e %y THE EUROPEAN SOCIETY OF MEDICINE
* y Medical Research Archives, Volume 14 Issue 1

Perspectives on Accelerating Successful Implementation of Artificial

Intelligence in Biopharma and Healthcare
John M. York™; Arthur A. Boni®; Diana Joseph®; Mikel Mangold’; and Sarah Marie Foley®

*University of California, San Diego;
2Cranfield School of Management;
3Ernest Mario School of Pharmacy,
Rutgers University;

“Burnett School of Medicine, Texas
Christian University;

STepper School of Business,
Carnegie Mellon University;
5Corporate Accelerator Forum;
"ATLANT 3D;

8GlaxoSmithKline

a OPEN ACCESS

PUBLISHED
31 January 2025

CITATION

York, J.M., et al., 2025. Perspectives
on  Accelerating Successful
Implementation  of  Artificial
Intelligence in Biopharma and
Healthcare. Medical Research
Archives, [online] 14(1).

COPYRIGHT

© 2025 European Society of
Medicine. This is an open- access
article distributed under the terms of
the Creative Commons Attribution
License, which permits unrestricted
use, distribution, and reproduction
in any medium, provided the original
author and source are credited.

ISSN
2375-1924

ABSTRACT

Artificial intelligence (Al) and large language models (LLMs) promise to reshape
discovery, development, and commercialization across the biopharmaceutical
value chain. Yet adoption remains uneven, marked by fragmented pilots,
governance constraints, and wide variation in organizational readiness. To
address these challenges, this study applies diffusion-of-innovation theory and
human-centered service-design principles to investigate two questions: (1) What
is the current status of Al and LLM implementation in the biopharmaceutical
industry? (RQ1) and (2) Which collaborative structures and organizational designs
enable scalable, value-generating Al platforms? (RQ2).

The study employs a mixed-methods approach that integrates a narrative
synthesis of peer-reviewed and industry literature (2020—-2025) with six semi-
structured interviews involving leaders in drug development, clinical operations,
MedTech, and digital strategy. Triangulating across published evidence,
organizational practice, and expert experience allows the analysis to surface
cross-cutting patterns that would not appear through a single-method design.

Findings reveal a multi-speed diffusion pattern: rapid adoption in discovery
and document generation, slower progress in clinical and regulatory settings,
and emerging use cases in manufacturing and commercialization. Interview
insights highlight persistent obstacles—risk-tiered governance, data-validation
gaps, and workflow misalignment—alongside enablers such as platform
partnerships, venture-client models, regulatory consortia, and startup co-
development. Human-centered workflow design, biologically grounded
analytics, and transparent governance consistently emerged as essential for
moving Al from isolated experimentation to enterprise-level capability.

This paper contributes a unified framework that clarifies the current state of
Al and LLM adoption in biopharma and identifies the organizational and
ecosystem mechanisms required for responsible, scalable implementation.
By linking external collaborative structures with internal governance, data,
and workflow designs, the study offers a practical, conceptually-grounded
blueprint for transitioning from pilots to enterprise-level transformation.

Keywords: Artificial intelligence, Large language models, Biopharmaceutical
industry, Collective Intelligence, Diffusion of innovation, Human-centered
design, Service design thinking
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Introduction

Artificial intelligence (Al) continues to promise
fundamental transformation across the biopharma-
ceutical industry. Al-enabled methods now influence
every stage of the drug-development life cycle,
ranging from target identification and molecular
screening to adaptive clinical-trial design, regulatory
reporting, and post-market surveillance.'? However,
the industry appears to be adopting these
technologies in uneven and fragmented ways. Most
organizations still advance isolated pilot projects
rather than integrated, enterprise-level platforms.
Structural barriers—including governance uncertainty,
fragmented data assets, and intricate dependencies
across scientific, clinical, and commercial functions
—continue to slow progress.

Scholarly and industry literature highlights significant
advances in digital health and biotechnology -
such as machine-vision models for imaging, omics
analytics, and predictive modeling.>* However, they
rarely address the organizational and regulatory
processes and tensions that constrain Al
implementation in highly regulated environments.
Cross-functional alignment remains difficult in
ecosystems involving patients, clinicians, payers,
regulators, and commercial partners.® Evidence
increasingly shows that organizational bottlenecks,
data quality issues, and workflow incompatibilities
delay adoption more than the technical models
themselves.

The lack of integration of user-centered innovation
compounds this challenge. Service design—which
co-creates solutions grounded in user needs and
system constraints—has proven effective in digital
health but remains underutilized in biopharmaceutical
Al adoption.® Without structured, human-centered
methods, organizations risk producing ‘"demo
moments' that impress technically but fail to scale.
Research in human-factors science consistently
shows that trust, transparency, explainability, and
workflow fit strongly influence adoption decisions,
making service-design methods essential for
sustainable and credible Al integration.®

Guided by these gaps, this study investigates two
research questions: (1) What is the current status of
Al and large-language-model (LLM) implementation
in the biopharmaceutical industry? (RQ1) and (2)
Which collaborative structures and organizational
designs enable scalable, value-generating Al plat-
forms? (RQ2). Addressing these questions requires
an integrated perspective that links technical
maturity with organizational capability, governance
expectations, and real-world user behavior.

The analysis draws on innovation-theory framewaorks
that explain how organizations absorb new
technologies. Christensen's disruptive innovation
and jobs-to-be-done concepts,”® Rogers's diffusion-
of-innovation theory,® and Stickdorn's service-design
principles® collectively reveal why Al adoption
progresses through predictable cycles of experi-
mentation, capability building, and cross-stakeholder
negotiation. These frameworks help explain why
some technologies scale while others stall despite
comparable technical promise. Prior studies show that
organizations applying service design outperform
traditional top-down approaches because they
align solutions with stakeholder motivations and
operational constraints.'® In biopharma, these methods
help validate Al-enabled workflows with clinicians,
regulators, and patients before large-scale deployment,
revealing tensions and hidden barriers that would
otherwise slow or derail innovation.

