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ABSTRACT 
Randomized controlled trials are widely regarded as the gold standard in 
clinical research and public health. However, they have been criticized for 
potentially lacking generalizability, as trial participants may not fully 
represent the target patient population due to the inability to obtain a 
truly random sample for enrollment. Assessing and evaluating the 
generalizability of randomized controlled trials is an important issue that 
has not been addressed adequately in literature. Additionally, although 
the importance of describing clinical trial generalizability is recognized by 
clinical trial reporting guidelines (e.g., CONSORT), it provides no clear 
guidance on statistical tests or estimation procedures. In this paper, we 
compare five generalizability indexes, including Standardized Mean 

Difference, C-Statistic, β-Index, Kolmogorov-Smirnov Distance, and Lévy 

Distance. We simulate a patient population with a treatment effect size of 
0.5 (Cohen's d ) and seven covariates that include gender, health insurance, 
race, baseline symptoms, comorbidity, age, and motivation. We then 
evaluate the performance of the five generalizability indexes using 
selected nonrandom and random clinical trial samples under different 

number of covariates and sample sizes. Our work supports the use of β-
index and C-statistic due to their strong statistical performance, ease of 
interpretation and ability to clearly categorize generalizability into levels 

such as very high, high, medium or low. A β-index value between 1 and 
0.8 (inclusive) or a C-statistic value between 0.5 and 0.8 (inclusive) 
indicates that the trail sample is very highly or highly representative of the 
patient population. 
Keywords: clinical trial; generalizability; measurement; effect size; bias; 
simulation  
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1. Introduction 
The primary interest of medical research is whether the 
intervention will be effective in the target population 
where the intervention may be implemented1. To 
generalize the research finding from a study to the target 
population, a study requires both random assignment of 
treatments to experimental units within the sample and 
random sampling from the population. The randomized 
controlled trial (RCT) is widely accepted as the gold 
standard in assessing the effectiveness of an intervention 
in medical research, as its random treatment assignment 
assures a causal treatment effect in expectation2-4. 
Despite the popularity of RCTs, random sampling or 
generalizability of RCTs has received less attention and 
is often ignored5-7. RCTs with low generalizability raises 
doubt about the effect of the intervention in the target 
population. In practice, most RCTs are limited in size due 
to geographical, logistical and budgetary issues, and 
patients in RCTs are rarely selected on a random basis 
from a well-defined population of interest3,6,8. A previous 
review of a cohort of 122 trials funded by the United 
Kingdom Medical Research Council and the National 
Institute for Health and Care Research (NIHR) Health 
Technology Assessment discovered that only 31% of the 
trials achieved their targeted patient recruitment size and 
45.1% achieved less than 80% of their original size9-10. 
Women, children, the elderly, and those with common 
comorbidities are frequently underrepresented or 
excluded from medial clinical trials11-15. Moreover, 
elderly patients may be underrepresented in clinical trials 
of drugs that are most likely to be prescribed for heart 
failure11, diabetes14, osteoarthritis16, cancer17, and 
cardiovascular disease18-19. In cancer trials, less than 5% 
of elderly patients are enrolled12,17,20,21, and only 27% 
adequately represented older adults and only 11% met 
the bar for minority racial and ethnic groups22. That 
underrepresentation is attributable primarily to age, 
race, performance status, comorbid conditions, and other 
factors such as gender, cancer type, cancer stage, and 
socioeconomic status20,21,23,24. Despite the increasing 
number of the elderly in the population and the relatively 
high incidence of cancer in this age group, most cancer 
trial participants are younger12,20,21. Additionally, Black 
cancer patients are less likely to participate in cancer 
trials compared to their White counterparts23. Currently, 
less than 1% of adult cancer trial participants are 
minorities, even though the minority population represents 
about one-third of the total US population20. Moreover, 
most trial enrollees had no or fewer comorbidities and 
better performance status than nonparticipants12,17,20,21,23, 
whereas cancer patients residing in rural areas and living 
on lower incomes or without health insurance are 
underrepresented17,20,21. 
 
In November 2020, U.S. Food and Drug Administration 
(FDA) issued a detailed guidance to enhance the diversity 
of RCT participants25. To improve participation, the 
guidance discusses how to broaden eligibility criteria, 
how to conduct consideration for logistical and 
participant-related factors, and how to broaden 
eligibility criteria for clinical trials of investigational drugs 
intended to treat rare diseases25. Since January 2022, 
the New England Journal of Medicine requires all 
research studies provide background information on the 

race, ethnicity, age, sex, and gender of the broader 
population in a supplementary table26. The FDA will soon 
require researchers and companies seeking approval for 
late-stage clinical trials to submit a plan for ensuring 
diversity among trial participants and increase the 
number of participants from under-represented groups in 
drug testing27. Although the importance of describing 
clinical trial generalizability is recognized by clinical trial 
reporting guidelines (e.g., CONSORT), it provides no 
clear guidance on tests of or estimation procedures for 
the generalizability of the results from RCTs28. 
 
Till now, several generalizability metrics have been 
proposed. Stuart et al. (2011)1 suggested to use the 
standardized mean difference (SMD) between 
propensity scores from a RCT sample and propensity 
scores from the target population to measure the 
generalization of the RCT sample. Tipton (2014)29 

proposed generalizability metric β-index which measures 

the distributional similarity between the propensity scores 
from an RCT sample and the target population. Wang et 
al. (2017)3 proposed to use the C-statistic to quantify the 
concordance of the two model-based propensity 
distributions. Kolmogorov–Smirnov Distance (KSD) and 
Lévy Distance (LD) are used to measure imbalance in an 
observational study30,31.  
 

Generalizability Index 
STANDARDIZED MEAN DIFFERENCE  
Standardized mean difference (SMD) was proposed to 
quantify the similarity between target population and 
trial sample by using standardized mean difference of 
propensity scores from a target population and sample1. 
The propensity score is the conditional probability of 
treatment assignment given a vector of observed 
covariates32. Here, the propensity score is the conditional 
probability of selection in an RCT given preexisting 
covariates. SMD is defined as:  

SMD = (
1

𝑛
 ∑ 𝑃̂𝑖

𝑖∈{𝑆𝑖=1}
−

1

𝑁 − 𝑛
 ∑ 𝑃̂𝑖

𝑖∈{𝑆𝑖=0}
)/σ 

 

Where 𝑆𝑖 indicates the membership in the sample (𝑆𝑖 =
1 ) or in the population (𝑆𝑖 = 0  ); 𝑃̂𝑖  is the estimated 
propensity score for the ith subject; N and n represent the 
size of population and clinical trial sample, respectively; 

and σ2 is the estimate of the variance of the population 
propensity score. SMD is a modification to the propensity 
score methods commonly used in quasi experiments and 
observational studies to address treatment selection 
bias32. 

β-Index 
 

Tipton (2014)29 proposed the β-index to measure the 

distributional similarity between the propensity scores 
from experimental samples and the target population. 
For a set of covariates X and propensity score s = s(X), 
the index is defined as  

β − index = ∫ √𝑓𝑠(𝑠)𝑓𝑝(𝑠)𝑑𝑠 , 
 

where 𝑓𝑠(𝑠) is the distribution of propensity scores (or 

their logits) for the experimental sample and 𝑓𝑝(𝑠) is the 

distribution of propensity scores (or their logits) for the 
population. 
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β-index ranges from 0 to 1. A value of 0 indicates that 
the experimental sample and population are distantly 
different in the aspect of covariates X, while a value of 
1 indicates that the experimental sample is like a random 
sample from the population. Possible rules of thumbs 

divide β-index into four categories: 1.00 ≥ β-index ≥ 

0.90 indicating a very high level of generalization; 0.90 > 

β-index ≥ 0.80 indicating a high level of generalization; 

0.80 > β-index ≥ 0.50 representing a medium level of 

generalization; and β-index < 0.50 indicating a low level 

of generalization. 
 
