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ABSTRACT 
Artificial intelligence (AI) and large language models (LLMs) promise to reshape 
discovery, development, and commercialization across the biopharmaceutical 
value chain. Yet adoption remains uneven, marked by fragmented pilots, 
governance constraints, and wide variation in organizational readiness. To 
address these challenges, this study applies diffusion-of-innovation theory and 
human-centered service-design principles to investigate two questions: (1) What 
is the current status of AI and LLM implementation in the biopharmaceutical 
industry? (RQ1) and (2) Which collaborative structures and organizational designs 
enable scalable, value-generating AI platforms? (RQ2). 
 

The study employs a mixed-methods approach that integrates a narrative 
synthesis of peer-reviewed and industry literature (2020 2025) with six semi-
structured interviews involving leaders in drug development, clinical operations, 
MedTech, and digital strategy. Triangulating across published evidence, 
organizational practice, and expert experience allows the analysis to surface 
cross-cutting patterns that would not appear through a single-method design. 
 

Findings reveal a multi-speed diffusion pattern: rapid adoption in discovery 
and document generation, slower progress in clinical and regulatory settings, 
and emerging use cases in manufacturing and commercialization. Interview 
insights highlight persistent obstacles risk-tiered governance, data-validation 
gaps, and workflow misalignment alongside enablers such as platform 
partnerships, venture-client models, regulatory consortia, and startup co-
development. Human-centered workflow design, biologically grounded 
analytics, and transparent governance consistently emerged as essential for 
moving AI from isolated experimentation to enterprise-level capability. 
 

This paper contributes a unified framework that clarifies the current state of 
AI and LLM adoption in biopharma and identifies the organizational and 
ecosystem mechanisms required for responsible, scalable implementation. 
By linking external collaborative structures with internal governance, data, 
and workflow designs, the study offers a practical, conceptually-grounded 
blueprint for transitioning from pilots to enterprise-level transformation. 
 

Keywords: Artificial intelligence, Large language models, Biopharmaceutical 
industry, Collective Intelligence, Diffusion of innovation, Human-centered 
design, Service design thinking 
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Introduction 
Artificial intelligence (AI) continues to promise 
fundamental transformation across the biopharma-
ceutical industry. AI-enabled methods now influence 
every stage of the drug-development life cycle, 
ranging from target identification and molecular 
screening to adaptive clinical-trial design, regulatory 
reporting, and post-market surveillance.1,2 However, 
the industry appears to be adopting these 
technologies in uneven and fragmented ways. Most 
organizations still advance isolated pilot projects 
rather than integrated, enterprise-level platforms. 
Structural barriers including governance uncertainty, 
fragmented data assets, and intricate dependencies 
across scientific, clinical, and commercial functions 

continue to slow progress. 
 
Scholarly and industry literature highlights significant 
advances in digital health and biotechnology  
such as machine-vision models for imaging, omics 
analytics, and predictive modeling.3,4 However, they 
rarely address the organizational and regulatory 
processes and tensions that constrain AI 
implementation in highly regulated environments. 
Cross-functional alignment remains difficult in 
ecosystems involving patients, clinicians, payers, 
regulators, and commercial partners.5 Evidence 
increasingly shows that organizational bottlenecks, 
data quality issues, and workflow incompatibilities 
delay adoption more than the technical models 
themselves. 
 

The lack of integration of user-centered innovation 
compounds this challenge. Service design which 
co-creates solutions grounded in user needs and 
system constraints has proven effective in digital 
health but remains underutilized in biopharmaceutical 
AI adoption.6 Without structured, human-centered 
methods, organizations risk producing "demo 
moments" that impress technically but fail to scale. 
Research in human-factors science consistently 
shows that trust, transparency, explainability, and 
workflow fit strongly influence adoption decisions, 
making service-design methods essential for 
sustainable and credible AI integration.6 

Guided by these gaps, this study investigates two 
research questions: (1) What is the current status of 
AI and large-language-model (LLM) implementation 
in the biopharmaceutical industry? (RQ1) and (2) 
Which collaborative structures and organizational 
designs enable scalable, value-generating AI plat-
forms? (RQ2). Addressing these questions requires 
an integrated perspective that links technical 
maturity with organizational capability, governance 
expectations, and real-world user behavior. 
 

The analysis draws on innovation-theory frameworks 
that explain how organizations absorb new 
technologies. Christensen's disruptive innovation 
and jobs-to-be-done concepts,7,8 Rogers's diffusion-
of-innovation theory,9 and Stickdorn's service-design 
principles6 collectively reveal why AI adoption 
progresses through predictable cycles of experi-
mentation, capability building, and cross-stakeholder 
negotiation. These frameworks help explain why 
some technologies scale while others stall despite 
comparable technical promise. Prior studies show that 
organizations applying service design outperform 
traditional top-down approaches because they 
align solutions with stakeholder motivations and 
operational constraints.10 In biopharma, these methods 
help validate AI-enabled workflows with clinicians, 
regulators, and patients before large-scale deployment, 
revealing tensions and hidden barriers that would 
otherwise slow or derail innovation. 
 