Scaling Al also requires new collaborative architectures.
Because Al tools rely on shared data, validation
protocols, and compliance alignment, scholars
emphasize platform-centered ecosystems rather
than transactional vendor relationships.***? Such
structures support joint data stewardship, coordinated
governance, and reproducible validation—all essential
in regulated environments where safety, traceability,
and accountability are paramount.

This paper advances the field by offering a unified
framework that links the current landscape of Al
and LLM implementation in biopharma with the
collaborative structures and organizational designs
necessary for scale. By integrating diffusion-of-
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innovation theory, service-design principles, and
practice-based insights from industry experts, the
study addresses the longstanding gap between
technical potential and real-world implementation.
It explains why adoption remains uneven and shows
how governance, workflow alignment, and multi-
stakeholder collaboration can help organizations
move beyond isolated pilots. Accordingly, this
mixed-methods study clarifies the current state of
Al adoption (RQ1) and identifies the collaborative
and organizational mechanisms required to build
scalable, value-generating Al platforms (RQ?2).

The flow of the paper proceeds with grounding the
analysis in framing literature, outlining the mixed-
methods design, presenting findings from the
literature review and expert interviews, and discussing
key considerations and contributions involved with
building platform-based Al ecosystems.

Framing Literature

DIFFUSION OF INNOVATION

Rogers's diffusion-of-innovation theory® provides a
valuable framework for understanding how Al diffuses
in the biopharmaceutical industry and how human-
centered service design supports customization and
adoption during this technological shift. The theory
explains how new ideas spread across social systems
and identifies five perceived innovation attributes—
relative advantage, compatibility, complexity,
trialability, and observability—that shape adoption
rates. Health-sector syntheses show that innovations
diffuse more rapidly when they offer clear advantages,
align with stakeholder norms, and allow transparent
experimentation and observable outcomes.*34

In regulated sectors such as the biopharmaceutical
industry, diffusion also depends on resources derived
from internal and external partnerships and on the
degree of socio-technical fit.'® Effective collaboration
accelerates or constrains technology uptake depending
on alignment, readiness, and the availability of
governance structures that reduce perceived risk.

When applied to Al and large language models,
Rogers's model identifies several structural tension

points. Al offers a substantial relative advantage by
compressing discovery timelines and improving
clinical-trial efficiencies, yet executives often perceive
it as complex, risky, and constrained by regulatory
uncertainty.'® The scarcity of low-risk pilot environments
and the limited availability of validated outcomes
dampen adoption, especially among late-majority
organizations that require transparency, governance
clarity, and evidence of reliability. Historical diffusion
patterns suggest that innovators and early adopters
engage first, while the early and late majorities wait
for established standards, repeatable workflows,
and proven implementations.*’

HUMAN-CENTERED SERVICE DESIGN
Human-centered service design helps bridge these
barriers by facilitating collaboration among clinicians,
regulators, patients, and technical teams. Service
design enhances compatibility with existing workflows
and professional norms.® Iterative prototyping creates
low-risk opportunities to test artificial-intelligence-en-
abled tools, producing transparency and reassurance
for skeptical stakeholders. Common service-design
artifacts—like journey maps, service blueprints, and
value-proposition canvases—surface concerns about
algorithmic opacity, data privacy, and workflow dis-
ruption. These insights support targeted mitigation
strategies that increase perceived advantage while
reducing complexity.*°

Through this process, service design operationalizes
Rogers's innovation attributes to address adopter
concerns directly. Integrating diffusion theory with
service-design principles strengthens the central
proposition of this paper: artificial-intelligence deploy-
ment in the biopharmaceutical sector depends less on
technical readiness and more on orchestrating stake-
holder-focused adoption trajectories. Concep-tualizing
artificial-intelligence rollout through Rogers's five
innovation-decision stages—knowledge, per-suasion,
decision, implementation, and confirmation —clarifies
how governance, partnerships, and iterative learning
cycles interact to advance adoption.®'** Aligning
artificial-intelligence initiatives with user expectations,
workflow realities, and regulatory norms accelerates
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the transition from isolated pilots to enterprise-scale,
value-creating systems.

Methods

This study employed a mixed-methods approach
that combined a narrative review of the literature with
exploratory expert interviews to examine structural,
organizational, and stakeholder-associated challenges
surrounding artificial-intelligence application within
the biopharmaceutical industry. This design enabled
the triangulation of data across published evidence,
regulatory commentary, and lived practitioner
experience. This approach allowed the study to
surface cross-cutting themes that would not emerge
through a single-method approach.

The narrative review synthesized peer-reviewed
articles, industry analyses, regulatory publications,
and commentary pieces from 2020-2025 to identify
emergent themes across technological, organizational,
and policy domains relevant to artificial-intelligence
implementation in drug discovery, clinical development,
manufacturing, regulation, commercialization, and
post-market surveillance. The analysis organized
these materials into seven topical categories: (1)
current status, (2) system types, (3) organizational
maturity and partnership models, (4) regulatory
considerations, (5) functional areas of application, (6)
ethics, data security, and privacy, and (7) stakeholder
interactions. This categorization provided a structured
foundation for comparing literature-based insights
with the expert interview findings.