C-STATISTIC 
C-statistic or area under the receiver operating 
characteristic curve (AUC) was proposed by Wang et al. 
(2017)3 to quantify the concordance of the two model-
based propensity score distributions33. The C-statistic has 
long been understood to quantify the strength of a set of 
covariates to discriminate between two classes and is a 
measure of goodness of fit for binary outcomes in logistic 
regression models. The C-statistic is equal to the area 
under receiver operating characteristic (ROC) curve, 
which is a plot of sensitivity versus 1 minus specificity.  

C − statistic = ∫ 𝑅𝑂𝐶(𝑡)𝑑𝑡
1

0

 

 
Hosmer and Lemeshow (2000)34 suggested cut off points 
of the C-statistic for assessing discrimination of a model. 
Here, we applied their rules but in the opposite way when 
assessing generalizability of RCT. If the experimental 
sample is approximately a simple random sample from 
the target population, then C-statistic = 0.5 is considered 
as no discrimination (random selection); 0.5 < C-statistic 
< 0.7 is considered as poor discrimination (outstanding 
generalizability); 0.7 ≤ C- statistic <0.8 is considered as 
acceptable discrimination (excellent generalizability); 
0.8 ≤ C- statistic < 0.9 is considered as excellent 
discrimination (acceptable generalizability); C- statistic ≥ 
0.9 is considered as outstanding discrimination (poor 
generalizability). 
 
Kolmogorov–Smirnov Distance  
 
Kolmogorov-Smirnov distance (KSD) is defined as the 
maximum vertical distance between two cumulative 
distribution functions30,31. 

𝐾𝑆𝐷 =  max𝑥|𝐹ŝ(𝑥) − 𝐹̂p(𝑥)|, 

 

where 𝐹ŝ(𝑥)  and 𝐹̂p(𝑥)  represent cumulative functions 

from two distributions. KSD reaches 0 when 𝐹ŝ(𝑥) and 

𝐹̂p(𝑥) are equivalent, and the similarity decreases when 

KSD increases, with a maximum value of 1. Low KSD 
indicates better balance in a cohort study or better RCT 

generalizability when 𝐹ŝ(𝑥)  and 𝐹̂p(𝑥)  are cumulative 

distribution of propensity scores from the sample and 
population. 

 
LÉVY DISTANCE 
Compared to Kolmogorov-Smirnov distance, Lévy 
distance (LD) measures both horizontal and vertical 
distance30-31. LD is the side length of the largest square 
that can be inscribed between two cumulative distribution 
functions: 

𝐿𝐷 =
𝑚𝑖𝑛

𝜖
 {𝜖 > 0: 𝐹̂𝑝(𝑥 − 𝜖) − 𝜖 ≤  𝐹̂𝑠(𝑥) ≤ 𝐹̂𝑝(𝑥 + 𝜖) +

𝜖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥}, 
 

where 𝐹ŝ(𝑥)  and 𝐹̂p(𝑥)  represent cumulative functions 

from two distributions. LD ranges from 0 to 1, with lower 
values indicating better balance in a cohort study or 
better RCT generalizability.  
 
Unfortunately, there is still no consensus on which metrics 
should be used to measure the generalizability of an RCT. 
In this paper, we aim to compare various existing 
statistical indices for assessing the generalizability of 
RCTs. The remainder of this article is organized as 
follows. In Section 2, we simulate a target population with 
treatment effect size of 0.5 and 7 covariates. From the 
simulated population, random and nonrandom clinical 
trials with different covariates and sample sizes were 
created. In Section 3, we calculate and evaluate the 5 
indexes described above. We aim to identify indices that 
are minimally affected by small sample sizes and limited 
observed covariates, while reliably capturing the bias 
introduced by trial selection. Our findings and conclusions 
are discussed in Section 4 and Section 5, respectively.  
 

2. Methodology 
2.1 TARGET POPULATION  
To simulate the target population, we started with a 
Bernoulli random variable, X, with marginal probability 
0.5 for treatment assignment (new treatment versus a 
placebo). The outcome was a continuous variable (Y) 
conditioning on treatment and covariates via a linear 
regression model with an error term that follows the 
standard normal distribution. The population regression 
coefficient of the treatment was 0.5, which resulted in an 
effect size of 0.5 (Cohen's d, new treatment was 0.5 SD 
better than the placebo on a continuous outcome). Age 
was simulated under a truncated normal distribution with 

mean = 50 and SD = 14, and it ranged from 18 to 90. 

The regression coefficient of age was − 0.01. The 
interaction coefficient between age and treatment was -
0.01. A measure of motivation was simulated with 

mean = 4.5, SD = 2, and ranged from 0 to 10. The 
regression coefficient of motivation was 0.06. There was 
an interaction (0.06) between motivation and treatment. 
Baseline symptoms (BL) was simulated with mean=10 and 
SD=2. Regression coefficient of BL and interaction 
coefficient between BL and treatment were -0.03. 
Gender (coded 1 as female), race (coded 1 as white), 
comorbidity (coded 1 as having common medical 
conditions) and health insurance (coded 1 as having 
insurance) were simulated as dichotomous covariates with 
probabilities of 0.5, 0.7, 0.4, and 0.4, respectively. The 

regression coefficients were 0.1, 0.1, −0.1 and 0.1 for 
gender, race, comorbidity and insurance, respectively. 
The regression coefficients for the interactions with the 

treatment were 0.1, 0.1, −0.1 and 0.1 for gender, race, 
comorbidity and insurance, respectively We then 

calculated Y  using intercept 𝛽0 = 20 from a linear 
regression model (see reference 3 for details)3. 
 

2.2 RANDOM TRIALS  
Performances of generalizability metrics were first 
assessed under random trials, where the standard values 
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of SMD, KSD and LD are 0, standard values of β-Index 

is 1, and the standard value of C-Statistic is 0.5. Absolute 
bias and mean square error were used as two evaluation 
criteria. Absolute bias was defined as the absolute 
deviation of one index value from its standard values. 
Mean square error measured the average of the squares 
of the deviation. Metrics were assessed under two aspects: 
1. robustness to sample size (from n=20 to n=1000) and 
2. robustness to the number of observed covariates (from 
1 to 7).  
 
2.2.1 Robustness to Sample Size  
Due to geographical, logistical and budgetary issues, 
most clinical trials are limited in size compared to 
observational studies6,8. Therefore, investigating the 
performance of different generalizability indexes with 
random trials of varying sample size is critically 
important. A functional generalizability measure should 
be least affected by the sample size, especially when 
sample size is small. An index which is closest to its 
standard value under random sampling regardless of 
sample size is favored. We generated 18 random clinical 
trials with sample sizes ranging from 20 to 1000 from the 
target population. 100 repeated trials were generated 
for each sample size. 
 
2.2.2 Robustness to Number of Observed Covariates 
It is well known that the propensity score is a conditional 
probability of assignment to one group vs. another group 
given the observed covariates32. Yet, failing to consider 
influential unobserved covariates results in potential 
hidden bias, which directly impairs the accuracy of the 

metrics built on propensity scores, e.g. SMD, β-Index, C-

statistic, KSD, and LD. We selected 100 repeated 
random clinical trials with sample size 100 from the 
target population (n=1000000). Propensity scores were 
generated based on different numbers of observed 
covariates. Aggregated values of 5 metrics from 100 
repetitions were calculated based on propensity scores 
for each set of observed covariates.  
 