Scaling AI also requires new collaborative architectures. 
Because AI tools rely on shared data, validation 
protocols, and compliance alignment, scholars 
emphasize platform-centered ecosystems rather 
than transactional vendor relationships.11,12 Such 
structures support joint data stewardship, coordinated 
governance, and reproducible validation all essential 
in regulated environments where safety, traceability, 
and accountability are paramount. 
 

This paper advances the field by offering a unified 
framework that links the current landscape of AI 
and LLM implementation in biopharma with the 
collaborative structures and organizational designs 
necessary for scale. By integrating diffusion-of-
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innovation theory, service-design principles, and 
practice-based insights from industry experts, the 
study addresses the longstanding gap between 
technical potential and real-world implementation. 
It explains why adoption remains uneven and shows 
how governance, workflow alignment, and multi-
stakeholder collaboration can help organizations 
move beyond isolated pilots. Accordingly, this 
mixed-methods study clarifies the current state of 
AI adoption (RQ1) and identifies the collaborative 
and organizational mechanisms required to build 
scalable, value-generating AI platforms (RQ2). 
 

The flow of the paper proceeds with grounding the 
analysis in framing literature, outlining the mixed-
methods design, presenting findings from the 
literature review and expert interviews, and discussing 
key considerations and contributions involved with 
building platform-based AI ecosystems. 
 

Framing Literature 
 

DIFFUSION OF INNOVATION 
Rogers's diffusion-of-innovation theory9 provides a 
valuable framework for understanding how AI diffuses 
in the biopharmaceutical industry and how human-
centered service design supports customization and 
adoption during this technological shift. The theory 
explains how new ideas spread across social systems 
and identifies five perceived innovation attributes
relative advantage, compatibility, complexity, 
trialability, and observability that shape adoption 
rates. Health-sector syntheses show that innovations 
diffuse more rapidly when they offer clear advantages, 
align with stakeholder norms, and allow transparent 
experimentation and observable outcomes.13,14  

 

In regulated sectors such as the biopharmaceutical 
industry, diffusion also depends on resources derived 
from internal and external partnerships and on the 
degree of socio-technical fit.15 Effective collaboration 
accelerates or constrains technology uptake depending 
on alignment, readiness, and the availability of 
governance structures that reduce perceived risk. 
 

When applied to AI and large language models, 
Rogers's model identifies several structural tension 

points. AI offers a substantial relative advantage by 
compressing discovery timelines and improving 
clinical-trial efficiencies, yet executives often perceive 
it as complex, risky, and constrained by regulatory 
uncertainty.16 The scarcity of low-risk pilot environments 
and the limited availability of validated outcomes 
dampen adoption, especially among late-majority 
organizations that require transparency, governance 
clarity, and evidence of reliability. Historical diffusion 
patterns suggest that innovators and early adopters 
engage first, while the early and late majorities wait 
for established standards, repeatable workflows, 
and proven implementations.17 

 
HUMAN-CENTERED SERVICE DESIGN 
Human-centered service design helps bridge these 
barriers by facilitating collaboration among clinicians, 
regulators, patients, and technical teams. Service 
design enhances compatibility with existing workflows 
and professional norms.6 Iterative prototyping creates 
low-risk opportunities to test artificial-intelligence-en-
abled tools, producing transparency and reassurance 
for skeptical stakeholders. Common service-design 
artifacts like journey maps, service blueprints, and 
value-proposition canvases surface concerns about 
algorithmic opacity, data privacy, and workflow dis-
ruption. These insights support targeted mitigation 
strategies that increase perceived advantage while 
reducing complexity.10 

 
Through this process, service design operationalizes 
Rogers's innovation attributes to address adopter 
concerns directly. Integrating diffusion theory with 
service-design principles strengthens the central 
proposition of this paper: artificial-intelligence deploy-
ment in the biopharmaceutical sector depends less on 
technical readiness and more on orchestrating stake-
holder-focused adoption trajectories. Concep-tualizing 
artificial-intelligence rollout through Rogers's five 
innovation-decision stages knowledge, per-suasion, 
decision, implementation, and confirmation clarifies 
how governance, partnerships, and iterative learning 
cycles interact to advance adoption.9,14,15 Aligning 
artificial-intelligence initiatives with user expectations, 
workflow realities, and regulatory norms accelerates 
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the transition from isolated pilots to enterprise-scale, 
value-creating systems. 
 

Methods  
This study employed a mixed-methods approach 
that combined a narrative review of the literature with 
exploratory expert interviews to examine structural, 
organizational, and stakeholder-associated challenges 
surrounding artificial-intelligence application within 
the biopharmaceutical industry. This design enabled 
the triangulation of data across published evidence, 
regulatory commentary, and lived practitioner 
experience. This approach allowed the study to 
surface cross-cutting themes that would not emerge 
through a single-method approach. 
 