To complement the literature synthesis, the study
engaged in six semi-structured interviews with experts
from biopharma, academia, and startup ecosystems.
These conversations explored three thematic
areas: innovation models for organizations, the
foundational principles of human-centered service
design, and practitioner perspectives on artificial-
intelligence implementation. This interview component
examined how Al and LLMs are being deployed in
real organizational contexts, why adoption progresses
unevenly, and how governance, workflow design,
data readiness, and service-design practices shape

integration. Interviewees represented diverse roles
— spanning the areas of clinical leadership, digital
strategy, MedTech product development, and service
design. This purposeful sample allowed the study
to capture perspectives from multiple points along
the biopharmaceutical value chain and to triangulate
lived practitioner experience with the diffusion-of-
innovation and service-design frameworks.°131°

The interview set reflected a broad spectrum of
expertise across pharmaceutical innovation, clinical
development, Al research, and human-centered
design. Shwen Gwee contributed two decades of
digital innovation and clinical-digital-strategy
leadership, drawing on early work with conversational
Al and experience guiding large pharmaceutical firms
through emerging-technology adoption. Mithun
Ratnakumar added cross-functional insight into
regulated software, SaMD development, and digita-
lization strategies from Novartis and Gerresheimer,
including end-to-end partnerships and venture-client
collaboration models. Robert Brown, M.D., brought
a clinician-executive perspective informed by
oncology-trial leadership and practical challenges in
trial optimization, multimodal data interpretation,
and Al validation. Pallavi Tiwari, Ph.D., extended this
clinical and technical viewpoint through her academic
and entrepreneurial work on oncology imaging and
multimodal biomarker development at the University
of Wisconsin-Madison and LivAi. Simon Fortenbacher
at GSK emphasized workflow redesign, democratized
development, and alignment of Al-enabled processes
with on-the-ground constraints. Mark Guarraia at
Novo Nordisk focused on trustworthy human-machine
interactions and organizational change management
in regulated environments. Together, these voices
reflected how Al adoption hinges not only on technical
capability but also on governance maturity, workflow
fit, and the human factors that determine whether
innovation takes hold.

This analysis applied an informed-expert metho-
dology*’ that triangulated with the literature in an
abductively designed to surface patterns that would
not emerge through a single-method approach, rather
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than mirroring formal qualitative traditions such as
ethnography or grounded theory.'"*8 |t aligned with
established guidance in qualitative interviewing®’
and interpretive analytical practice,® emphasizing
meaning-making, experiential context, and the
articulation of practitioner reasoning. By juxtaposing
insights from the literature review with themes
drawn from expert interviews—such as risk-tiered
governance, partnership models, workflow barriers,
human-centered adoption dynamics, and data-
readiness constraints—this study triangulated across
published evidence and informant operational
experience.??! This iterative comparison allowed
the analytic effort to identify cross-cutting mechanisms
that recurred across discovery, clinical development,
MedTech integration, and workflow design. The
synthesis of these convergent themes ultimately
supported to the proposal of an explanatory internal
and external interactive model to link Al's current
status in biopharma with the collaborative structures
and organizational designs required for scalable
implementation.

Findings

LITERATURE REVIEW (2020-2025)

Current Status

The biopharmaceutical industry has rapidly transi-
tioned from speculative exploration to operational
deployment of Al and LLMs. Over the last five years,
Al applications have accelerated timelines, improved

decision-making, and enhanced predictive analytics
across drug development, regulation, and comer-
cialization.?>?* Reported benefits include up to 40%
time savings in regulatory document preparation and
50% throughput improvements in pharmacovigilance.®

Al integration now spans nearly all phases of the
biopharma value chain. Early adoption centered on
automating adverse event processing and medical
writing, while recent advances extend to protocol
generation, trial simulation, adaptive designs, and
real-world evidence modeling.?#%2" Al platforms
such as MedPalLM and BioGPT assist in regulatory
documentation and consistency checks, while tools

like TrialGPT simulate trials and refine study protocols
in real time.?®?” Organizations increasingly apply Al
for translational purposes, including omics-based
patient stratification, improving alignment between
preclinical and clinical outcomes.?

Despite these advances, adoption remains uneven.
High-income nations dominate implementation,
while infrastructural and data limitations restrict Al
use in low- and middle-income countries (LMICs).*
Moreover, many organizations operate at a semi-
supervised stage, with the need for continued human
oversight for compliance and scientific validity.?®

Artificial intelligence in biopharma encompasses
diverse paradigms: supervised learning for pattern
recognition, reinforcement learning for production
optimization, and generative Al for molecular design
and document synthesis.?? Generative models such
as BioGPT and MedGPT support literature summar
ization, regulatory authoring, and workflow simul-
ation.?2°

Deep neural networks, as exemplified by AlphaFold,
predict protein structures with near-experimental
precision.?® Natural language processing models
streamline regulatory submissions by analyzing
historical approval trends and aligning applications
with regional standards.* Together, these demonstrate
the sector’s transition from individual use cases to
comprehensive, modular Al ecosystems designed
to address specific therapeutic and operational
challenges.??

The Emergence of Agentic Artificial Intelligence
Recently, agentic Al—autonomous, goal-directed
systems capable of executing multi-step workflows
—has emerged as a significant evolution beyond
generative models.?** These agents independently

plan, adapt, and act on real-time feedback, enabling
autonomous trial monitoring, eligibility adjustments,
and safety alerts.

According to industry analyses, agentic Al attracted
the highest investment volumes in early 2025, with
platforms like PharmAgents and the Agentic
Preformulation Pathway Assistant (APPA) demonstrating
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end-to-end automation of discovery and formulation
tasks.3* Early studies report reductions of up to 50%
in manual review time and experimental repetition.*

However, scholarship has yet to thoroughly examine
how agentic Al integrates within organizational
governance and regulatory systems. Current
discussions emphasize technical potential but seldom
address the socio-technical coordination required
for multi-stakeholder trust and compliance.3!32%

Organizational Maturity and Partnership Models
Al maturity varies widely among pharmaceutical
firms, typically following four stages: exploratory,
operational, strategic, and transformational.*® Recent
benchmarking reports show that most companies have
progressed to the "strategic'" phase, emphasizing
cross-functional collaboration between data science
and governance boards.*"*

Partnerships with Al startups such as Exscientia and
Insilico Medicine have become pervasive; roughly
70% of leading global biopharma companies maintain
formal collaborations with Al providers.*® Hybrid
deployment models prevail, with companies retaining
sensitive data in-house while Al computation occurs
on secure cloud platforms to balance security and
scalability.*

The 2025 Pharma Al Readiness Index highlights that
even top-tier firms differ substantially in maturity. Eli
Lilly, Merck, and Bayer scored highest in innovation
and execution readiness, while others lag due to
limited Al literacy and cross-disciplinary collaboration
capacity.** These findings reinforce that successful
Al adoption requires not only infrastructure but
organizational learning and workforce transformation,
which represents an area where service design
methodologies can create integrative pathways.