2.3 NONRANDOM TRIALS 
Inference from clinical trial results to a population 
requires that the trial subjects are randomly selected from 
the target population and that the treatment is randomly 
assigned within the trial. While randomization within the 
trial can usually be achieved, the randomness of the trial 
regarding the target population is hardly met. Therefore, 
comparing indexes and finding which one could measure 
the deviation of a trial from the patient population has 
extreme importance in accessing the quality of a trial. In 
order to explore how sample size and the number of 
observed covariates impact metrics for assessing the 
generalizability of nonrandom trials, we compared 
metrics among 5 circumstances: 1) nonrandom trial with 
sample size 400 and metrics calculated from 7 observed 
covariates, 2) nonrandom trial with sample size 100 and 

metrics calculated from 7 observed covariates, 3) 
nonrandom trials with sample size 40 and metrics 
calculated from 7 observed covariates, 4) nonrandom 
trial with sample size 100 and metrics calculated from 3 
observed covariates (motivation, race, and baseline 
symptom), and 5) nonrandom trial with sample size 100 
and metrics calculated from 5 observed covariates 
(comorbidity, age, motivation, race, and BL). Nonrandom 
samples were generated from the population by 
adjusting the distributions of different covariates. The 
degree of non-randomness of a trial is quantified by bias 
(%), which was defined as 100 * (sample treatment effect 
– population treatment effect) / population treatment 
effect. Biased samples with bias ranging between 1% to 
100% were generated and all metrics were calculated 
for each selected sample 3. When bias increases, SMD 
should increase from 0 to positive infinity; C-Statistic 

should increase from 0.5 to 1; β-Index should decrease 

from 1 to 0; and LD and KSD should increase from 0 to 
1. Except for SMD, all other metrics have both lower 
bound and upper bound. Mean absolute error (MAE) and 
R square (R2) from a simple linear regression model were 
used to evaluate the metrics in predicting bias, with metric 
as a predictor and bias as the outcome. MAE was 
calculated as the average absolute error between 
predicted Bias from a linear fitted model and the true 
bias. 50 nonrandom samples were selected for each of 
the 5 scenarios, with bias ranging from 1.0% to 100.0%. 
For each defined bias, 100 repeated random clinical 
trials were selected. All 5 metrics were calculated for 
each sample, and the results from 100 samples were 
aggregated. MAE, and R2 are reported for each metric.  
 

3. Results 
3.1 RANDOM TRIAL 
3.1.1 Varying Sample Size 
Table 1 presents the values of all metrics with increasing 
sample size for randomly selected trials, as well as their 
absolute bias (ABS) and mean square bias (MSE). SMD, 

C-statistics, β-index, KSD, and LD were closer to their 

standard values when sample size increased from 20 to 

1000 (Figure 1). β-index (0.08851) had the least 

magnitude of change, compared to C-statistics (0.1366), 
LD (0.2011), KSD (0.2735), and SMD (0.5203). Both 
absolute bias and mean square bias decreased with 

increasing sample size for SMD, C-statistics, β-index, KSD 

and LD (Table 1, Figure 1). The absolute bias of β-index 

followed by LD and C-statistic, were smallest, while 
absolute bias of SMD was largest for all pre-defined 
sample sizes. Mean square bias, which presents the 
variation of metrics within repeated trials for each 

sample size, for β-index, followed by LD and C-statistics, 

was smallest among all metrics. Based on the results from 

random trials and varying sample size, β-index was least 

affected by small sample size and had the least variation 
within repeated trials.  
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Table 1: Comparison of five generalizability metrics based on random trials with varying sample size 

  SMD  C-statistic β-index  KSD   LD  

Sample 
Size SMD ABS MSE C ABS MSE β ABS MSE KSD ABS MSE LD ABS MSE 

20 0.6052 0.6052 0.4063 0.6604 0.1604 0.0278 0.9089 0.0911 0.0102 0.3209 0.3209 0.1086 0.2070 0.2070 0.0473 

30 0.4775 0.4775 0.2493 0.6292 0.1292 0.0181 0.9413 0.0587 0.0043 0.2584 0.2584 0.0702 0.1516 0.1516 0.0253 

40 0.4081 0.4081 0.1807 0.6093 0.1093 0.0130 0.9557 0.0443 0.0026 0.2239 0.2239 0.0529 0.1230 0.1230 0.0172 

50 0.3792 0.3792 0.1582 0.6018 0.1018 0.0115 0.9633 0.0367 0.0017 0.2034 0.2034 0.0440 0.1073 0.1073 0.0130 

60 0.3473 0.3473 0.1310 0.5960 0.0960 0.0099 0.9687 0.0313 0.0013 0.1952 0.1952 0.0398 0.0970 0.0970 0.0104 

70 0.3022 0.3022 0.0977 0.5850 0.0850 0.0077 0.9747 0.0253 0.0008 0.1720 0.1720 0.0306 0.0798 0.0798 0.0071 

80 0.2827 0.2827 0.0865 0.5785 0.0785 0.0066 0.9776 0.0224 0.0007 0.1608 0.1608 0.0270 0.0715 0.0715 0.0057 

90 0.2737 0.2737 0.0805 0.5760 0.0760 0.0062 0.9807 0.0193 0.0005 0.1534 0.1534 0.0248 0.0659 0.0659 0.0049 

100 0.2723 0.2723 0.0793 0.5748 0.0748 0.0060 0.9807 0.0193 0.0005 0.1503 0.1503 0.0235 0.0647 0.0647 0.0047 

200 0.1776 0.1776 0.0336 0.5506 0.0506 0.0027 0.9897 0.0103 0.0003 0.1035 0.1035 0.0111 0.0325 0.0325 0.0012 

300 0.1460 0.1460 0.0227 0.5418 0.0418 0.0019 0.9929 0.0071 0.0001 0.0865 0.0865 0.0078 0.0228 0.0228 0.0006 

400 0.1235 0.1235 0.0164 0.5351 0.0351 0.0013 0.9935 0.0065 0.0002 0.0716 0.0716 0.0054 0.0158 0.0159 0.0003 

500 0.1203 0.1203 0.0154 0.5336 0.0336 0.0012 0.9959 0.0041 0.0000 0.0662 0.0662 0.0045 0.0141 0.0141 0.0002 

600 0.1041 0.1041 0.0117 0.5295 0.0295 0.0009 0.9963 0.0037 0.0000 0.0590 0.0590 0.0036 0.0105 0.0107 0.0002 

700 0.0965 0.0965 0.0098 0.5273 0.0273 0.0008 0.9961 0.0039 0.0000 0.0546 0.0546 0.0031 0.0088 0.0088 0.0001 

800 0.0933 0.0933 0.0093 0.5266 0.0266 0.0008 0.9951 0.0049 0.0002 0.0526 0.0526 0.0029 0.0075 0.0080 0.0001 

900 0.0858 0.0858 0.0078 0.5243 0.0243 0.0006 0.9958 0.0042 0.0001 0.0496 0.0496 0.0026 0.0075 0.0076 0.0001 

1000 0.0849 0.0849 0.0078 0.5238 0.0238 0.0006 0.9974 0.0026 0.0000 0.0474 0.0474 0.0024 0.0059 0.0065 0.0001 

Change 0.5203   0.1366   0.0885   0.2735   0.2011   

 Note: ABS represents absolute bias; MSE represents mean square error; population treatment effect = 0.5 and there are 7 covariates;  

 Standard values of SMD, C-statistic, β-index, KSD and LD are 0, 0.5, 1, 0 and 0. 

