0.84.

sample bias. SMD (0 for random trial) increased from 0.24 to 11.38, C-statistic (0.5 for

Table 3: Comparison of five generalizability metrics based on non-random trials with 7 observed covariates and sample size of 40, 100 and 400.
Sample Size 40 Sample Size 100 Sample Size 400
Sample ES Bias SMD C B KSD LD ES Bias SMD C B KSD LD ES Bias SMD C B KSD LD
0.5093 | 1.9% | 0.50 |0.63|0.94|0.25|0.15| 0.5101 | 2.0% | 0.33 | 0.59 | 0.97 | 0.18 | 0.09 | 0.5090 | 1.8% | 0.24 | 0.57 | 0.98 | 0.12 | 0.06

1

2 0.5170 | 3.4% | 0.67 | 0.68 | 0.90 | 0.32 | 0.23 | 0.5195 | 3.9% | 0.46 | 0.63 | 0.94 | 0.23 | 0.15 | 0.5218 | 4.4% | 0.41 0.61 | 0.92 | 0.20 | 0.18
3 0.5238 | 4.8% | 0.58 | 0.66 | 0.92 | 0.29 | 0.19 | 0.5233 | 4.7% | 0.56 | 0.66 | 0.90 | 0.28 | 0.22 | 0.5233 | 4.7% | 0.50 | 0.64 | 0.89 | 0.25 | 0.23
4 0.5435 | 8.7% | 076 |0.70|0.88 | 0.36|0.27 | 0.5423 | 8.5% | 0.67 | 0.68 | 0.91 | 0.30 | 0.24 | 0.5432 | 8.6% | 0.65 | 0.67 | 0.88 | 0.29 | 0.27
5 0.5552 | 11.0% | 0.77 | 0.70 | 0.88 | 0.35 | 0.26 | 0.5524 | 10.5% | 0.67 | 0.68 | 0.91 | 0.31 | 0.23 | 0.5495 | 9.9% | 0.61 0.67 | 0.91 | 0.27 | 0.24
6 0.5687 | 13.7% | 0.77 | 0.71 | 0.89 | 0.36 | 0.26 | 0.5678 | 13.6% | 0.69 | 0.69 | 0.92 | 0.31 | 0.22 | 0.5689 | 13.8% | 0.66 | 0.68 | 0.93 | 0.28 | 0.21
7 0.5737 | 14.7% | 0.82 | 0.71 | 0.88 | 0.37 | 0.27 | 0.5782 | 15.6% | 0.76 | 0.70 | 0.90 | 0.33 | 0.25 | 0.5754 | 15.1% | 0.72 | 0.69 | 0.92 | 0.30 | 0.24
8 0.5794 | 159% | 0.83 | 0.72 | 0.88 | 0.37 | 0.27 | 0.5837 | 16.7% | 0.78 | 0.71 | 0.90 | 0.34 | 0.25 | 0.5853 | 17.1% | 0.73 | 0.70 | 0.93 | 0.31 | 0.23
9 0.5886 | 17.7% | 1.04 | 0.76 | 0.83 | 0.44 | 0.35 | 0.5874 | 17.5% | 0.93 | 0.75| 0.86 | 0.41 | 0.34 | 0.5879 | 17.6% | 0.90 | 0.74 | 0.88 | 0.38 | 0.33
10 0.5967 | 19.3% | 1.06 | 0.77 | 0.82 | 0.45 | 0.36 | 0.5957 | 19.1% | 0.98 | 0.76 | 0.85 | 0.42 | 0.35 | 0.5932 | 18.6% | 0.93 | 0.75 | 0.88 | 0.39 | 0.33
11 0.6039 | 20.8% | 1.06 | 0.77 | 0.83 | 0.46 | 0.36 | 0.6053 | 21.1% | 1.01 0.76 | 0.86 | 0.42 | 0.33 | 0.6055 | 21.1% | 0.97 | 0.75 | 0.88 | 0.40 | 0.32
12 0.6309 | 26.2% | 1.21 | 0.79 | 0.80 | 0.48 | 0.38 | 0.6263 | 25.3% | 1.11 0.78 | 0.83 | 0.44 | 0.35 | 0.6245 | 24.9% | 1.07 | 0.77 | 0.86 | 0.42 | 0.33
13 0.6395 | 27.9% | 1.34 | 0.80 | 0.77 | 0.52 | 0.41 | 0.6386 | 27.7% | 1.21 0.79 | 0.81 | 0.47 | 0.37 | 0.6380 | 27.6% | 1.15 | 0.78 | 0.84 | 0.44 | 0.34
14 0.6462 | 29.2% | 1.28 | 0.80 | 0.78 | 0.50 | 0.40 | 0.6409 | 28.2% | 1.20 | 0.79 | 0.82 | 0.47 | 0.36 | 0.6385 | 27.7% | 1.16 | 0.78 | 0.84 | 0.44 | 0.34