The narrative review synthesized peer-reviewed 
articles, industry analyses, regulatory publications, 
and commentary pieces from 2020 2025 to identify 
emergent themes across technological, organizational, 
and policy domains relevant to artificial-intelligence 
implementation in drug discovery, clinical development, 
manufacturing, regulation, commercialization, and 
post-market surveillance. The analysis organized 
these materials into seven topical categories: (1) 
current status, (2) system types, (3) organizational 
maturity and partnership models, (4) regulatory 
considerations, (5) functional areas of application, (6) 
ethics, data security, and privacy, and (7) stakeholder 
interactions. This categorization provided a structured 
foundation for comparing literature-based insights 
with the expert interview findings. 
 

To complement the literature synthesis, the study 
engaged in six semi-structured interviews with experts 
from biopharma, academia, and startup ecosystems. 
These conversations explored three thematic 
areas: innovation models for organizations, the 
foundational principles of human-centered service 
design, and practitioner perspectives on artificial-
intelligence implementation. This interview component 
examined how AI and LLMs are being deployed in 
real organizational contexts, why adoption progresses 
unevenly, and how governance, workflow design, 
data readiness, and service-design practices shape 

integration. Interviewees represented diverse roles 
 spanning the areas of clinical leadership, digital 

strategy, MedTech product development, and service 
design. This purposeful sample allowed the study 
to capture perspectives from multiple points along 
the biopharmaceutical value chain and to triangulate 
lived practitioner experience with the diffusion-of-
innovation and service-design frameworks.6,9,13-15 

 
The interview set reflected a broad spectrum of 
expertise across pharmaceutical innovation, clinical 
development, AI research, and human-centered 
design. Shwen Gwee contributed two decades of 
digital innovation and clinical-digital-strategy 
leadership, drawing on early work with conversational 
AI and experience guiding large pharmaceutical firms 
through emerging-technology adoption. Mithun 
Ratnakumar added cross-functional insight into 
regulated software, SaMD development, and digita-
lization strategies from Novartis and Gerresheimer, 
including end-to-end partnerships and venture-client 
collaboration models. Robert Brown, M.D., brought 
a clinician-executive perspective informed by 
oncology-trial leadership and practical challenges in 
trial optimization, multimodal data interpretation, 
and AI validation. Pallavi Tiwari, Ph.D., extended this 
clinical and technical viewpoint through her academic 
and entrepreneurial work on oncology imaging and 
multimodal biomarker development at the University 
of Wisconsin Madison and LivAi. Simon Fortenbacher 
at GSK emphasized workflow redesign, democratized 
development, and alignment of AI-enabled processes 
with on-the-ground constraints. Mark Guarraia at 
Novo Nordisk focused on trustworthy human machine 
interactions and organizational change management 
in regulated environments. Together, these voices 
reflected how AI adoption hinges not only on technical 
capability but also on governance maturity, workflow 
fit, and the human factors that determine whether 
innovation takes hold. 
 
This analysis applied an informed-expert metho-
dology17 that triangulated with the literature in an 
abductively designed to surface patterns that would 
not emerge through a single-method approach, rather 
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than mirroring formal qualitative traditions such as 
ethnography or grounded theory.17,18 It aligned with 
established guidance in qualitative interviewing17 
and interpretive analytical practice,19 emphasizing 
meaning-making, experiential context, and the 
articulation of practitioner reasoning. By juxtaposing 
insights from the literature review with themes 
drawn from expert interviews such as risk-tiered 
governance, partnership models, workflow barriers, 
human-centered adoption dynamics, and data-
readiness constraints this study triangulated across 
published evidence and informant operational 
experience.20,21 This iterative comparison allowed 
the analytic effort to identify cross-cutting mechanisms 
that recurred across discovery, clinical development, 
MedTech integration, and workflow design. The 
synthesis of these convergent themes ultimately 
supported to the proposal of an explanatory internal 
and external interactive model to link AI's current 
status in biopharma with the collaborative structures 
and organizational designs required for scalable 
implementation. 
 

Findings 
 

LITERATURE REVIEW (2020 2025) 
 

Current Status 
The biopharmaceutical industry has rapidly transi-
tioned from speculative exploration to operational 
deployment of AI and LLMs. Over the last five years, 
AI applications have accelerated timelines, improved 
decision-making, and enhanced predictive analytics 
across drug development, regulation, and comer-
cialization.22-24 Reported benefits include up to 40% 
time savings in regulatory document preparation and 
50% throughput improvements in pharmacovigilance.25 

 