Regulatory Considerations
The global regulatory landscape for Al remains
fragmented. The U.S. Food and Drug Administration

has advanced toward total-product-lifecycle
frameworks for Al/ML-based software.*?> However,
the European Medicines Agency and Japan's

Pharmaceuticals and Medical Devices Agency have

not codified equivalent systems. This inconsistency
complicates international deployment and increases
operational risk.*

Regulators increasingly emphasize traceability,
auditability, and human-in-the-loop validation for Al
systems influencing clinical or regulatory decisions.*
Emerging guidance calls for explainability, regular
retraining, and explicit documentation of Al-informed
decision processes.* Cross-border research consortia,
such as PharmAl, are leading harmonization efforts
to standardize Al validation procedures.*

Functional Areas of Application

Al now supports drug discovery, clinical development,
manufacturing, and commercialization. In discovery,
generative algorithms accelerate molecular design
and target identification, improving pipeline efficiency
by 30-40%.2>*" Multi-omics integration enhances
early disease stratification but raises bioethical and
dual-use concerns.*®

In translational medicine, Al identifies biomarkers for
toxicity and treatment response, aligning preclinical
and clinical datasets.?? In clinical trials, tools such as
TrialGPT assist with adaptive trial design and patient
screening, improving recruitment efficiency by up to
30%.%6274% Machine learning facilitates real-world
evidence mining for patient matching and stratification,
improving trial accuracy.*®

Regulatory affairs leverage natural-language—
processing-driven systems to harmonize submissions,
reduce redundancies, and analyze feedback.®**
Pharmacovigilance systems use Al to extract adverse-
event signals from unstructured data, reducing case-
processing time by more than 509%.%>2®

In manufacturing, Al-enabled digital twins and
reinforcement learning optimize parameters such
as pH and temperature in real time.! These tools
improve yields and product consistency while
requiring strict adherence to good manufacturing
practice validation.*¢>?

Finally, in commercialization and medical affairs, Al
enhances targeting precision and scientific comm-
unication. Predictive segmentation has improved
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engagement by more than 20%, while chatbots
manage basic inquiries, freeing human staff for more
complex interactions.>*%3

Ethical, Regulatory, Data Security, and Privacy
Considerations

Ethical and data-governance concerns persist as
central challenges to Al implementation. Algorithmic
bias and nonrepresentative datasets reduce external
validity, particularly for populations from low- and
middle-income regions.?***** Human-in-the-loop
oversight, rigorous data auditing, and transparent
training documentation are essential safeguards.®®

Explainability and model interpretability remain
critical for acceptance; organizations resist opaque
"black box" systems unless such elements provide
transparent, auditable outputs.”*®*” Calls for
harmonized global standards persist, with several
scholars advocating for an "FDA for Al" regulatory
body to unify oversight mechanisms.*

Security, privacy, and dual-use risks require special
attention. Generative systems can inadvertently
create bad outcomes, such as synthesizing harmful
compounds, providing incorrect instructions, or failing
to address serious issues.%® Risk of such problematic
outcomes prompts the use of federated learning,
differential privacy, and ethical frameworks emphasizing
transparency, accountability, and fairness.*®

Stakeholder Requirements and Interactions

Despite Al's technical evolution, literature remains
limited regarding stakeholder engagement in
implementation. Most publications emphasize

algorithmic development rather than ecosystem
integration. Generative tools like AlphaFold, BioGPT,
and TrialGPT demonstrate technical success.?22"2°
However, few studies explore how solutions align
with stakeholder needs: patients, regulators, payers,
and scientists.*

Service design, a framework proven effective in
digital health, remains underapplied in Al-driven

biopharma innovation.® By mapping pain points
across the value chain, service design ensures that
Al solutions address both systemic constraints and
user requirements. Without such integration, firms
risk developing technically sophisticated but socially
misaligned technologies that fail regulatory or market
acceptance.® ?

This research bridges a significant gap by combining
service-design methodology with innovation-diffusion
theory to propose an ecosystem-centered model
for responsible Al adoption in biopharma.

Synthesis
This review provides a current status of Al use in the

biopharma industry, setting the basis for addressing
RQL. Further, across the literature, scalable Al adoption
emerges when external collaboration structures—
such as platform ecosystems, startup partnerships,
venture-client arrangements, and regulatory consortia
—interact with internal organizational design elements,
like risk-tiered governance, hybrid cloud architectures,
and service-design—driven workflow adaptation. These
elements form the structural basis for answering
RQ2. The interview findings that follow deepen and
contextualize these mechanisms, illustrating how
they operate inside real-world biopharmaceutical
environments.

INTERVIEW FINDINGS (DETAILED INTERVIEW
SUMMARIES IN SUPPLEMENTAL MATERIAL
APPENDIX)

Theme 1: Acceleration and Fragmentation of
Artificial Intelligence Adoption

Across interviews, experts described a sector
experiencing rapid acceleration in Al interest but

considerable fragmentation in actual implementation.
Gwee emphasized that pharma's adoption response
to generative Al followed the same cycle as prior
digital innovations: initial blocking, expensive internal
experimentation, and eventual licensing as the need
for speed grows (Table 1). This trajectory reflects
Rogers's innovation-decision stages.®
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Table 1. Pattern of Biopharma Industry's Adoption of New Technologies (Gwee Interview)

Phase Phase .
Description
Number  Name
1 Block Organizations initially prevent any use of the technology until leadership determines
whether the capability is truly necessary or strategically justified.
Firms attempt to build the technology internally or through major consulting partners—
2 Build often at high cost—only to realize that internal teams and external vendors may
lack the deep expertise required.
Companies shift toward licensing external technologies to accelerate adoption and
3 License reduce development burden, moving from internal builds to acquiring proven solutions

from established vendors.