1
1
1
15 0.6541 | 30.8% | 1.39 | 0.81 | 0.75 | 0.52 | 0.41 | 0.6554 | 31.1% | 1.31 0.80 | 0.79 | 0.49 | 0.38 | 0.6537 | 30.7% | 1.28 | 0.80 | 0.82 | 0.47 | 0.37
1
1

16 0.6721 | 34.4% | 1.60 | 0.83 | 0.71 | 0.55 | 0.45 | 0.6754 | 35.1% | 1.53 | 0.83 | 0.74 | 0.53 | 0.42 | 0.6741 | 34.8% | 1.47 | 0.82 | 0.78 | 0.51 | 0.40
17 0.6767 | 35.3% | 1.62 | 0.83 | 0.71 | 0.56 | 0.45 | 0.6772 | 35.4% | 1.51 0.82 | 0.75 | 0.52 | 0.42 | 0.6749 | 35.0% | 1.48 | 0.82 | 0.77 | 0.51 | 0.40
18 0.6906 | 38.1% | 1.81 0.85 | 0.67 | 0.60 | 0.49 | 0.6895 | 37.9% | 1.69 | 0.84 | 0.71 | 0.55 | 0.45 | 0.6882 | 37.6% | 1.62 | 0.84 | 0.75 | 0.53 | 0.43
19 0.6924 | 38.5% | 1.87 | 0.86 | 0.66 | 0.60 | 0.50 | 0.6961 | 39.2% | 1.78 | 0.85 | 0.69 | 0.57 | 0.47 | 0.6968 | 39.4% | 1.70 | 0.84 | 0.73 | 0.54 | 0.45
20 0.7119 | 42.4% | 2.03 | 0.87 | 0.63 | 0.62 | 0.52 | 0.7026 | 40.5% | 1.90 | 0.86 | 0.67 | 0.58 | 0.49 | 0.7050 | 41.0% | 1.82 | 0.85 | 0.71 | 0.56 | 0.47
21 0.7175 | 43.5% | 2.20 | 0.88 | 0.60 | 0.64 | 0.55 | 0.7174 | 43.5% | 2.06 | 0.87 | 0.64 | 0.61 | 0.52 | 0.7191 | 43.8% | 2.04 | 0.87 | 0.67 | 0.59 | 0.50
22 0.7274 | 45.5% | 2.40 | 0.89 | 0.57 | 0.67 | 0.58 | 0.7259 | 45.2% | 2.24 | 0.88 | 0.61 | 0.63 | 0.54 | 0.7279 | 45.6% | 2.21 0.88 | 0.65 | 0.61 | 0.53
23 0.7279 | 45.6% | 2.33 | 0.89 | 0.58 | 0.66 | 0.57 | 0.7284 | 45.7% | 2.37 | 0.89 | 0.59 | 0.64 | 0.56 | 0.7326 | 46.5% | 2.33 | 0.89 | 0.63 | 0.63 | 0.55
24 0.7421 | 48.4% | 2.68 | 0.91 | 0.54 | 0.69 | 0.61 | 0.7432 | 48.6% | 2.57 | 0.90 | 0.57 | 0.67 | 0.58 | 0.7450 | 49.0% | 2.56 | 0.90 | 0.60 | 0.66 | 0.57
25 0.7705 | 54.1% | 2.65 | 0.89 | 0.54 | 0.67 | 0.59 | 0.7659 | 53.2% | 2.26 | 0.87 | 0.60 | 0.61 | 0.52 | 0.7685 | 53.7% | 2.29 | 0.88 | 0.63 | 0.60 | 0.51
26 0.7717 | 54.3% | 2.49 | 0.88 | 0.56 | 0.64 | 0.55 | 0.7693 | 53.9% | 2.49 | 0.89 | 0.57 | 0.63 | 0.55 | 0.7714 | 54.3% | 2.48 | 0.89 | 0.60 | 0.62 | 0.54
27 0.7980 | 59.6% | 3.00 | 0.91 | 0.49 | 0.70 | 0.62 | 0.7923 | 58.5% | 2.83 | 0.90 | 0.53 | 0.67 | 0.59 | 0.7946 | 58.9% | 2.83 | 0.90 | 0.56 | 0.65 | 0.57
28 0.7987 | 59.7% | 296 | 0.91 | 0.50 | 0.70 | 0.62 | 0.8003 | 60.1% | 2.93 | 0.91 | 0.52 | 0.67 | 0.59 | 0.7991 | 59.8% | 2.84 | 0.90 | 0.55 | 0.66 | 0.58
29 0.8061 | 61.2% | 292 | 0.91 | 0.50 | 0.69 | 0.61 | 0.8081 | 61.6% | 2.96 | 0.90 | 0.51 | 0.67 | 0.58 | 0.8086 | 61.7% | 2.89 | 0.90 | 0.54 | 0.65 | 0.57
30 0.8168 | 63.4% | 3.30 | 0.91 | 0.46 | 0.71 | 0.63 | 0.8157 | 63.1% | 3.12 | 0.91 | 0.49 | 0.68 | 0.61 | 0.8149 | 63.0% | 3.07 | 0.91 | 0.53 | 0.67 | 0.59
31 0.8291 | 65.8% | 3.60 | 0.92 | 0.44 | 0.73 | 0.65 | 0.8299 | 66.0% | 3.44 | 0.92 | 0.46 | 0.70 | 0.62 | 0.8319 | 66.4% | 3.42 | 0.92 | 0.49 | 0.69 | 0.62
32 0.8461 | 69.2% | 3.90 | 0.93 | 0.41 | 0.75 | 0.67 | 0.8425 | 68.5% | 3.79 | 0.93 | 0.43 | 0.72 | 0.64 | 0.8454 | 69.1% | 3.70 | 0.92 | 0.46 | 0.70 | 0.63
33 0.8570 | 71.4% | 4.06 | 0.93 | 0.40 | 0.75 | 0.67 | 0.8560 | 71.2% | 4.03 | 0.93 | 0.41 | 0.73 | 0.65 | 0.8586 | 71.7% | 3.97 | 0.93 | 0.44 | 0.72 | 0.65
34 0.8655 | 73.1% | 424 | 0.94 | 0.38 | 0.76 | 0.68 | 0.8685 | 73.7% | 4.33 | 094 | 0.39 | 0.74 | 0.67 | 0.8704 | 74.1% | 4.28 | 0.94 | 0.42 | 0.73 | 0.66
35 0.8772 | 75.4% | 4.60 | 0.94 | 0.36 | 0.77 | 0.70 | 0.8792 | 75.8% | 4.54 | 0.94 | 0.37 | 0.76 | 0.69 | 0.8790 | 75.8% | 4.50 | 0.94 | 0.40 | 0.74 | 0.67