AI integration now spans nearly all phases of the 
biopharma value chain. Early adoption centered on 
automating adverse event processing and medical 
writing, while recent advances extend to protocol 
generation, trial simulation, adaptive designs, and 
real-world evidence modeling.22,26,27 AI platforms 
such as MedPaLM and BioGPT assist in regulatory 
documentation and consistency checks, while tools 

like TrialGPT simulate trials and refine study protocols 
in real time.26,27 Organizations increasingly apply AI 
for translational purposes, including omics-based 
patient stratification, improving alignment between 
preclinical and clinical outcomes.24   
 

Despite these advances, adoption remains uneven. 
High-income nations dominate implementation, 
while infrastructural and data limitations restrict AI 
use in low- and middle-income countries (LMICs).22 
Moreover, many organizations operate at a semi-
supervised stage, with the need for continued human 
oversight for compliance and scientific validity.28   
 

Artificial intelligence in biopharma encompasses 
diverse paradigms: supervised learning for pattern 
recognition, reinforcement learning for production 
optimization, and generative AI for molecular design 
and document synthesis.22 Generative models such 
as BioGPT and MedGPT support literature summar 
ization, regulatory authoring, and workflow simul-
ation.24,25   
 

Deep neural networks, as exemplified by AlphaFold, 
predict protein structures with near-experimental 
precision.29 Natural language processing models 
streamline regulatory submissions by analyzing 
historical approval trends and aligning applications 
with regional standards.30 Together, these demonstrate 
the sector's transition from individual use cases to 
comprehensive, modular AI ecosystems designed 
to address specific therapeutic and operational 
challenges.22-27 

 

The Emergence of Agentic Artificial Intelligence 
Recently, agentic AI autonomous, goal-directed 
systems capable of executing multi-step workflows 

has emerged as a significant evolution beyond 
generative models.31-33 These agents independently 
plan, adapt, and act on real-time feedback, enabling 
autonomous trial monitoring, eligibility adjustments, 
and safety alerts. 
 

According to industry analyses, agentic AI attracted 
the highest investment volumes in early 2025, with 
platforms like PharmAgents and the Agentic 
Preformulation Pathway Assistant (APPA) demonstrating 
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end-to-end automation of discovery and formulation 
tasks.31-34 Early studies report reductions of up to 50% 
in manual review time and experimental repetition.35  
 

However, scholarship has yet to thoroughly examine 
how agentic AI integrates within organizational 
governance and regulatory systems. Current 
discussions emphasize technical potential but seldom 
address the socio-technical coordination required 
for multi-stakeholder trust and compliance.31,32,35   
 

Organizational Maturity and Partnership Models 
AI maturity varies widely among pharmaceutical 
firms, typically following four stages: exploratory, 
operational, strategic, and transformational.36 Recent 
benchmarking reports show that most companies have 
progressed to the "strategic" phase, emphasizing 
cross-functional collaboration between data science 
and governance boards.37,38   
 

Partnerships with AI startups such as Exscientia and 
Insilico Medicine have become pervasive; roughly 
70% of leading global biopharma companies maintain 
formal collaborations with AI providers.39 Hybrid 
deployment models prevail, with companies retaining 
sensitive data in-house while AI computation occurs 
on secure cloud platforms to balance security and 
scalability.40 

 

The 2025 Pharma AI Readiness Index highlights that 
even top-tier firms differ substantially in maturity. Eli 
Lilly, Merck, and Bayer scored highest in innovation 
and execution readiness, while others lag due to 
limited AI literacy and cross-disciplinary collaboration 
capacity.41 These findings reinforce that successful 
AI adoption requires not only infrastructure but 
organizational learning and workforce transformation, 
which represents an area where service design 
methodologies can create integrative pathways. 
 

Regulatory Considerations 
The global regulatory landscape for AI remains 
fragmented. The U.S. Food and Drug Administration 
has advanced toward total-product-lifecycle 
frameworks for AI/ML-based software.42 However, 
the European Medicines Agency and Japan's 
Pharmaceuticals and Medical Devices Agency have 

not codified equivalent systems. This inconsistency 
complicates international deployment and increases 
operational risk.43   
 

Regulators increasingly emphasize traceability, 
auditability, and human-in-the-loop validation for AI 
systems influencing clinical or regulatory decisions.44 
Emerging guidance calls for explainability, regular 
retraining, and explicit documentation of AI-informed 
decision processes.45 Cross-border research consortia, 
such as PharmAI, are leading harmonization efforts 
to standardize AI validation procedures.46  
 

Functional Areas of Application 
AI now supports drug discovery, clinical development, 
manufacturing, and commercialization. In discovery, 
generative algorithms accelerate molecular design 
and target identification, improving pipeline efficiency 
by 30 40%.22,47 Multi-omics integration enhances 
early disease stratification but raises bioethical and 
dual-use concerns.48  
 

In translational medicine, AI identifies biomarkers for 
toxicity and treatment response, aligning preclinical 
and clinical datasets.22 In clinical trials, tools such as 
TrialGPT assist with adaptive trial design and patient 
screening, improving recruitment efficiency by up to 
30%.26,27,49 Machine learning facilitates real-world 
evidence mining for patient matching and stratification, 
improving trial accuracy.50 