 
 



Measuring Generalizability 

© 2025 European Society of Medicine 6 

 

 

 

 

 

 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 9501000

M
et

ri
cs

 V
al

u
e

Sample Size

SMD

C-statistic

𝛃-index

KSD

LDStandard value of C = 0.5

Standard value of β = 1.0 

Standard value of SMD, KSD, and LD = 0.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

A
b

so
lu

te
 B

ia
s

Sample Size

SMD

C-statistic

𝛃-index

KSD

LD

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 9501000

M
ea

n
 S

q
u

ar
e 

Er
ro

r

Sample Size

SMD

C-statistic

𝛃-index

KSD

LD

Figure 1: Value of generalizability metrics 

and their absolute bias and mean square 

error with increasing sample size 
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3.1.2 Varying Number of Observed Covariates 
Tables 2 presents the values, absolute bias (ABS) and mean square bias (MSE) of all 
indexes with increasing number of observed covariates, for random samples of size 100. 

The magnitude of change for β-index (0.0375) was smaller compared to LD (0.0481), C-

statistics (0.0523), KSD (0.062), and SMD (0.1861) with increasing number of covariates. 
The absolute bias and mean square bias of SMD, C-statistic, KSD, and LD increased with 
increasing number of observed covariates, while there was no constant 

increasing/decreasing pattern for the absolute bias and mean square bias for β-index 

(Table 2). The absolute bias of β-index was almost 0 for all pre-defined covariate numbers 

and was smallest among all the metrics when number of covariates > 2 (Table 2, Figure 

2). The mean square bias for β-index was smaller compared to other metrics when number 

of covariates > 3. Overall, β-index seemed to be least affected by the varying number 

of covariates. 

 
Table 2: Comparison of five generalizability metrics based on random trials with different number of observed covariates (from 1 to 7) for sample size of 100 

  SMD C-statistic  β-index KSD LD 

Covariate SMD ABS MSE C ABS MSE β ABS MSE KSD ABS MSE LD ABS MSE 

1 0.0770 0.0770 0.0095 0.5219 0.0219 0.0007 0.9736 0.0264 0.0201 0.0847 0.0847 0.0078 0.0140 0.0140 0.0004 
2 0.1200 0.1200 0.0180 0.5334 0.0334 0.0014 0.9500 0.0500 0.0120 0.0966 0.0966 0.0101 0.0303 0.0303 0.0014 
3 0.1604 0.1604 0.0298 0.5457 0.0457 0.0025 0.9773 0.0227 0.0022 0.1122 0.1122 0.0134 0.0370 0.0370 0.0018 
4 0.1949 0.1949 0.0430 0.5555 0.0555 0.0035 0.9875 0.0126 0.0002 0.1237 0.1237 0.0162 0.0427 0.0427 0.0023 
5 0.2205 0.2205 0.0534 0.5626 0.0626 0.0043 0.9844 0.0156 0.0003 0.1307 0.1307 0.0179 0.0497 0.0497 0.0029 
6 0.2416 0.2416 0.0634 0.5686 0.0686 0.0051 0.9833 0.0167 0.0004 0.1399 0.1399 0.0205 0.0563 0.0563 0.0037 
7 0.2631 0.2631 0.0750 0.5742 0.0742 0.0060 0.9828 0.0172 0.0004 0.1467 0.1467 0.0228 0.0621 0.0621 0.0045 

Change 0.1861   0.0523   0.0375   0.062   0.0481   

 Note: ABS represents absolute bias; MSE represents mean square error; population treatment effect = 0.5 

 Standard values of SMD, C-statistic, β-index, KSD and LD are 0, 0.5, 1, 0 and 0. 
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Figure 2: Value of generalizability metrics and 
their absolute bias and mean square error with 
varying number of observed covariates. 
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3.2 NONRANDOM TRIAL 
Based on 7 observed covariates and sample sizes 40, 100, and 400, we selected 
nonrandom trials with bias from 1.8% to 99.4%. Table 3 presents all metrics with increasing 
sample bias. SMD (0 for random trial) increased from 0.24 to 11.38, C-statistic (0.5 for 

random trial) increased from 0.57 to 0.98, β-index (1 for random trial) decreased from 

0.98 to 0.22, KSD (0 for random trial) increased from 0.12 to 0.88, and LD (0 for random 
trial) increased from 0.06 to 0.84. 

 
Table 3: Comparison of five generalizability metrics based on non-random trials with 7 observed covariates and sample size of 40, 100 and 400. 