© 2025 European Society of Medicine 9



36 0.8835 | 76.7% | 495 | 0.95|0.34 | 0.78 | 0.71 | 0.8852 | 77.0%
37 0.8972 | 79.4% | 5.57 | 0.95 | 0.32 | 0.80 | 0.73 | 0.8952 | 79.0%
38 0.9070 | 81.4% | 577 | 0.96 | 0.31 | 0.82 | 0.75 | 0.9058 | 81.2%
39 0.9139 | 82.8% | 6.35 | 0.96 | 0.29 | 0.83 | 0.76 | 0.9139 | 82.8%
40 0.9264 | 85.3% | 6.87 | 0.96 | 0.27 | 0.84 | 0.77 | 0.9261 | 85.2%
41 0.9358 | 87.2% | 7.64 | 0.97 | 0.26 | 0.84 | 0.78 | 0.9374 | 87.5%
42 0.9434 | 88.7% | 7.65 | 0.97 | 0.25 | 0.85 | 0.79 | 0.9445 | 88.9%
43 0.9498 | 90.0% | 8.54 | 0.98 | 0.23 | 0.87 | 0.81 | 0.9466 | 89.3%
44 0.9506 | 90.1% | 8.28 | 0.97 | 0.24 | 0.85 | 0.80 | 0.9500 | 90.0%
45 0.9590 | 91.8% | 2.01 | 0.97 | 0.23 | 0.86 | 0.80 | 0.9568 | 91.4%
46 0.9591 | 91.8% | 875 | 0.98 | 0.23 | 0.87 | 0.81 | 0.9579 | 921.6%
47 0.9654 | 93.1% | 9.13 | 0.98 | 0.22 | 0.87 | 0.81 | 0.9658 | 93.2%
48 0.9737 | 94.7% | 9.65 | 0.98 | 0.22 | 0.88 | 0.82 | 0.9729 | 94.6%
49 0.9933 | 98.7% | 11.98 | 0.98 | 0.19 | 0.89 | 0.84 | 0.9943 | 98.9%
50 0.9971 | 99.4% | 12.40 | 0.98 | 0.18 | 0.90 | 0.84 | 0.9955 | 99.1%