 

Regulatory affairs leverage natural-language
processing-driven systems to harmonize submissions, 
reduce redundancies, and analyze feedback.30,43 
Pharmacovigilance systems use AI to extract adverse-
event signals from unstructured data, reducing case-
processing time by more than 50%.25,28   
 

In manufacturing, AI-enabled digital twins and 
reinforcement learning optimize parameters such 
as pH and temperature in real time.51 These tools 
improve yields and product consistency while 
requiring strict adherence to good manufacturing 
practice validation.46,51   
 

Finally, in commercialization and medical affairs, AI 
enhances targeting precision and scientific comm-
unication. Predictive segmentation has improved 
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engagement by more than 20%, while chatbots 
manage basic inquiries, freeing human staff for more 
complex interactions.52,53 

 

Ethical, Regulatory, Data Security, and Privacy 
Considerations 
Ethical and data-governance concerns persist as 
central challenges to AI implementation. Algorithmic 
bias and nonrepresentative datasets reduce external 
validity, particularly for populations from low- and 
middle-income regions.22,54,55 Human-in-the-loop 
oversight, rigorous data auditing, and transparent 
training documentation are essential safeguards.56  
 
Explainability and model interpretability remain 
critical for acceptance; organizations resist opaque 
"black box" systems unless such elements provide 
transparent, auditable outputs.45,57 Calls for 
harmonized global standards persist, with several 
scholars advocating for an "FDA for AI" regulatory 
body to unify oversight mechanisms.43   
 

Security, privacy, and dual-use risks require special 
attention. Generative systems can inadvertently 
create bad outcomes, such as synthesizing harmful 
compounds, providing incorrect instructions, or failing 
to address serious issues.58 Risk of such problematic 
outcomes prompts the use of federated learning, 
differential privacy, and ethical frameworks emphasizing 
transparency, accountability, and fairness.58 
 
Stakeholder Requirements and Interactions 
Despite AI's technical evolution, literature remains 
limited regarding stakeholder engagement in 
implementation. Most publications emphasize 
algorithmic development rather than ecosystem 
integration. Generative tools like AlphaFold, BioGPT, 
and TrialGPT demonstrate technical success.22,27,29 
However, few studies explore how solutions align 
with stakeholder needs: patients, regulators, payers, 
and scientists.59 

 

Service design, a framework proven effective in 
digital health, remains underapplied in AI-driven 

biopharma innovation.10 By mapping pain points 
across the value chain, service design ensures that 
AI solutions address both systemic constraints and 
user requirements. Without such integration, firms 
risk developing technically sophisticated but socially 
misaligned technologies that fail regulatory or market 
acceptance.6, 12   
 
This research bridges a significant gap by combining 
service-design methodology with innovation-diffusion 
theory to propose an ecosystem-centered model 
for responsible AI adoption in biopharma. 
 
Synthesis 
This review provides a current status of AI use in the 
biopharma industry, setting the basis for addressing 
RQ1. Further, across the literature, scalable AI adoption 
emerges when external collaboration structures
such as platform ecosystems, startup partnerships, 
venture-client arrangements, and regulatory consortia 

interact with internal organizational design elements, 
like risk-tiered governance, hybrid cloud architectures, 
and service-design driven workflow adaptation. These 
elements form the structural basis for answering 
RQ2. The interview findings that follow deepen and 
contextualize these mechanisms, illustrating how 
they operate inside real-world biopharmaceutical 
environments. 
 
INTERVIEW FINDINGS (DETAILED INTERVIEW 
SUMMARIES IN SUPPLEMENTAL MATERIAL 
APPENDIX) 
 

Theme 1: Acceleration and Fragmentation of 
Artificial Intelligence Adoption 
Across interviews, experts described a sector 
experiencing rapid acceleration in AI interest but 
considerable fragmentation in actual implementation. 
Gwee emphasized that pharma's adoption response 
to generative AI followed the same cycle as prior 
digital innovations: initial blocking, expensive internal 
experimentation, and eventual licensing as the need  
for speed grows (Table 1). This trajectory reflects 
Rogers's innovation-decision stages.9
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Table 1. Pattern of Biopharma Industry's Adoption of New Technologies (Gwee Interview) 
 

Phase 
Number 

Phase 
Name Description 

1 Block 
Organizations initially prevent any use of the technology until leadership determines 
whether the capability is truly necessary or strategically justified. 

2 Build 
Firms attempt to build the technology internally or through major consulting partners
often at high cost only to realize that internal teams and external vendors may 
lack the deep expertise required. 

3 License 
Companies shift toward licensing external technologies to accelerate adoption and 
reduce development burden, moving from internal builds to acquiring proven solutions 
from established vendors. 