Brown and Tiwari both confirmed that meaningful
adoption began only in the past two to three years.
Brown noted that early attempts with LLMs were
often "more work than doing it manually," and
Tiwari recalled that pharma declined many early Al
partnerships due to mistrust of data sharing. Digital-
native companies such as Moderna moved fastest,
with Gwee highlighting that "the first team to reach
100% GenAl adoption was legal," exemplifying how
firm culture and structure shape adoption speed.

Theme 2: Risk, Governance, and Compliance as
Primary Adoption Drivers

Interviewees repeatedly stressed that organizations
evaluate Al through a risk hierarchy, not a technology
lens. Gwee articulated this hierarchy in four tiers:
internal automation, clinical data impact, public
exposure, and potential patient harm (Table 2).
Most current investments fall within the lowest tier,

where risk is manageable, and workflows remain
internal.

Table 2. Biopharma Evaluation of Artificial Intelligence via a Four-Tier Risk Hierarchy (Gwee Interview)

Level Level Name Description

Implications for Al Use

Internal, non-clinical automation tasks

Internal

Suitable for early experimentation with

1 that do not influence patient data or

Automation .
external communications.

minimal governance requirements.

Requires higher scrutiny, validation

Al tools that affect clinical data, trial

2 Clinical Impact

protocols, and domain-expert oversight

workflows, or evidence generation.

Al-generated outputs that reach
Public-Facing external audiences, including

3 . o
Outputs patients, clinicians, or the general
public.
. Systems with potential to influence
Potential for _
4 treatment recommendations or

Patient Harm . . _
clinical decision-making.

before implementation.

Necessitates extreme caution, structured
review processes (e.g., medical, legal, and
regulatory review), and strict accountability
controls.

Demands the highest level of governance,
rigorous safety monitoring, and full
regulatory compliance.

Regulatory ambiguity exacerbates risk. Ratnakumar
explained that early teams encountered regulatory
bodies that "did not even have the answers,"
especially for adaptive or learning systems. Brown

highlighted the legal exposure that mid-sized biotechs
face when Al accuracy must be verified manually:
""Responsibility still rests with the company, not the
vendor." These perspectives align with regulatory
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scholarship emphasizing explainability, auditing,
and traceability.*

Theme 3: Data Quality, Integration, and the
Infrastructure Bottleneck

Every interviewee emphasized that Al adoption is
constrained less by algorithms than by data quality
and integration. Ratnakumar described models that
lacked clean validation datasets, stalling progress.
Tiwari framed the challenge succinctly: "It is not the
model; it is the plumbing." Brown explained that
smaller companies cannot support the compliance
requirements associated with sharing sensitive
clinical datasets.

These recurring insights echo literature identifying
data readiness as a core barrier to Al maturity.?*2?°

Theme 4: Partnership Models and Vendor
Dynamics

Partnership models for Al adoption varied widely,
but all interviewees raised concerns about effort-
to-value imbalance. Brown described testing a
vendor's Al tool for regulatory filings. He highlighted
three core issues: (1) fees (which are discounted
apparently), (2) page-by-page verification (which

seems to be an issue of requiring manual work,
reducing the value of the Al since one has been doing
the same thing you would have done, and (3) data
use for model training. He described four partnership
model approaches: direct collaboration, reliance
on contract research organizations that in-license
Al tools, and reduced-fee data-sharing arrangements
where vendors and partners use company datasets
to train their external data. Brown added that each
model offered theoretical advantages, yet in practice,
none produced the expected gains. The overhead
of securing data integrity, ensuring compliance, and
validating outputs often consumed more resources
than the efficiencies promised. This consideration,
he noted, underscored both the promise and the
current limitations of Al in biopharma operations.

Ratnakumar charted the evolution from end-to-end
consulting models to venture-client approaches
(Table 3). He stressed that pharma cannot become
a software company and therefore must partner
effectively. Tiwari showed how startups like LivAi
structure collaborations carefully to preserve
intellectual property, deliver actionable insights, and
build toward platform-based licensing (Table 4).

Table 3. Biopharma Collaboration Models (Ratnakumar Interview)

Maturity Level

Model i
Model Name (5 = Oldest, 1 Description
Number
= Newest)
Pharma engages large system integrators or consulting firms
End-to-End to deliver full medical-device or software development projects.
1 Development 5 This long-established model allows internal teams to focus on
Partnerships core competencies while external partners manage engineering,
productization, and compliance.
Companies provide trained models, datasets, and funding through
2 Startup Project 4 statements of work to early-stage startups. The startups then
Funding commercialize products under their own regulatory framework,
accelerating innovation without internal development overhead.
. Pharma firms collaborate with partners to license and
Exclusive - - : o
i commercialize digital or Al-enabled solutions—especially in
3 Partnership 3 _ _ . _ . .
. . highly regulated areas like digital therapeutics—reducing build-
Licensing

time while accessing specialized expertise.
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Maturity Level

Model o
Model Name (5 = Oldest, 1 Description
Number
= Newest)
Companies act as early customers for startups, purchasing project
. work rather than taking equity. This model lets pharma shape the
Venture-Client i . )
Model 1 startup's early go-to-market strategy while retaining the option
to acquire the assets or company later. It is the newest and fastest-
growing model.
Table 4. Evolving Partnership Models Used by LivAl (Tiwari Interview)
Category Model Name Description
Bespoke Statements Pharma contracts startups for project-specific deliverables,
of Work predefined analyses, and tightly scoped workflows.
Current . . Startups provide patient-level and population-level insights
Collaboration Insight-Sharing while retaining intellectual property rights to proprietar
Collaboration _ g property g prop y
Models algorithms and models.
Pharma's translational science teams and clinical stakeholders
Co-Development . : . . . .
work with startups to refine, validate, and iteratively improve
Frameworks
models.
. Charging per patient or per analysis for Al-enabled assessments;
Pay-Per-Use Pricing i i
Emerging viewed by pharma as expensive at scale.

Revenue Models ) )
Platform Licensing

Fixed annual licensing fees (e.g., ~$500,000/year) enabling

unlimited patient analyses across multiple trial functions, often
with options for exclusivity.