4.88 | 0.94
5.22 | 0.95
578 | 0.96
6.07 | 0.96
6.58 | 0.96
7.40 | 0.97
7.52 | 0.97
8.29 | 0.97
7.85 | 0.97
8.47 | 0.97
8.46 | 0.97
8.98 | 0.98
9.48 | 0.98
11.61 | 0.98
11.65 ] 0.98

0.36
0.34
0.32
0.31
0.29
0.27
0.26
0.25
0.26
0.24
0.24
0.24
0.23
0.20
0.20

0.76
0.77
0.80
0.81
0.82
0.83
0.84
0.85
0.84
0.85
0.85
0.85
0.87
0.88
0.88

0.69
0.70
0.73
0.74
0.76
0.77
0.78
0.80
0.78
0.80
0.79
0.80
0.81
0.83
0.83

0.8864
0.8964
0.9057
0.9115
0.9256
0.9381
0.9407
0.9439
0.9494
0.9537
0.9576
0.9656
0.9726
0.9910
0.9972

77.3%
79.3%
81.1%
82.3%
85.1%
87.6%
88.1%
88.8%
89.9%
90.7%
91.5%
93.1%
94.5%
98.2%
99.4%

4.81
5.23
5.66
5.97
6.50
7.12
7.20
8.02
7.68
8.20
8.26
8.79
9.27
10.78
11.38

0.94
0.95
0.96
0.96
0.96
0.97
0.97
0.97
0.97
0.97
0.97
0.97
0.98
0.98
0.98

0.39
0.37
0.35
0.34
0.32
0.30
0.30
0.28
0.28
0.27
0.27
0.26
0.25
0.23
0.22

0.75
0.76
0.78
0.79
0.80
0.81
0.82
0.84
0.83
0.84
0.84
0.84
0.85
0.87
0.88

0.68
0.70
0.73
0.73
0.75
0.76
0.77
0.79
0.78
0.79
0.79
0.79
0.81
0.83
0.84

Note: ES represents trial effect size; population true treatment effect = 0.5; there are 7 covariates; all measurements are calculated based on sample size 40, 100

and 400 and all 7 covariates.

To uncover the potential impact of number of observed covariates on the 5 indexes, we
simulated nonrandom trials and calculated 5 indexes based on 3 observed covariates and
5 observed covariates for sample size of 100 (Table 4). With 3 covariates, few variations
were observed for all metrics (SMD, between 0.15 and 0.17; C-statistic, between 0.54
and 0.55; B-index ranged from 0.96 and 0.98; KSD, 0.11; LD, between 0.03 and 0.04)

when bias was <= 48.6%. When bias increased from 48.6% to 99.0%; SMD (O for
random trial) increased from 0.17 to 2.27; C-statistic (0.5 for random trial) increased from
0.55 10 0.90; B-index (1 for random trial) decreased from 0.98 to 0.50; KSD (O for random
trial) increased from 0.11 to 0.67, and LD (O for random trial) increased from 0.04 to 0.62.

Table 4: Comparison of five generalizability metrics based on non-random trials with sample size 100 and 3, 5 and 7 covariates