 Sample Size 40 Sample Size 100 Sample Size 400 

Sample ES Bias SMD C β KSD LD ES Bias SMD C β KSD LD ES Bias SMD C β KSD LD 

1 0.5093 1.9% 0.50 0.63 0.94 0.25 0.15 0.5101 2.0% 0.33 0.59 0.97 0.18 0.09 0.5090 1.8% 0.24 0.57 0.98 0.12 0.06 
2 0.5170 3.4% 0.67 0.68 0.90 0.32 0.23 0.5195 3.9% 0.46 0.63 0.94 0.23 0.15 0.5218 4.4% 0.41 0.61 0.92 0.20 0.18 
3 0.5238 4.8% 0.58 0.66 0.92 0.29 0.19 0.5233 4.7% 0.56 0.66 0.90 0.28 0.22 0.5233 4.7% 0.50 0.64 0.89 0.25 0.23 
4 0.5435 8.7% 0.76 0.70 0.88 0.36 0.27 0.5423 8.5% 0.67 0.68 0.91 0.30 0.24 0.5432 8.6% 0.65 0.67 0.88 0.29 0.27 
5 0.5552 11.0% 0.77 0.70 0.88 0.35 0.26 0.5524 10.5% 0.67 0.68 0.91 0.31 0.23 0.5495 9.9% 0.61 0.67 0.91 0.27 0.24 
6 0.5687 13.7% 0.77 0.71 0.89 0.36 0.26 0.5678 13.6% 0.69 0.69 0.92 0.31 0.22 0.5689 13.8% 0.66 0.68 0.93 0.28 0.21 
7 0.5737 14.7% 0.82 0.71 0.88 0.37 0.27 0.5782 15.6% 0.76 0.70 0.90 0.33 0.25 0.5754 15.1% 0.72 0.69 0.92 0.30 0.24 
8 0.5794 15.9% 0.83 0.72 0.88 0.37 0.27 0.5837 16.7% 0.78 0.71 0.90 0.34 0.25 0.5853 17.1% 0.73 0.70 0.93 0.31 0.23 
9 0.5886 17.7% 1.04 0.76 0.83 0.44 0.35 0.5874 17.5% 0.93 0.75 0.86 0.41 0.34 0.5879 17.6% 0.90 0.74 0.88 0.38 0.33 
10 0.5967 19.3% 1.06 0.77 0.82 0.45 0.36 0.5957 19.1% 0.98 0.76 0.85 0.42 0.35 0.5932 18.6% 0.93 0.75 0.88 0.39 0.33 
11 0.6039 20.8% 1.06 0.77 0.83 0.46 0.36 0.6053 21.1% 1.01 0.76 0.86 0.42 0.33 0.6055 21.1% 0.97 0.75 0.88 0.40 0.32 
12 0.6309 26.2% 1.21 0.79 0.80 0.48 0.38 0.6263 25.3% 1.11 0.78 0.83 0.44 0.35 0.6245 24.9% 1.07 0.77 0.86 0.42 0.33 
13 0.6395 27.9% 1.34 0.80 0.77 0.52 0.41 0.6386 27.7% 1.21 0.79 0.81 0.47 0.37 0.6380 27.6% 1.15 0.78 0.84 0.44 0.34 
14 0.6462 29.2% 1.28 0.80 0.78 0.50 0.40 0.6409 28.2% 1.20 0.79 0.82 0.47 0.36 0.6385 27.7% 1.16 0.78 0.84 0.44 0.34 
15 0.6541 30.8% 1.39 0.81 0.75 0.52 0.41 0.6554 31.1% 1.31 0.80 0.79 0.49 0.38 0.6537 30.7% 1.28 0.80 0.82 0.47 0.37 
16 0.6721 34.4% 1.60 0.83 0.71 0.55 0.45 0.6754 35.1% 1.53 0.83 0.74 0.53 0.42 0.6741 34.8% 1.47 0.82 0.78 0.51 0.40 
17 0.6767 35.3% 1.62 0.83 0.71 0.56 0.45 0.6772 35.4% 1.51 0.82 0.75 0.52 0.42 0.6749 35.0% 1.48 0.82 0.77 0.51 0.40 
18 0.6906 38.1% 1.81 0.85 0.67 0.60 0.49 0.6895 37.9% 1.69 0.84 0.71 0.55 0.45 0.6882 37.6% 1.62 0.84 0.75 0.53 0.43 
19 0.6924 38.5% 1.87 0.86 0.66 0.60 0.50 0.6961 39.2% 1.78 0.85 0.69 0.57 0.47 0.6968 39.4% 1.70 0.84 0.73 0.54 0.45 
20 0.7119 42.4% 2.03 0.87 0.63 0.62 0.52 0.7026 40.5% 1.90 0.86 0.67 0.58 0.49 0.7050 41.0% 1.82 0.85 0.71 0.56 0.47 
21 0.7175 43.5% 2.20 0.88 0.60 0.64 0.55 0.7174 43.5% 2.06 0.87 0.64 0.61 0.52 0.7191 43.8% 2.04 0.87 0.67 0.59 0.50 
22 0.7274 45.5% 2.40 0.89 0.57 0.67 0.58 0.7259 45.2% 2.24 0.88 0.61 0.63 0.54 0.7279 45.6% 2.21 0.88 0.65 0.61 0.53 
23 0.7279 45.6% 2.33 0.89 0.58 0.66 0.57 0.7284 45.7% 2.37 0.89 0.59 0.64 0.56 0.7326 46.5% 2.33 0.89 0.63 0.63 0.55 
24 0.7421 48.4% 2.68 0.91 0.54 0.69 0.61 0.7432 48.6% 2.57 0.90 0.57 0.67 0.58 0.7450 49.0% 2.56 0.90 0.60 0.66 0.57 
25 0.7705 54.1% 2.65 0.89 0.54 0.67 0.59 0.7659 53.2% 2.26 0.87 0.60 0.61 0.52 0.7685 53.7% 2.29 0.88 0.63 0.60 0.51 
26 0.7717 54.3% 2.49 0.88 0.56 0.64 0.55 0.7693 53.9% 2.49 0.89 0.57 0.63 0.55 0.7714 54.3% 2.48 0.89 0.60 0.62 0.54 
27 0.7980 59.6% 3.00 0.91 0.49 0.70 0.62 0.7923 58.5% 2.83 0.90 0.53 0.67 0.59 0.7946 58.9% 2.83 0.90 0.56 0.65 0.57 
28 0.7987 59.7% 2.96 0.91 0.50 0.70 0.62 0.8003 60.1% 2.93 0.91 0.52 0.67 0.59 0.7991 59.8% 2.84 0.90 0.55 0.66 0.58 
29 0.8061 61.2% 2.92 0.91 0.50 0.69 0.61 0.8081 61.6% 2.96 0.90 0.51 0.67 0.58 0.8086 61.7% 2.89 0.90 0.54 0.65 0.57 
30 0.8168 63.4% 3.30 0.91 0.46 0.71 0.63 0.8157 63.1% 3.12 0.91 0.49 0.68 0.61 0.8149 63.0% 3.07 0.91 0.53 0.67 0.59 
31 0.8291 65.8% 3.60 0.92 0.44 0.73 0.65 0.8299 66.0% 3.44 0.92 0.46 0.70 0.62 0.8319 66.4% 3.42 0.92 0.49 0.69 0.62 
32 0.8461 69.2% 3.90 0.93 0.41 0.75 0.67 0.8425 68.5% 3.79 0.93 0.43 0.72 0.64 0.8454 69.1% 3.70 0.92 0.46 0.70 0.63 
33 0.8570 71.4% 4.06 0.93 0.40 0.75 0.67 0.8560 71.2% 4.03 0.93 0.41 0.73 0.65 0.8586 71.7% 3.97 0.93 0.44 0.72 0.65 
34 0.8655 73.1% 4.24 0.94 0.38 0.76 0.68 0.8685 73.7% 4.33 0.94 0.39 0.74 0.67 0.8704 74.1% 4.28 0.94 0.42 0.73 0.66 
35 0.8772 75.4% 4.60 0.94 0.36 0.77 0.70 0.8792 75.8% 4.54 0.94 0.37 0.76 0.69 0.8790 75.8% 4.50 0.94 0.40 0.74 0.67 
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36 0.8835 76.7% 4.95 0.95 0.34 0.78 0.71 0.8852 77.0% 4.88 0.94 0.36 0.76 0.69 0.8864 77.3% 4.81 0.94 0.39 0.75 0.68 
37 0.8972 79.4% 5.57 0.95 0.32 0.80 0.73 0.8952 79.0% 5.22 0.95 0.34 0.77 0.70 0.8964 79.3% 5.23 0.95 0.37 0.76 0.70 
38 0.9070 81.4% 5.77 0.96 0.31 0.82 0.75 0.9058 81.2% 5.78 0.96 0.32 0.80 0.73 0.9057 81.1% 5.66 0.96 0.35 0.78 0.73 
39 0.9139 82.8% 6.35 0.96 0.29 0.83 0.76 0.9139 82.8% 6.07 0.96 0.31 0.81 0.74 0.9115 82.3% 5.97 0.96 0.34 0.79 0.73 
40 0.9264 85.3% 6.87 0.96 0.27 0.84 0.77 0.9261 85.2% 6.58 0.96 0.29 0.82 0.76 0.9256 85.1% 6.50 0.96 0.32 0.80 0.75 
41 0.9358 87.2% 7.64 0.97 0.26 0.84 0.78 0.9374 87.5% 7.40 0.97 0.27 0.83 0.77 0.9381 87.6% 7.12 0.97 0.30 0.81 0.76 
42 0.9434 88.7% 7.65 0.97 0.25 0.85 0.79 0.9445 88.9% 7.52 0.97 0.26 0.84 0.78 0.9407 88.1% 7.20 0.97 0.30 0.82 0.77 
43 0.9498 90.0% 8.54 0.98 0.23 0.87 0.81 0.9466 89.3% 8.29 0.97 0.25 0.85 0.80 0.9439 88.8% 8.02 0.97 0.28 0.84 0.79 
44 0.9506 90.1% 8.28 0.97 0.24 0.85 0.80 0.9500 90.0% 7.85 0.97 0.26 0.84 0.78 0.9494 89.9% 7.68 0.97 0.28 0.83 0.78 
45 0.9590 91.8% 9.01 0.97 0.23 0.86 0.80 0.9568 91.4% 8.47 0.97 0.24 0.85 0.80 0.9537 90.7% 8.20 0.97 0.27 0.84 0.79 
46 0.9591 91.8% 8.75 0.98 0.23 0.87 0.81 0.9579 91.6% 8.46 0.97 0.24 0.85 0.79 0.9576 91.5% 8.26 0.97 0.27 0.84 0.79 
47 0.9654 93.1% 9.13 0.98 0.22 0.87 0.81 0.9658 93.2% 8.98 0.98 0.24 0.85 0.80 0.9656 93.1% 8.79 0.97 0.26 0.84 0.79 
48 0.9737 94.7% 9.65 0.98 0.22 0.88 0.82 0.9729 94.6% 9.48 0.98 0.23 0.87 0.81 0.9726 94.5% 9.27 0.98 0.25 0.85 0.81 
49 0.9933 98.7% 11.98 0.98 0.19 0.89 0.84 0.9943 98.9% 11.61 0.98 0.20 0.88 0.83 0.9910 98.2% 10.78 0.98 0.23 0.87 0.83 
50 0.9971 99.4% 12.40 0.98 0.18 0.90 0.84 0.9955 99.1% 11.65 0.98 0.20 0.88 0.83 0.9972 99.4% 11.38 0.98 0.22 0.88 0.84 