Agreements

Gwee noted that smaller Al-native companies such as
Insilico are now generating clinical-stage compounds,
currently nineteen in five years, indicating a shift in
industry power dynamics.

Theme 5: Workflow Fit, Human Factors, and the
Role of Service Design
Fortenbacher and Guarraia highlighted that many

digital transformations fail because companies
"apply new software to yesterday's workflows."
Guarraia defined Service Design as ""the discipline
that makes sure new human-machine interactions
feel credible and trustworthy, and that this is done
by meeting people where they are.” It reframed Al
transformation around lived experience rather than
technical capability.®°

Getting people to adopt new ways of working has
been often more complex than the technology

itself. Fortenbacher noted that politics often takes
center stage in larger transformations. Projects that
touch on automation or efficiency stir up fears of job
loss, leading to “hidden resistance.” These were not
the loud critics in a workshop, but the quiet blockers
who slow things down. Service design helps surface
these dynamics early so that leaders can respond
before progress with projects derails.

Transparency is another balancing act. Guarraia stressed
the delicate balance required in communication: ""Too
little transparency, and people lose trust. Too much
honesty too early, and you create fear." Both designers
argued that service design identifies leverage points,
reveals white space, and ensures human-machine
interactions feel credible.

The outcome of service design is the value that
deliverables/artifacts do not deliver value on their
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own. One of the things Fortenbacher notes when
selling Service Design is the challenge of quantifying
the return in business terms. Leaders respond better
to "this intervention could save ten minutes per
workflow across 500 scientists," as compared with "'it
improves the employee experience.’ The "Catch 22"
of this framing is that the value often comes out in
the discovery process, but you need buy-in before
you do the discovery work. If the value has been
shown prior, tying service design to outcomes like
reducing downtime, simplifying complex workflows,
or improving patient adherence, as Guarraia has
done, is enough.

Service design allows for the identification of
“whitespace.” By mapping work as how it is really
done, service design uncovers opportunities that
no one was looking for, whether that is automating
a painful handoff, simplifying stage-gate reviews,
or redesigning how factory workers interact with
dozens of IT systems." states Guarraia. These
uncovered opportunities open up other ways of
working that can change the game.

Why this matters is that people are the core of
organizations. For a transformation to be successful,
it should be linked to the needs of the individuals in
that organization. Service design is human-centered
and identifies where to add value. It builds trust
around changes in ways of working because this
approach rests on understanding those needs and
uncovers opportunities leaders might not otherwise
see. Done right, service design is the function that
turns Al from a technical deployment into a
meaningftul, lasting shift in how work gets done.
Their insights reinforce Rogers's innovation attributes
of compatibility and complexity reduction.®*314

Theme 6: Clinical Impact and the Future of
Atrtificial Intelligence-Enabled Decision Support
Clinical leaders agreed that Al's most substantial

near-term value lies in augmenting human
interpretation rather than replacing it. Brown
described imaging analysis as ""the best use case,"”
where Al can extract rich insights from computed
tomography and radiologic data. Tiwari demonstrated

how LivAi uses biologically grounded models to
distinguish recurrence from radiation necrosis—an
issue that disqualifies many patients from oncology
trials.

Brown also pointed to predictive modeling that
evaluates hundreds of drug-combination strategies
in silico (i.e., experiments, simulations, or analyses
performed on a computer rather than in a laboratory
or live biological setting), identifying promising
candidates before expensive clinical testing. These
approaches have aligned with emerging precision-
medicine and multimodal biomarker frameworks.?* %’

Theme 7: Long-Term Outlook—Toward Ambient,
Multimodal, and Integrated Artificial Intelligence
Interviewees projected a shift from isolated Al tools
toward ambient, multimodal, and fully integrated Al
ecosystems. Ratnakumar envisioned in-home clinical
support systems that detect needs and guide actions.
Gwee predicted expanded use of digital twins,
device-embedded agents, and precision targeting.
Tiwari highlighted multimodal signatures—combining
imaging, digital pathology, and omics—as the frontier
for oncology trials.

These trajectories align with the emergence of
agentic Al systems capable of multi-step workflow
orchestration.333

Synthesis
Patterns across interviews reveal several convergent

themes. Al adoption accelerates when organizations
establish clear governance structures, reduce
perceived risk, and invest in data quality. Adoption
slows where workflows lack alignment, regulatory
guidance remains ambiguous, or human-centered
considerations are absent. Partnership models
represent both opportunity and friction, with vendors
and pharma negotiating data access, validation
burdens, and intellectual property boundaries.

Interviewees foresee significant value in Al's ability
to interpret complex multimodal data, while design
leaders argue that sustainable adoption depends
on empathy, trust-building, and co-created workflows.

© 2025 European Society of Medicine 11
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These insights reinforce theoretical lenses such as
diffusion-of-innovation, dynamic capabilities, and
learning-loop theory, which together explain how
organizations adapt to disruptive technologies.® 1214

The interviews portray an industry undergoing
significant transition. While technical capabilities
advance rapidly, organizational readiness, data
infrastructure, regulatory clarity, and human-centered
design determine whether Al tools deliver meaningful
value. Leaders across pharma, MedTech, and design
agree that the next phase of Al adoption will
require harmonized governance, integrated service-
design practices, cross-functional collaboration, and
Al fluency across teams.

Al now has broad strategic buy-in across the sector.
The challenge ahead lies in building the structures,
processes, and cultures that will turn this enthusiasm
into a scalable, trusted, and effective component
of the biopharmaceutical innovation ecosystem.

The interview evidence reinforces the literature by
showing that Al adoption remains uneven and
contingent on data readiness, validation practices,
cross-functional collaboration, and risk governance,
thereby elaborating RQL1. It also clarifies RQ2 by
demonstrating that scalable Al platforms depend
on structured collaboration with startups, platform
partners, and regulators, combined with organizational
designs that support iterative validation, human-
centered workflow redesign, and hybrid data
stewardship. Taken together, these interviews offer
grounded insights into how organizations convert
technical potential into operational capability.