Sample ES Bias SMD C-statistic B-index KSD LD
3 5 7 3 5 7 3 5 7 3 5 7 3 5 7

1 0.5101 2.0% 0.16 0.21 0.33 0.55 0.56 0.59 0.98 0.98 0.97 0.11 0.13 0.18 0.04 0.05 0.09
2 0.5195 3.9% 0.17 0.22 0.46 0.55 0.56 0.63 0.96 0.98 0.94 0.11 0.13 0.23 0.04 0.05 0.15
3 0.5233 4.7% 0.15 0.21 0.56 0.54 0.56 0.66 0.98 0.98 0.90 0.10 0.13 0.28 0.03 0.05 0.22
4 0.5423 8.5% 0.16 0.40 0.67 0.54 0.61 0.68 0.99 0.94 0.91 0.11 0.21 0.30 0.03 0.15 0.24
5 0.5524 10.5% 0.17 0.38 0.67 0.55 0.61 0.68 0.98 0.96 0.91 0.11 0.20 0.31 0.04 0.12 0.23
6 0.5678 13.6% 0.16 0.43 0.69 0.54 0.62 0.69 0.98 0.96 0.92 0.11 0.21 0.31 0.04 0.13 0.22
7 0.5782 15.6% 0.15 0.50 0.76 0.54 0.64 0.70 0.98 0.95 0.90 0.11 0.25 0.33 0.03 0.16 0.25
8 0.5837 16.7% 0.15 0.53 0.78 0.54 0.65 0.71 0.98 0.95 0.90 0.11 0.25 0.34 0.03 0.16 0.25
9 0.5874 17.5% 0.17 0.71 0.93 0.55 0.70 0.75 0.98 0.88 0.86 0.11 0.34 0.41 0.04 0.29 0.34
10 0.5957 19.1% 0.16 0.72 0.98 0.55 0.70 0.76 0.98 0.88 0.85 0.11 0.35 0.42 0.04 0.29 0.35
11 0.6053 21.1% 0.16 0.77 1.01 0.54 0.72 0.76 0.98 0.88 0.86 0.11 0.36 0.42 0.04 0.28 0.33
12 0.6263 25.3% 0.17 0.88 1.11 0.54 0.74 0.78 0.98 0.88 0.83 0.11 0.40 0.44 0.04 0.29 0.35
13 0.6386 27.7% 0.17 0.97 1.21 0.55 0.76 0.79 0.97 0.86 0.81 0.11 0.42 0.47 0.04 0.31 0.37
14 0.6409 28.2% 0.15 0.97 1.20 0.54 0.76 0.79 0.98 0.86 0.82 0.11 0.42 0.47 0.03 0.31 0.36
15 0.6554 31.1% 0.16 1.07 1.31 0.54 0.77 0.80 0.98 0.84 0.79 0.11 0.45 0.49 0.04 0.33 0.38
16 0.6754 35.1% 0.15 1.27 1.53 0.54 0.80 0.83 0.98 0.80 0.74 0.11 0.49 0.53 0.04 0.38 0.42
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17 0.6772 35.4% 0.16 1.25 1.51 0.54 0.80 0.82 0.98 0.80 0.75 0.11 0.48 0.52 0.04 0.37 0.42
18 0.6895 37.9% 0.16 1.42 1.69 0.54 0.82 0.84 0.97 0.77 0.71 0.11 0.52 0.55 0.04 0.41 0.45
19 0.6961 39.2% 0.15 1.50 1.78 0.54 0.83 0.85 0.97 0.75 0.69 0.11 0.54 0.57 0.04 0.43 0.47
20 0.7026 40.5% 0.17 1.60 1.90 0.55 0.84 0.86 0.98 0.73 0.67 0.11 0.55 0.58 0.04 0.45 0.49
21 0.7174 43.5% 0.16 1.79 2.06 0.54 0.86 0.87 0.97 0.69 0.64 0.11 0.58 0.61 0.04 0.49 0.52
22 0.7259 45.2% 0.15 1.92 2.24 0.54 0.87 0.88 0.98 0.67 0.61 0.11 0.61 0.63 0.03 0.51 0.54
23 0.7284 45.7% 0.16 1.87 2.37 0.55 0.86 0.89 0.98 0.67 0.59 0.11 0.60 0.64 0.04 0.50 0.56
24 0.7432 48.6% 0.17 2.06 2.57 0.55 0.88 0.90 0.98 0.64 0.57 0.11 0.62 0.67 0.04 0.53 0.58