Note: ES represents trial effect size; population true treatment effect = 0.5; there are 7 covariates; all measurements are calculated based on sample size 40, 100 
 and 400 and all 7 covariates. 

 
To uncover the potential impact of number of observed covariates on the 5 indexes, we 
simulated nonrandom trials and calculated 5 indexes based on 3 observed covariates and 
5 observed covariates for sample size of 100 (Table 4). With 3 covariates, few variations 
were observed for all metrics (SMD, between 0.15 and 0.17; C-statistic, between 0.54 

and 0.55; β-index ranged from 0.96 and 0.98; KSD, 0.11; LD, between 0.03 and 0.04) 

when bias was <= 48.6%. When bias increased from 48.6% to 99.0%; SMD (0 for 
random trial) increased from 0.17 to 2.27; C-statistic (0.5 for random trial) increased from 

0.55 to 0.90; β-index (1 for random trial) decreased from 0.98 to 0.50; KSD (0 for random 

trial) increased from 0.11 to 0.67, and LD (0 for random trial) increased from 0.04 to 0.62.  

 
Table 4: Comparison of five generalizability metrics based on non-random trials with sample size 100 and 3, 5 and 7 covariates 

Sample ES Bias  SMD  C-statistic β-index  KSD   LD  

   3  5 7 3  5 7 3  5 7 3  5 7 3  5 7 

1 0.5101 2.0% 0.16 0.21 0.33 0.55 0.56 0.59 0.98 0.98 0.97 0.11 0.13 0.18 0.04 0.05 0.09 
2 0.5195 3.9% 0.17 0.22 0.46 0.55 0.56 0.63 0.96 0.98 0.94 0.11 0.13 0.23 0.04 0.05 0.15 
3 0.5233 4.7% 0.15 0.21 0.56 0.54 0.56 0.66 0.98 0.98 0.90 0.10 0.13 0.28 0.03 0.05 0.22 
4 0.5423 8.5% 0.16 0.40 0.67 0.54 0.61 0.68 0.99 0.94 0.91 0.11 0.21 0.30 0.03 0.15 0.24 
5 0.5524 10.5% 0.17 0.38 0.67 0.55 0.61 0.68 0.98 0.96 0.91 0.11 0.20 0.31 0.04 0.12 0.23 
6 0.5678 13.6% 0.16 0.43 0.69 0.54 0.62 0.69 0.98 0.96 0.92 0.11 0.21 0.31 0.04 0.13 0.22 
7 0.5782 15.6% 0.15 0.50 0.76 0.54 0.64 0.70 0.98 0.95 0.90 0.11 0.25 0.33 0.03 0.16 0.25 
8 0.5837 16.7% 0.15 0.53 0.78 0.54 0.65 0.71 0.98 0.95 0.90 0.11 0.25 0.34 0.03 0.16 0.25 
9 0.5874 17.5% 0.17 0.71 0.93 0.55 0.70 0.75 0.98 0.88 0.86 0.11 0.34 0.41 0.04 0.29 0.34 
10 0.5957 19.1% 0.16 0.72 0.98 0.55 0.70 0.76 0.98 0.88 0.85 0.11 0.35 0.42 0.04 0.29 0.35 
11 0.6053 21.1% 0.16 0.77 1.01 0.54 0.72 0.76 0.98 0.88 0.86 0.11 0.36 0.42 0.04 0.28 0.33 
12 0.6263 25.3% 0.17 0.88 1.11 0.54 0.74 0.78 0.98 0.88 0.83 0.11 0.40 0.44 0.04 0.29 0.35 
13 0.6386 27.7% 0.17 0.97 1.21 0.55 0.76 0.79 0.97 0.86 0.81 0.11 0.42 0.47 0.04 0.31 0.37 
14 0.6409 28.2% 0.15 0.97 1.20 0.54 0.76 0.79 0.98 0.86 0.82 0.11 0.42 0.47 0.03 0.31 0.36 
15 0.6554 31.1% 0.16 1.07 1.31 0.54 0.77 0.80 0.98 0.84 0.79 0.11 0.45 0.49 0.04 0.33 0.38 
16 0.6754 35.1% 0.15 1.27 1.53 0.54 0.80 0.83 0.98 0.80 0.74 0.11 0.49 0.53 0.04 0.38 0.42 
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17 0.6772 35.4% 0.16 1.25 1.51 0.54 0.80 0.82 0.98 0.80 0.75 0.11 0.48 0.52 0.04 0.37 0.42 
18 0.6895 37.9% 0.16 1.42 1.69 0.54 0.82 0.84 0.97 0.77 0.71 0.11 0.52 0.55 0.04 0.41 0.45 
19 0.6961 39.2% 0.15 1.50 1.78 0.54 0.83 0.85 0.97 0.75 0.69 0.11 0.54 0.57 0.04 0.43 0.47 
20 0.7026 40.5% 0.17 1.60 1.90 0.55 0.84 0.86 0.98 0.73 0.67 0.11 0.55 0.58 0.04 0.45 0.49 
21 0.7174 43.5% 0.16 1.79 2.06 0.54 0.86 0.87 0.97 0.69 0.64 0.11 0.58 0.61 0.04 0.49 0.52 
22 0.7259 45.2% 0.15 1.92 2.24 0.54 0.87 0.88 0.98 0.67 0.61 0.11 0.61 0.63 0.03 0.51 0.54 
23 0.7284 45.7% 0.16 1.87 2.37 0.55 0.86 0.89 0.98 0.67 0.59 0.11 0.60 0.64 0.04 0.50 0.56 
24 0.7432 48.6% 0.17 2.06 2.57 0.55 0.88 0.90 0.98 0.64 0.57 0.11 0.62 0.67 0.04 0.53 0.58 
25 0.7659 53.2% 0.47 1.46 2.26 0.63 0.82 0.87 0.94 0.75 0.60 0.22 0.52 0.61 0.14 0.41 0.52 
26 0.7693 53.9% 0.43 1.40 2.49 0.63 0.81 0.89 0.94 0.77 0.57 0.22 0.50 0.63 0.13 0.40 0.55 
27 0.7923 58.5% 0.41 1.66 2.83 0.62 0.84 0.90 0.93 0.71 0.53 0.21 0.56 0.67 0.12 0.46 0.59 
28 0.8003 60.1% 0.46 1.70 2.93 0.64 0.84 0.91 0.94 0.70 0.52 0.23 0.56 0.67 0.13 0.46 0.59 
29 0.8089 61.8% 0.60 1.84 2.96 0.67 0.86 0.90 0.91 0.67 0.51 0.28 0.58 0.67 0.19 0.48 0.58 
30 0.8157 63.1% 0.60 1.86 3.12 0.67 0.86 0.91 0.90 0.67 0.49 0.29 0.58 0.68 0.19 0.48 0.61 
31 0.8299 66.0% 0.72 1.97 3.44 0.70 0.86 0.92 0.87 0.64 0.46 0.33 0.59 0.70 0.24 0.49 0.62 
32 0.8425 68.5% 0.79 2.23 3.79 0.72 0.88 0.93 0.86 0.60 0.43 0.35 0.62 0.72 0.26 0.52 0.64 
33 0.8560 71.2% 0.95 2.38 4.03 0.75 0.89 0.93 0.82 0.58 0.41 0.40 0.64 0.73 0.30 0.54 0.65 
34 0.8685 73.7% 1.11 2.60 4.33 0.78 0.90 0.94 0.78 0.54 0.39 0.44 0.66 0.74 0.36 0.56 0.67 
35 0.8792 75.8% 1.22 2.74 4.54 0.79 0.90 0.94 0.75 0.52 0.37 0.47 0.67 0.76 0.39 0.58 0.69 
36 0.8852 77.0% 1.34 2.94 4.88 0.81 0.91 0.94 0.71 0.50 0.36 0.50 0.69 0.76 0.43 0.60 0.69 
37 0.8952 79.0% 1.48 3.18 5.22 0.83 0.92 0.95 0.68 0.47 0.34 0.53 0.70 0.77 0.46 0.62 0.70 
38 0.9058 81.2% 1.55 3.35 5.78 0.84 0.92 0.96 0.67 0.46 0.32 0.54 0.71 0.80 0.47 0.62 0.73 
39 0.9139 82.8% 1.65 3.45 6.07 0.85 0.93 0.96 0.64 0.45 0.31 0.57 0.72 0.81 0.50 0.64 0.74 
40 0.9261 85.2% 1.58 3.82 6.58 0.84 0.93 0.96 0.66 0.42 0.29 0.55 0.74 0.82 0.48 0.66 0.76 
41 0.9374 87.5% 1.64 4.16 7.40 0.85 0.94 0.97 0.64 0.40 0.27 0.56 0.75 0.83 0.50 0.68 0.77 
42 0.9445 88.9% 1.73 4.37 7.52 0.85 0.94 0.97 0.63 0.39 0.26 0.57 0.77 0.84 0.51 0.69 0.78 
43 0.9466 89.3% 2.04 4.82 8.29 0.88 0.95 0.97 0.57 0.36 0.25 0.63 0.79 0.85 0.58 0.72 0.80 
44 0.9500 90.0% 1.75 4.50 7.85 0.86 0.95 0.97 0.62 0.38 0.26 0.58 0.77 0.84 0.52 0.70 0.78 
45 0.9568 91.4% 2.04 4.97 8.47 0.88 0.95 0.97 0.56 0.36 0.24 0.63 0.79 0.85 0.58 0.72 0.80 
46 0.9579 91.6% 1.86 4.96 8.46 0.87 0.95 0.97 0.60 0.36 0.24 0.60 0.79 0.85 0.53 0.72 0.79 
47 0.9658 93.2% 1.86 5.13 8.98 0.87 0.96 0.98 0.60 0.35 0.24 0.60 0.80 0.85 0.54 0.73 0.80 
48 0.9729 94.6% 2.01 5.51 9.48 0.88 0.96 0.98 0.58 0.33 0.23 0.63 0.81 0.87 0.57 0.75 0.81 
49 0.9943 98.9% 2.30 6.72 11.61 0.90 0.97 0.98 0.53 0.29 0.20 0.66 0.83 0.88 0.62 0.78 0.83 
50 0.9955 99.1% 2.27 6.84 11.65 0.90 0.97 0.98 0.53 0.29 0.20 0.67 0.84 0.88 0.62 0.78 0.83 