 
Brown and Tiwari both confirmed that meaningful 
adoption began only in the past two to three years. 
Brown noted that early attempts with LLMs were 
often "more work than doing it manually," and 
Tiwari recalled that pharma declined many early AI 
partnerships due to mistrust of data sharing. Digital-
native companies such as Moderna moved fastest, 
with Gwee highlighting that "the first team to reach 
100% GenAI adoption was legal," exemplifying how 
firm culture and structure shape adoption speed. 
 

Theme 2: Risk, Governance, and Compliance as 
Primary Adoption Drivers 
Interviewees repeatedly stressed that organizations 
evaluate AI through a risk hierarchy, not a technology 
lens. Gwee articulated this hierarchy in four tiers: 
internal automation, clinical data impact, public 
exposure, and potential patient harm (Table 2). 
Most current investments fall within the lowest tier, 
where risk is manageable, and workflows remain 
internal. 

Table 2. Biopharma Evaluation of Artificial Intelligence via a Four-Tier Risk Hierarchy (Gwee Interview) 
 

Level Level Name Description Implications for AI Use 

1 
Internal 
Automation 

Internal, non-clinical automation tasks 
that do not influence patient data or 
external communications. 

Suitable for early experimentation with 
minimal governance requirements. 

2 Clinical Impact 
AI tools that affect clinical data, trial 
workflows, or evidence generation. 

Requires higher scrutiny, validation 
protocols, and domain-expert oversight 
before implementation. 

3 
Public-Facing 
Outputs 

AI-generated outputs that reach 
external audiences, including 
patients, clinicians, or the general 
public. 

Necessitates extreme caution, structured 
review processes (e.g., medical, legal, and 
regulatory review), and strict accountability 
controls. 

4 
Potential for 
Patient Harm 

Systems with potential to influence 
treatment recommendations or 
clinical decision-making. 

Demands the highest level of governance, 
rigorous safety monitoring, and full 
regulatory compliance. 

 

Regulatory ambiguity exacerbates risk. Ratnakumar 
explained that early teams encountered regulatory 
bodies that "did not even have the answers," 
especially for adaptive or learning systems. Brown 

highlighted the legal exposure that mid-sized biotechs 
face when AI accuracy must be verified manually: 
"Responsibility still rests with the company, not the 
vendor." These perspectives align with regulatory 
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scholarship emphasizing explainability, auditing, 
and traceability.44  
 

Theme 3: Data Quality, Integration, and the 
Infrastructure Bottleneck 
Every interviewee emphasized that AI adoption is 
constrained less by algorithms than by data quality 
and integration. Ratnakumar described models that 
lacked clean validation datasets, stalling progress. 
Tiwari framed the challenge succinctly: "It is not the 
model; it is the plumbing." Brown explained that 
smaller companies cannot support the compliance 
requirements associated with sharing sensitive 
clinical datasets. 
 

These recurring insights echo literature identifying 
data readiness as a core barrier to AI maturity.22,26  
 

Theme 4: Partnership Models and Vendor 
Dynamics 
Partnership models for AI adoption varied widely, 
but all interviewees raised concerns about effort-
to-value imbalance. Brown described testing a 
vendor's AI tool for regulatory filings. He highlighted 
three core issues: (1) fees (which are discounted 
apparently), (2) page-by-page verification (which 

seems to be an issue of requiring manual work, 
reducing the value of the AI since one has been doing 
the same thing you would have done, and (3) data 
use for model training. He described four partnership 
model approaches: direct collaboration, reliance 
on contract research organizations that in-license 
AI tools, and reduced-fee data-sharing arrangements 
where vendors and partners use company datasets 
to train their external data. Brown added that each 
model offered theoretical advantages, yet in practice, 
none produced the expected gains. The overhead 
of securing data integrity, ensuring compliance, and 
validating outputs often consumed more resources 
than the efficiencies promised. This consideration, 
he noted, underscored both the promise and the 
current limitations of AI in biopharma operations. 
 
Ratnakumar charted the evolution from end-to-end 
consulting models to venture-client approaches 
(Table 3). He stressed that pharma cannot become 
a software company and therefore must partner 
effectively. Tiwari showed how startups like LivAi 
structure collaborations carefully to preserve 
intellectual property, deliver actionable insights, and 
build toward platform-based licensing (Table 4). 

 
Table 3. Biopharma Collaboration Models (Ratnakumar Interview) 

 

Model 
Number Model Name 

Maturity Level 
(5 = Oldest, 1 

= Newest) 
Description 

1 
End-to-End 
Development 
Partnerships 

5 

Pharma engages large system integrators or consulting firms 
to deliver full medical-device or software development projects. 
This long-established model allows internal teams to focus on 
core competencies while external partners manage engineering, 
productization, and compliance. 

2 
Startup Project 
Funding 

4 

Companies provide trained models, datasets, and funding through 
statements of work to early-stage startups. The startups then 
commercialize products under their own regulatory framework, 
accelerating innovation without internal development overhead. 