25 0.7659 53.2% 0.47 1.46 2.26 0.63 0.82 0.87 0.94 0.75 0.60 0.22 0.52 0.61 0.14 0.41 0.52
26 0.7693 53.9% 0.43 1.40 2.49 0.63 0.81 0.89 0.94 0.77 0.57 0.22 0.50 0.63 0.13 0.40 0.55
27 0.7923 58.5% 0.41 1.66 2.83 0.62 0.84 0.90 0.93 0.71 0.53 0.21 0.56 0.67 0.12 0.46 0.59
28 0.8003 60.1% 0.46 1.70 2.93 0.64 0.84 0.91 0.94 0.70 0.52 0.23 0.56 0.67 0.13 0.46 0.59
29 0.8089 61.8% 0.60 1.84 2.96 0.67 0.86 0.90 0.91 0.67 0.51 0.28 0.58 0.67 0.19 0.48 0.58
30 0.8157 63.1% 0.60 1.86 3.12 0.67 0.86 0.91 0.90 0.67 0.49 0.29 0.58 0.68 0.19 0.48 0.61
31 0.8299 66.0% 0.72 1.97 3.44 0.70 0.86 0.92 0.87 0.64 0.46 0.33 0.59 0.70 0.24 0.49 0.62
32 0.8425 68.5% 0.79 2.23 3.79 0.72 0.88 0.93 0.86 0.60 0.43 0.35 0.62 0.72 0.26 0.52 0.64
33 0.8560 71.2% 0.95 2.38 4.03 0.75 0.89 0.93 0.82 0.58 0.41 0.40 0.64 0.73 0.30 0.54 0.65
34 0.8685 73.7% 1.11 2.60 4.33 0.78 0.90 0.94 0.78 0.54 0.39 0.44 0.66 0.74 0.36 0.56 0.67
35 0.8792 75.8% 1.22 2.74 4.54 0.79 0.90 0.94 0.75 0.52 0.37 0.47 0.67 0.76 0.39 0.58 0.69
36 0.8852 77.0% 1.34 2.94 4.88 0.81 0.91 0.94 0.71 0.50 0.36 0.50 0.69 0.76 0.43 0.60 0.69
37 0.8952 79.0% 1.48 3.18 5.22 0.83 0.92 0.95 0.68 0.47 0.34 0.53 0.70 0.77 0.46 0.62 0.70
38 0.9058 81.2% 1.55 3.35 5.78 0.84 0.92 0.96 0.67 0.46 0.32 0.54 0.71 0.80 0.47 0.62 0.73
39 0.9139 82.8% 1.65 3.45 6.07 0.85 0.93 0.96 0.64 0.45 0.31 0.57 0.72 0.81 0.50 0.64 0.74
40 0.9261 85.2% 1.58 3.82 6.58 0.84 0.93 0.96 0.66 0.42 0.29 0.55 0.74 0.82 0.48 0.66 0.76
41 0.9374 87.5% 1.64 4.16 7.40 0.85 0.94 0.97 0.64 0.40 0.27 0.56 0.75 0.83 0.50 0.68 0.77
42 0.9445 88.9% 1.73 4.37 7.52 0.85 0.94 0.97 0.63 0.39 0.26 0.57 0.77 0.84 0.51 0.69 0.78
43 0.9466 89.3% 2.04 4.82 8.29 0.88 0.95 0.97 0.57 0.36 0.25 0.63 0.79 0.85 0.58 0.72 0.80
44 0.9500 90.0% 1.75 4.50 7.85 0.86 0.95 0.97 0.62 0.38 0.26 0.58 0.77 0.84 0.52 0.70 0.78
45 0.9568 91.4% 2.04 4.97 8.47 0.88 0.95 0.97 0.56 0.36 0.24 0.63 0.79 0.85 0.58 0.72 0.80
46 0.9579 91.6% 1.86 4.96 8.46 0.87 0.95 0.97 0.60 0.36 0.24 0.60 0.79 0.85 0.53 0.72 0.79
47 0.9658 93.2% 1.86 5.13 8.98 0.87 0.96 0.98 0.60 0.35 0.24 0.60 0.80 0.85 0.54 0.73 0.80
48 0.9729 94.6% 2.01 5.51 9.48 0.88 0.96 0.98 0.58 0.33 0.23 0.63 0.81 0.87 0.57 0.75 0.81
49 0.9943 98.9% 2.30 6.72 11.61 0.90 0.97 0.98 0.53 0.29 0.20 0.66 0.83 0.88 0.62 0.78 0.83
50 0.9955 99.1% 2.27 6.84 11.65 0.90 0.97 0.98 0.53 0.29 0.20 0.67 0.84 0.88 0.62 0.78 0.83