Discussion

This study examined two questions: (1) the current
status of artificial-intelligence and large-language-
model integration in biopharmaceutical organizations
and (2) the collaborative structures and organizational
designs that enable scalable, value-generating Al
platforms. Evidence from the literature and interview
findings converge on the conclusion that technical
capability alone does not drive adoption; rather, the
interaction between governance, workflow design,

and multi-stakeholder collaboration shapes whether
Al diffuses beyond pilot deployments.

INTERPRETING THE CURRENT STATE OF Al IN
BIOPHARMA (RQ1)

The findings from the literature and the interviews
address RQ1 by clarifying the uneven but accelerating
state of Al deployment. The literature shows that Al
now appears across the biopharmaceutical value chain,
including discovery, translational modeling, clinical
development, regulatory operations, pharmacovigilance,
manufacturing, and commercial functions. Reported
gains include accelerated document generation,
more efficient pharmacovigilance workflows, and
improved predictive modeling in preclinical and
clinical contexts. These patterns align with industry
analyses documenting rapid progress in workflow
automation and clinical-trial support tools. These
observations reflect the broader movement toward
multimodal and generative Al techniques in clinical
and regulatory science.???"%

Interview evidence corroborates this uneven but
accelerating trajectory. These thought leaders
described a two-speed ecosystem: large firms with
mature infrastructures adopt Al more broadly,
while mid-sized biotechs face compliance burdens,
data constraints, and resource limitations. Interviewees
emphasized that early generative-Al tools for
regulatory writing, translation, and claims review
frequently required manual verification that offset
efficiency gains, echoing literature on explainability
and auditability challenges in regulated health
settings*>4658, They consistently noted that user
trust, regulatory clarity, and data readiness
determine whether Al delivers enterprise-level
value.

COLLABORATIVE STRUCTURES AND
ORGANIZATIONAL DESIGNS FOR SCALABLE Al
(RQO2)

The findings address RQ2 by identifying the
collaborative organizational
capabilities that enable Al systems to move from
pilot demonstrations to enterprise-scale platforms.

structures and

They show strong alignment between the literature
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and interview data: scalable Al platforms require
reinforcing external collaboration structures and
internal organizational architectures.

Relative to collaborative structures, five emerged
across sources:

1. Platform ecosystems: Scholars highlight
platform-based collaboration as a mechanism
for distributed innovation, standardization, and
cumulative learning.!! Interviewees observe
similar patterns in biopharma, where platform
partnerships with Al vendors support discovery,
trial simulation, and multimodal analysis.

2. Pharma-startup partnerships: Gwee,
Ratnakumar, Tiwari, and Brown all describe
the central role of Al startups such as Insilico
Medicine, Exscientia, and LivAi in pushing the
frontier of discovery and clinical-trial analytics.
These partnerships reflect industry patterns
documented in the literature.*®

3. Venture-client models: Ratnakumar describe
"venture-clienting,” in which firms become
early customers of startups to shape product
development without taking equity—an
increasingly preferred model for rapid Al
integration within established firms.

4. Requlatory and scientific consortia: Cross-
border harmonization efforts—including Al
validation consortia—reduce uncertainty around
real-world use and model retraining cycles.®
Interviewees continue to emphasize their
importance in safety-critical domains such as

oncology.

5. Human-centered co-creation: Service design
emphasizes collaboration among patients,

clinicians, regulators, and internal teams to
align Al systems with workflow realities.®*°
Fortenbacher and Guarraia highlight how co-
creation practices eliminate resistance, surface
hidden constraints, and improve adoption.

The next area involved organizational designs, in which

internal structures determine whether collaborative
learning translates into operational capability:

1. Risk-tiered governance: Gwee describes a
four-level risk framework ranging from low-
risk automation to high-risk clinical decision
support (Table 1). This construct aligns with
regulatory expectations for human-in-the-
loop controls and auditability.*+>°

2. Al-maturity progression: Industry studies
show that firms evolve through exploratory,
operational, strategic, and transformational
stages (Table 2).%% Interviewees' experiences
reflect this uneven maturity, particularly among
mid-sized organizations.

3. Hybrid data architectures: Hybrid cloud-plus
internal stewardship models have become
foundational for scalable Al deployment.*
Interviewees cite these architectures as
prerequisites for multimodal data integration
and transparent model behavior.

4. Service-design—driven workflow transformation:
Fortenbacher emphasize that scalable adoption
requires redesigning processes around "lived
experiences rather than inherited workflows,"
consistent with service-design scholarship.®*°

5. Dynamic capabilities and learning loops:
Interviewees described iterative prototyping,
continuous model validation, and recombination

of cross-functional expertise—all of which are
hallmarks of dynamic capabilities.?

INTEGRATING THE FINDINGS

Across the literature and interviews, the results
demonstrate that scalable Al platforms emerge when
external collaboration and internal organizational
design reinforce one another. Platform ecosystems,
startup partnerships, and regulatory consortia
expand learning capacity and reduce systemic
uncertainty. At the same time, internal governance,
hybrid architectures, and human-centered redesign
create the conditions for Al to align with workflow,
compliance, and clinical expectations. Together,
these mechanisms explain why some organizations
convert pilot projects into enterprise-level capabilities
while others remain constrained by risk, data quality,
and procedural inertia.
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EMERGENT MODEL

This study's primary contribution is an explanatory
model (Figure 1), which synthesizes the conceptual
architecture revealed through the literature and
expert interviews. The overall logic for this model
is that scalable Al platforms emerge when external

ecosystem collaboration fuels learning and
standardization, and internal organizational design
converts learning into trusted, workflow-embedded
capabilities that generate value across the biopharma

value chain.