3 
Exclusive 
Partnership 
Licensing 

3 

Pharma firms collaborate with partners to license and 
commercialize digital or AI-enabled solutions especially in 
highly regulated areas like digital therapeutics reducing build-
time while accessing specialized expertise. 
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Model 
Number 

Model Name 
Maturity Level 
(5 = Oldest, 1 

= Newest) 
Description 

4 Venture-Client 
Model 

1 

Companies act as early customers for startups, purchasing project 
work rather than taking equity. This model lets pharma shape the 
startup's early go-to-market strategy while retaining the option 
to acquire the assets or company later. It is the newest and fastest-
growing model. 

 
Table 4. Evolving Partnership Models Used by LivAI (Tiwari Interview) 

 

Category Model Name Description 

Current 
Collaboration 
Models 
 

Bespoke Statements 
of Work 

Pharma contracts startups for project-specific deliverables, 
predefined analyses, and tightly scoped workflows. 

Insight-Sharing 
Collaboration 

Startups provide patient-level and population-level insights 
while retaining intellectual property rights to proprietary 
algorithms and models. 

Co-Development 
Frameworks 

Pharma's translational science teams and clinical stakeholders 
work with startups to refine, validate, and iteratively improve 
models. 

Emerging 
Revenue Models 
 

Pay-Per-Use Pricing 
Charging per patient or per analysis for AI-enabled assessments; 
viewed by pharma as expensive at scale. 

Platform Licensing 
Agreements 

Fixed annual licensing fees (e.g., ~$500,000/year) enabling 
unlimited patient analyses across multiple trial functions, often 
with options for exclusivity. 

 

Gwee noted that smaller AI-native companies such as 
Insilico are now generating clinical-stage compounds, 
currently nineteen in five years, indicating a shift in 
industry power dynamics. 
 

Theme 5: Workflow Fit, Human Factors, and the 
Role of Service Design 
Fortenbacher and Guarraia highlighted that many 
digital transformations fail because companies 
"apply new software to yesterday's workflows." 
Guarraia defined Service Design as "the discipline 
that makes sure new human-machine interactions 
feel credible and trustworthy, and that this is done 
by meeting people where they are." It reframed AI 
transformation around lived experience rather than 
technical capability.6,10  
 

Getting people to adopt new ways of working has 
been often more complex than the technology 

itself. Fortenbacher noted that politics often takes 
center stage in larger transformations. Projects that 
touch on automation or efficiency stir up fears of job 
loss,  These were not 
the loud critics in a workshop, but the quiet blockers 
who slow things down. Service design helps surface 
these dynamics early so that leaders can respond 
before progress with projects derails.  
 

Transparency is another balancing act. Guarraia stressed 
the delicate balance required in communication: "Too 
little transparency, and people lose trust. Too much 
honesty too early, and you create fear." Both designers 
argued that service design identifies leverage points, 
reveals white space, and ensures human-machine 
interactions feel credible.  
 

The outcome of service design is the value that 
deliverables/artifacts do not deliver value on their 
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own. One of the things Fortenbacher notes when 
selling Service Design is the challenge of quantifying 
the return in business terms. Leaders respond better 
to "this intervention could save ten minutes per 
workflow across 500 scientists," as compared with "it 
improves the employee experience.' The "Catch 22" 
of this framing is that the value often comes out in 
the discovery process, but you need buy-in before 
you do the discovery work. If the value has been 
shown prior, tying service design to outcomes like 
reducing downtime, simplifying complex workflows, 
or improving patient adherence, as Guarraia has 
done, is enough. 
 

Service design allows for the identification of 
whitespace  By mapping work as how it is really 

done, service design uncovers opportunities that 
no one was looking for, whether that is automating 
a painful handoff, simplifying stage-gate reviews, 
or redesigning how factory workers interact with 
dozens of IT systems.' states Guarraia. These 
uncovered opportunities open up other ways of 
working that can change the game. 
 

Why this matters is that people are the core of 
organizations. For a transformation to be successful, 
it should be linked to the needs of the individuals in 
that organization. Service design is human-centered 
and identifies where to add value. It builds trust 
around changes in ways of working because this 
approach rests on understanding those needs and 
uncovers opportunities leaders might not otherwise 
see. Done right, service design is the function that 
turns AI from a technical deployment into a 
meaningful, lasting shift in how work gets done. 
Their insights reinforce Rogers's innovation attributes 
of compatibility and complexity reduction.9,13,14   
 

Theme 6: Clinical Impact and the Future of 
Artificial Intelligence-Enabled Decision Support 
Clinical leaders agreed that AI's most substantial 
near-term value lies in augmenting human 
interpretation rather than replacing it. Brown 
described imaging analysis as "the best use case," 
where AI can extract rich insights from computed 
tomography and radiologic data. Tiwari demonstrated 

how LivAi uses biologically grounded models to 
distinguish recurrence from radiation necrosis an 
issue that disqualifies many patients from oncology 
trials. 
 