Note: ES represents effect size; population is built based on treatment effect=0.5 and 7 covariates; all measurements are calculated based on sample size 100 and 3, 5 and 7 covariates
observed.
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Table 5 shows the R2 and MAE for the five
generalizability indexes by sample size and number of
covariates. When 7 covariates were taken into account
and sample size varied, B-index outperformed other
indexes in predicting bias (R2 0.986-0.994) and
exhibited lower variability (MAE: 0.017-0.0251). R? of

ranging from 40 to 400. When sample size was fixed at
100 and either 5 or 7 covariates were observed, B-index
also exhibited the best performance in terms of R2 and
MAE. However, C-statistics (R2=0.865; MAE=0.084)
performed better than B-index and others, when sample
size was 100 and 3 covariates were observed.

B-index closely approximated 1 with sample sizes

Table 5: R2 and MAE of five generalizability indexes under different sample sizes and number of covariates

Sample Size Number of SMD C-statistic B-index KSD LD
Covariates
R2 40 7 0.8340 0.9300 0.9940 0.9730 0.9810
100 7 0.8440 0.9230 0.9920 0.9700 0.9800
400 7 0.8520 0.9180 0.9860 0.9680 0.9800
MAE 40 7 0.1010 0.0670 0.0170 0.0388 0.0317
100 7 0.0986 0.0701 0.0197 0.0405 0.0301
400 7 0.0971 0.0725 0.0251 0.0415 0.0288
Sample Size Number of SMD C-statistic B-index KSD LD
Covariates
R2 100 3 0.8190 0.8650 0.7970 0.8550 0.8400
100 5 0.8490 0.9020 0.9630 0.9340 0.9440
MAE 100 3 0.1033 0.0840 0.1070 0.0883 0.0943
100 5 0.0958 0.0795 0.0448 0.0673 0.0598

Note: MAE represents mean absolute error

4. Discussion

While randomized controlled trials are widely
considered as the gold standard in medical research,
they are criticized because of potential lack of
generalizability, as specific groups of trial patients may
be underrepresented compared to the target patient
population. Few research studies have addressed how to
assess and evaluate the generalizability of RCTs. As we
know, patients are rarely selected on a random basis
from a well-defined patient population of interest into a
clinical trial. As patients cannot be forced to join a trial,
it is not always possible to have a random sample for a
clinical trial. Women, children, the elderly, and those with
common comorbidities are frequently underrepresented
or excluded from clinical trials. A random and
representative sample is one indispensable assumption
for generalizing results from a RCT to the general patient
population. Determining how a representative RCT
sample might be is extremely important. Yet, we can
never know how well a treatment effect estimate can be
generalized to the patient population without data from
the patient population. What we can do is to calculate
the generalizability index when a clinical trial is
completed. This simulation study evaluated existing
statistical methods for generalizability including SMD, C-
statistic, B-Index, as well as KSD and LD. There are no
conclusive rules of thumb for the SMD. The fact that SMD
ranges from O to infinity without upper limit may also
impair the practicality of the SMD. In contrast, rules of
thumb for C-statistic (from 0.5 to 1) and B-Index (from 1
to 0) are well-defined and they are confined within
boundary intervals. While KSD and LD range from O to
1, little research has proposed cutoff points for them.

When all covariates are observed but sample size varies,
we observed that B-index had the smallest bias and

variation with random trials. According to the cutoff
points of the B-index suggested by Tipton (2014)2°, a -
index bigger or equal to 0.90 suggests a very high level
of generalization. While a C-statistic between 0.5 and
0.7 is considered as poor discrimination in assessing fit of
models33, we use this range as an indicator of excellent
generalizability in our study. Our results show that B-
index stayed above 0.90 and C-statistic stayed between
0.52 and 0.66 as sample size increased from 20 to 1000,
suggesting that B-index and C-statistic are reliable in
reflecting random selection even when the sample size
was small. SMD is sensitive to sample size, as the range
of SMD with sample size from 20 to 1000 was largest
(0.60515 - 0.08486) compared to other metrics. As we
mentioned previously, SMD larger than 0.25 SD or 0.1

SD is considered as a large deviation. From our
observation, however, SMD tended to be larger than
0.25 SD when sample size <= 100, and it was larger
than 0.1 SD when sample size <= 600. SMD might not
be a reliable choice, especially when measuring the
generalizability of an RCT which has a small sample size.
LD was close to its standard value (0) when sample size
was bigger than 70, the bias of LD was smaller than other
metrics, except for B-index. Yet, the C-statistic was better
than LD with sample size < 70. Our simulated random
trials found that the KSD did perform as well as B-index,
C-statistic, and LD as its absolute bias was larger than
those metrics.

We observed that the B-index was least affected by
number of observed covariates compared to other
metrics, for randomly selected samples with a sample size
of 100. The absolute bias of B-index was least among all
metrics when observed covariates >=3. The B-Index and
C-statistic excellently reflected the randomness of the
selected ftrials, as values of the B-index were over 0.95
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(B-index = 0.90 suggests a very high level of
generalizability) and values of the C-statistic were less
than 0.58 (between 0.5 and 0.7 is considered as
excellent generalizability) with number of observed
covariates varying from 1 to 7. SMD was larger than 0.1
SD when the number of covariates >1 and was larger
than 0.25 SD when number of covariates >6. Again, SMD
failed to show the random status of selected samples if
we use the current proposed thresholds. With nonrandom
trials based on sample size 400 and 7 covariates
observed, our results showed that B-index, followed by
LD and KSD, was most associated with bias, compared to
other metrics. B-index also had higher prediction ability
and lowest mean absolute error between the predicted
bias and true bias. When all covariates were observed
but sample size was reduced (100 and 40), we did not
find significant differences for SMD, C-statistic, B-index,
KSD and LD.