Note: ES represents effect size; population is built based on treatment effect=0.5 and 7 covariates; all measurements are calculated based on sample size 100 and 3, 5 and 7 covariates 
observed. 
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Table 5 shows the R2 and MAE for the five 
generalizability indexes by sample size and number of 
covariates. When 7 covariates were taken into account 

and sample size varied, β-index outperformed other 

indexes in predicting bias (R2: 0.986-0.994) and 
exhibited lower variability (MAE: 0.017-0.0251). R2 of 

β-index closely approximated 1 with sample sizes 

ranging from 40 to 400. When sample size was fixed at 

100 and either 5 or 7 covariates were observed, β-index 

also exhibited the best performance in terms of R2 and 
MAE. However, C-statistics (R2=0.865; MAE=0.084) 

performed better than β-index and others, when sample 

size was 100 and 3 covariates were observed. 

 
Table 5: R2 and MAE of five generalizability indexes under different sample sizes and number of covariates  

Sample Size Number of 
Covariates 

SMD C-statistic β-index KSD LD 

R2 40 7 0.8340 0.9300 0.9940 0.9730 0.9810 
 

100 7 0.8440 0.9230 0.9920 0.9700 0.9800 
 

400 7 0.8520 0.9180 0.9860 0.9680 0.9800 

MAE 40 7 0.1010 0.0670 0.0170 0.0388 0.0317 
 

100 7 0.0986 0.0701 0.0197 0.0405 0.0301 
 

400 7 0.0971 0.0725 0.0251 0.0415 0.0288 

  Sample Size  Number of 
Covariates 

SMD C-statistic β-index KSD LD 

R2 100 3 0.8190 0.8650 0.7970 0.8550 0.8400 

  100 5 0.8490 0.9020 0.9630 0.9340 0.9440 

MAE 100 3 0.1033 0.0840 0.1070 0.0883 0.0943 

  100 5 0.0958 0.0795 0.0448 0.0673 0.0598 

Note: MAE represents mean absolute error 
 

4. Discussion 
While randomized controlled trials are widely 
considered as the gold standard in medical research, 
they are criticized because of potential lack of 
generalizability, as specific groups of trial patients may 
be underrepresented compared to the target patient 
population. Few research studies have addressed how to 
assess and evaluate the generalizability of RCTs. As we 
know, patients are rarely selected on a random basis 
from a well-defined patient population of interest into a 
clinical trial. As patients cannot be forced to join a trial, 
it is not always possible to have a random sample for a 
clinical trial. Women, children, the elderly, and those with 
common comorbidities are frequently underrepresented 
or excluded from clinical trials. A random and 
representative sample is one indispensable assumption 
for generalizing results from a RCT to the general patient 
population. Determining how a representative RCT 
sample might be is extremely important. Yet, we can 
never know how well a treatment effect estimate can be 
generalized to the patient population without data from 
the patient population. What we can do is to calculate 
the generalizability index when a clinical trial is 
completed. This simulation study evaluated existing 
statistical methods for generalizability including SMD, C-

statistic, β-Index, as well as KSD and LD. There are no 

conclusive rules of thumb for the SMD. The fact that SMD 
ranges from 0 to infinity without upper limit may also 
impair the practicality of the SMD. In contrast, rules of 

thumb for C-statistic (from 0.5 to 1) and β-Index (from 1 

to 0) are well-defined and they are confined within 
boundary intervals. While KSD and LD range from 0 to 
1, little research has proposed cutoff points for them.  
 