EXTERNAL COLLABORATIVE SYSTEMS

T

i

Pharma-Al
Startup
Partnerships

Platform
Ecosystems

Regulatory Human-
& Scientific Centered
Consortia Co-Creation

N

Collective Learning & External Inputs

N

ORGANIZATIONAL DESIGN & CAPABILITY SYSTEMS

i

/I\

—

Risk-Tiered
Governance

Hybrid Data
& Compute

Workflow
Redesign

Dynamic
Capabilities

Organizational Alignment

N2

via Service Design
[

SCALABLE Al PLATFORM(S)

N2

VALUE GENERATION ACROSS DOMAINS

Discovery | Trials | Regulatory | Pharmacovigilance | Manutacturing | Commercial

Figure 1. Artificial Intelligence Scaling Architecture in Biopharma

The model depicts scalable Al adoption as the
product of two interdependent systems:

The first involves the external collaborative system

or open innovation ecosystem,®* which expands an

organization's access to knowledge, talent, data,
and validated practices. Platform ecosystems** and
partnerships with specialized Al startups?224394°
accelerate innovation by providing technical depth
and rapid experimentation capacity. Regulatory and

© 2025 European Society of Medicine

scientific consortia® reduce uncertainty by harmonizing
requirements for explainability, validation, and model
monitoring. Service-design-driven co-creation®*°
ensures that Al solutions emerge from the lived
experiences of clinicians, patients, and regulators
rather than from abstract technical objectives.
Interviewees such as Gwee, Ratnakumar, and Tiwari
repeatedly emphasized that no single organization
possesses the resources or expertise to build these
capabilities alone.

14
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The second considers the internal organizational
design and capability systems, which determine
whether external learning becomes an operational
reality. Risk-tiered governance structures, per Gwee
and the literature,***® clarify where Al experimentation
is safe and where oversight must intensify. Hybrid data
architectures® create secure, scalable environments
for multimodal Al. Workflow redesign through service
design®® bridges the gap between technical
possibility and practical adoption. Finally, dynamic
capabilities and elements of triple-loop learning®®
—in continuous learning, iterative testing, and cross-
functional recombination—enable firms to adapt Al
tools to evolving regulatory, scientific, and ethical
requirements.

The final piece involves the interdependencies of the
dynamics of these combined systems. Bellow the
model represents the outcome: Al systems that
operate reliably across discovery, clinical development,
regulatory affairs, pharmacovigilance, manufacturing,
and commercial functions. The model reflects the

consensus across interviews: Al scales only when
collaborative structures and organizational capabilities
evolve together.

CONTRIBUTIONS

This paper advances a unified framework that links
the current landscape of Al and LLM implementation
in biopharma with the collaborative and organizational
mechanisms needed for scale. It proposes an
integrated model (in the previous section) that
connects external collaborative structures with internal
organizational designs required for scalable Al
capability. The study provides a consolidated view
of the current state of Al and LLM adoption across
discovery, clinical development, regulatory operations,
and manufacturing, synthesizing evidence that is often
fragmented in the literature. By integrating diffusion-
of-innovation theory, service-design principles, and
expert insights, the analysis explains why adoption
remains uneven and offers a practical blueprint for
how firms can combine governance, workflow design,
and multi-stakeholder collaboration to build resilient,
enterprise-level Al capability within regulated
biopharmaceutical environments.

LIMITATIONS AND FUTURE RESEARCH

As with all research, limits do exist. Several shape
the scope and interpretation of this study. First, the
mixed-methods design emphasizes conceptual
synthesis rather than empirical measurement. The
narrative breadth across
technological, organizational, regulatory, and
stakeholder domains, but it depends on publicly
available sources from 2020—2025, which may omit
proprietary or emerging organizational practices not
yet reflected in the literature. Second, the interview
component, while intentionally diverse, reflects
insights from six experts whose experiences span
biopharma, MedTech, service design, and clinical
development. These perspectives provide insight
across key segments of the value chain. They do
not capture the full heterogeneity of the
biopharmaceutical ecosystem, including payer,
patient-advocacy, or regulatory-agency viewpoints.

review prioritizes

Third, the study applies an informed-expert
methodology that emphasizes interpretive reasoning
and thematic convergence rather than formal qualitative
generalizability. Interview data were not intended to
support grounded-theory generation or produce
saturation; instead, they illuminate patterns that
complement and contextualize findings from the
literature. As such, the explanatory model developed
here should be viewed as a conceptual framework
rather than a prescriptive maturity model or empirically
validated readiness index. Finally, Al technologies
—and regulatory expectations surrounding them -
are evolving at exceptional speed. As multimodal,
agentic, and autonomous systems continue to
advance, elements of the current landscape may shift,
requiring future empirical work to update, validate,
and stress-test the model presented in this study.

These limitations do not detract from the study's
contributions but instead provide direction for future
research. Large-scale comparative studies, multi-
stakeholder ethnographic work, and quantitative
assessments of governance or workflow readiness
would help extend and empirically ground the
framework developed here.
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Conclusion

This study examined two primary questions: (1) the
current status of Al and LLM adoption in biopharma
(RQ1) and (2) the collaborative and organizational
mechanisms that enable scalable, value-generating
platforms (RQ2). The analysis shows that Al
deployment has advanced across discovery,
clinical development, regulatory operations, and
manufacturing, yet adoption remains fragmented
because data readiness, validation practices, and
organizational maturity vary widely. Interview evidence
reinforces that risk-tiered governance, hybrid data
architectures, and human-centered workflow design
determine whether Al systems move beyond pilot
demonstrations. At the ecosystem level, platform
partnerships, startup collaborations, and regulatory
consortia expand learning capacity and reduce
uncertainty, while internal structures convert that
knowledge into operational capability.

This paper advances a unified framework that links
the current landscape of Al implementation with
the collaborative and organizational mechanisms
needed for scale. By integrating diffusion-of-
innovation theory, service-design principles, and
expert insights, the study explains why Al adoption
remains uneven and offers a practical blueprint for
combining governance, workflow alignment, and
multi-stakeholder collaboration to build resilient,
enterprise-level Al capability. The findings demonstrate
how biopharmaceutical organizations can transition
from fragmented experimentation to systematic,
scalable Al integration in complex, regulated
environments.

Supplimental Material: Supplemental Data- Full
Interview Summaries
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