B-Index performed well for both random and non-
random samples. It is based on the distributions of
propensity scores rather than only the average
difference of the propensity scores from the sample and
the population. B-Index did not perform well when the
number of covariates was too small. It's easy to interpret
the B-Index value and use in clinical trials as it ranges
from O to 1, and has the following rules of thumb: 1.00 >
B-index = 0.90 indicating a very high level of
generalization; 0.90 > B-index = 0.80 indicating a high
level of generalization; 0.80 > f-index = 0.50
representing a medium level of generalization; and f3-
index < 0.50 indicating a low level of generalization. On
average, C-statistics performed well. When the number
of covariates was small, C-statistics still performed well.

It ranges from O to 1 and has the following Rules of thumb:

C-statistic = 0.5 is considered as no discrimination
(random selection); 0.5 < C-statistic < 0.7 is considered
as poor discrimination (outstanding generalizability); 0.7
< C- statistic <0.8 is considered as acceptable
discrimination (excellent generalizability); 0.8 < C-
statistic < 0.9 is considered as excellent discrimination
(acceptable generalizability); C- statistic = 0.9 is
considered as outstanding  discrimination  (poor
generalizability). It's easy to interpret C-statistics and use
in clinical trials. The SMD did not perform well because it
is based on mean differences of the propensity scores,
and summarizing mean differences is insufficient for
assessing generalizability. There are no rules of thumb
for the SMD and it is not easy to interpret. On average,
both KSD and LD performed well. They focus on
comparing cumulative densities, range from O to 1, but
do not have clear rules of thumb and are not easy to
interpret.

In our study, we aimed to identify a generalizability
metric that reliably captures the deviation of clinical trial
samples from the target patient population. Our

simulation results suggest that both the B-index and the
C-statistic offer the best performance and could serve as
relioble and practical metrics for  assessing
generalizability in clinical trials. While the KSD and LD
performed reasonably well, they lack clear rules of
thumb and are less user-friendly. The SMD, on the other
hand, demonstrated poor performance and similarly
lacks an established interpretive standard.

5. Conclusion

The development of better generalizability metrics for
clinical trials remains an important need. The objective of
this paper was to demonstrate methods for estimating
generalizability indexes and to guide clinical researchers
in interpreting these measures. Our work has resulted in
recommending the use of the B-index and C-statistic due
to their statistical performance, because they are easy to
interpret, and because clear categories of
generalizability can be determined such as very-high,
high, medium, or low levels of generalizability. B-index
ranges from O to 1, and C-statistics ranges from 0.5 to 1.
A B-index value of 1 or a C-statistic value of 0.5 suggests
the trial sample closely reflects the characteristics of
patient  population,  demonstrating  very  high
generalizability. In contrast, a B-index value of 0 or a C-
statistic value of 1 suggests the trial sample deviate
significantly from the patient population, resulting in very
low generalizability. The B-index can be used to create
four level-of-generalizability categories: 1.00 > B-index
> 0.90 indicating a very-high level of generalizability;
0.90 > B-index = 0.80 indicating a high level of
generalizability; 0.80 > B-index > 0.50 representing a
medium level of generalizability; and B-index < 0.50
indicating a low level of generalizability. Like the -
index, the C-statistic can be used to create four level-of-
generalizability categories. We proposed the following
cut-off points for the C-statistic: 0.5 < C-statistic < 0.7
indicating a very-high level of generalizability; 0.7 < C-
statistic <0.8 indicating a high level of generalizability;
0.8 < C-statistic < 0.9 indicating a medium level of
generalizability; and C-statistic > 0.9 indicating a low
level of generalizability. The B-index is recommended if
researchers have measured all or most of the relevant
covariates that predict selection into the experimental
sample. The C-statistic is recommended if researchers
have measured a small number of the relevant covariates
that predict selection in the trial sample. Our paper
provides guidance for clinical doctors and trialists on how
to estimate, interpret, and report statistical indexes of
generalizability for clinical trials. Trialists should report a
generalizability index after completing a trial and
encourage requests from CONSORT, academic journals,
and the FDA to incorporate generalizability indexes in
clinical trial reporting.
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