When all covariates are observed but sample size varies, 

we observed that β-index had the smallest bias and 

variation with random trials. According to the cutoff 

points of the β-index suggested by Tipton (2014)29, a β-

index bigger or equal to 0.90 suggests a very high level 
of generalization. While a C-statistic between 0.5 and 
0.7 is considered as poor discrimination in assessing fit of 
models33, we use this range as an indicator of excellent 

generalizability in our study. Our results show that β-

index stayed above 0.90 and C-statistic stayed between 
0.52 and 0.66 as sample size increased from 20 to 1000, 

suggesting that β-index and C-statistic are reliable in 

reflecting random selection even when the sample size 
was small. SMD is sensitive to sample size, as the range 
of SMD with sample size from 20 to 1000 was largest 
(0.60515 - 0.08486) compared to other metrics. As we 
mentioned previously, SMD larger than 0.25 SD or 0.1 
SD is considered as a large deviation. From our 
observation, however, SMD tended to be larger than 
0.25 SD when sample size <= 100, and it was larger 
than 0.1 SD when sample size <= 600. SMD might not 
be a reliable choice, especially when measuring the 
generalizability of an RCT which has a small sample size. 
LD was close to its standard value (0) when sample size 
was bigger than 70, the bias of LD was smaller than other 

metrics, except for β-index. Yet, the C-statistic was better 

than LD with sample size < 70. Our simulated random 

trials found that the KSD did perform as well as β-index, 

C-statistic, and LD as its absolute bias was larger than 
those metrics.  
 

We observed that the β-index was least affected by 

number of observed covariates compared to other 
metrics, for randomly selected samples with a sample size 

of 100. The absolute bias of β-index was least among all 

metrics when observed covariates >=3. The β-Index and 

C-statistic excellently reflected the randomness of the 

selected trials, as values of the β-index were over 0.95 
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(β-index ≥ 0.90 suggests a very high level of 

generalizability) and values of the C-statistic were less 
than 0.58 (between 0.5 and 0.7 is considered as 
excellent generalizability) with number of observed 
covariates varying from 1 to 7. SMD was larger than 0.1 
SD when the number of covariates >1 and was larger 
than 0.25 SD when number of covariates >6. Again, SMD 
failed to show the random status of selected samples if 
we use the current proposed thresholds. With nonrandom 
trials based on sample size 400 and 7 covariates 

observed, our results showed that β-index, followed by 

LD and KSD, was most associated with bias, compared to 

other metrics. β-index also had higher prediction ability 

and lowest mean absolute error between the predicted 
bias and true bias. When all covariates were observed 
but sample size was reduced (100 and 40), we did not 

find significant differences for SMD, C-statistic, β-index, 

KSD and LD.  
 

β-Index performed well for both random and non-

random samples. It is based on the distributions of 
propensity scores rather than only the average 
difference of the propensity scores from the sample and 

the population. β-Index did not perform well when the 

number of covariates was too small. It’s easy to interpret 

the β-Index value and use in clinical trials as it ranges 

from 0 to 1, and has the following rules of thumb: 1.00 ≥ 

β-index ≥ 0.90 indicating a very high level of 

generalization; 0.90 > β-index ≥ 0.80 indicating a high 

level of generalization; 0.80 > β-index ≥ 0.50 

representing a medium level of generalization; and β-

index < 0.50 indicating a low level of generalization. On 
average, C-statistics performed well. When the number 
of covariates was small, C-statistics still performed well. 
It ranges from 0 to 1 and has the following Rules of thumb: 
C-statistic = 0.5 is considered as no discrimination 
(random selection); 0.5 < C-statistic < 0.7 is considered 
as poor discrimination (outstanding generalizability); 0.7 
≤ C- statistic <0.8 is considered as acceptable 
discrimination (excellent generalizability); 0.8 ≤ C- 
statistic < 0.9 is considered as excellent discrimination 
(acceptable generalizability); C- statistic ≥ 0.9 is 
considered as outstanding discrimination (poor 
generalizability). It’s easy to interpret C-statistics and use 
in clinical trials. The SMD did not perform well because it 
is based on mean differences of the propensity scores, 
and summarizing mean differences is insufficient for 
assessing generalizability. There are no rules of thumb 
for the SMD and it is not easy to interpret. On average, 
both KSD and LD performed well. They focus on 
comparing cumulative densities, range from 0 to 1, but 
do not have clear rules of thumb and are not easy to 
interpret. 
 
In our study, we aimed to identify a generalizability 
metric that reliably captures the deviation of clinical trial 
samples from the target patient population. Our 

simulation results suggest that both the β-index and the 

C-statistic offer the best performance and could serve as 
reliable and practical metrics for assessing 
generalizability in clinical trials. While the KSD and LD 
performed reasonably well, they lack clear rules of 
thumb and are less user-friendly. The SMD, on the other 
hand, demonstrated poor performance and similarly 
lacks an established interpretive standard. 
 

5. Conclusion 
The development of better generalizability metrics for 
clinical trials remains an important need. The objective of 
this paper was to demonstrate methods for estimating 
generalizability indexes and to guide clinical researchers 
in interpreting these measures. Our work has resulted in 

recommending the use of the β-index and C-statistic due 

to their statistical performance, because they are easy to 
interpret, and because clear categories of 
generalizability can be determined such as very-high, 

high, medium, or low levels of generalizability. β-index 
ranges from 0 to 1, and C-statistics ranges from 0.5 to 1. 

A β-index value of 1 or a C-statistic value of 0.5 suggests 
the trial sample closely reflects the characteristics of 
patient population, demonstrating very high 

generalizability. In contrast, a β-index value of 0 or a C-
statistic value of 1 suggests the trial sample deviate 
significantly from the patient population, resulting in very 

low generalizability. The β-index can be used to create 

four level-of-generalizability categories: 1.00 ≥ β-index 

≥ 0.90 indicating a very-high level of generalizability; 

0.90 > β-index ≥ 0.80 indicating a high level of 

generalizability; 0.80 > β-index ≥ 0.50 representing a 

medium level of generalizability; and β-index < 0.50 

indicating a low level of generalizability. Like the β-
index, the C-statistic can be used to create four level-of-
generalizability categories. We proposed the following 
cut-off points for the C-statistic: 0.5 ≤ C-statistic < 0.7 
indicating a very-high level of generalizability; 0.7 ≤ C-
statistic <0.8 indicating a high level of generalizability; 
0.8 ≤ C-statistic < 0.9 indicating a medium level of 
generalizability; and C-statistic ≥ 0.9 indicating a low 

level of generalizability. The β-index is recommended if 

researchers have measured all or most of the relevant 
covariates that predict selection into the experimental 
sample. The C-statistic is recommended if researchers 
have measured a small number of the relevant covariates 
that predict selection in the trial sample. Our paper 
provides guidance for clinical doctors and trialists on how 
to estimate, interpret, and report statistical indexes of 
generalizability for clinical trials. Trialists should report a 
generalizability index after completing a trial and 
encourage requests from CONSORT, academic journals, 
and the FDA to incorporate generalizability indexes in 
clinical trial reporting. 
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