Brown also pointed to predictive modeling that 
evaluates hundreds of drug-combination strategies 
in silico (i.e., experiments, simulations, or analyses 
performed on a computer rather than in a laboratory 
or live biological setting), identifying promising 
candidates before expensive clinical testing. These 
approaches have aligned with emerging precision-
medicine and multimodal biomarker frameworks.22, 27 

 
Theme 7: Long-Term Outlook Toward Ambient, 
Multimodal, and Integrated Artificial Intelligence 
Interviewees projected a shift from isolated AI tools 
toward ambient, multimodal, and fully integrated AI 
ecosystems. Ratnakumar envisioned in-home clinical 
support systems that detect needs and guide actions. 
Gwee predicted expanded use of digital twins, 
device-embedded agents, and precision targeting. 
Tiwari highlighted multimodal signatures combining 
imaging, digital pathology, and omics as the frontier 
for oncology trials. 
 
These trajectories align with the emergence of 
agentic AI systems capable of multi-step workflow 
orchestration.31-33   
 
Synthesis 
Patterns across interviews reveal several convergent 
themes. AI adoption accelerates when organizations 
establish clear governance structures, reduce 
perceived risk, and invest in data quality. Adoption 
slows where workflows lack alignment, regulatory 
guidance remains ambiguous, or human-centered 
considerations are absent. Partnership models 
represent both opportunity and friction, with vendors 
and pharma negotiating data access, validation 
burdens, and intellectual property boundaries. 
 
Interviewees foresee significant value in AI's ability 
to interpret complex multimodal data, while design 
leaders argue that sustainable adoption depends 
on empathy, trust-building, and co-created workflows. 
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These insights reinforce theoretical lenses such as 
diffusion-of-innovation, dynamic capabilities, and 
learning-loop theory, which together explain how 
organizations adapt to disruptive technologies.9, 12, 14, 60  
 

The interviews portray an industry undergoing 
significant transition. While technical capabilities 
advance rapidly, organizational readiness, data 
infrastructure, regulatory clarity, and human-centered 
design determine whether AI tools deliver meaningful 
value. Leaders across pharma, MedTech, and design 
agree that the next phase of AI adoption will 
require harmonized governance, integrated service-
design practices, cross-functional collaboration, and 
AI fluency across teams. 
 

AI now has broad strategic buy-in across the sector. 
The challenge ahead lies in building the structures, 
processes, and cultures that will turn this enthusiasm 
into a scalable, trusted, and effective component 
of the biopharmaceutical innovation ecosystem. 
 

The interview evidence reinforces the literature by 
showing that AI adoption remains uneven and 
contingent on data readiness, validation practices, 
cross-functional collaboration, and risk governance, 
thereby elaborating RQ1. It also clarifies RQ2 by 
demonstrating that scalable AI platforms depend 
on structured collaboration with startups, platform 
partners, and regulators, combined with organizational 
designs that support iterative validation, human-
centered workflow redesign, and hybrid data 
stewardship. Taken together, these interviews offer 
grounded insights into how organizations convert 
technical potential into operational capability.  
 

Discussion 
This study examined two questions: (1) the current 
status of artificial-intelligence and large-language-
model integration in biopharmaceutical organizations 
and (2) the collaborative structures and organizational 
designs that enable scalable, value-generating AI 
platforms. Evidence from the literature and interview 
findings converge on the conclusion that technical 
capability alone does not drive adoption; rather, the 
interaction between governance, workflow design, 

and multi-stakeholder collaboration shapes whether 
AI diffuses beyond pilot deployments.  
 

INTERPRETING THE CURRENT STATE OF AI IN 
BIOPHARMA (RQ1) 
The findings from the literature and the interviews 
address RQ1 by clarifying the uneven but accelerating 
state of AI deployment. The literature shows that AI 
now appears across the biopharmaceutical value chain, 
including discovery, translational modeling, clinical 
development, regulatory operations, pharmacovigilance, 
manufacturing, and commercial functions. Reported 
gains include accelerated document generation, 
more efficient pharmacovigilance workflows, and 
improved predictive modeling in preclinical and 
clinical contexts. These patterns align with industry 
analyses documenting rapid progress in workflow 
automation and clinical-trial support tools. These 
observations reflect the broader movement toward 
multimodal and generative AI techniques in clinical 
and regulatory science.22-27,30  
 

Interview evidence corroborates this uneven but 
accelerating trajectory. These thought leaders 
described a two-speed ecosystem: large firms with 
mature infrastructures adopt AI more broadly, 
while mid-sized biotechs face compliance burdens, 
data constraints, and resource limitations. Interviewees 
emphasized that early generative-AI tools for 
regulatory writing, translation, and claims review 
frequently required manual verification that offset 
efficiency gains, echoing literature on explainability 
and auditability challenges in regulated health 
settings(45,46,58). They consistently noted that user 
trust, regulatory clarity, and data readiness 
determine whether AI delivers enterprise-level 
value. 
 

COLLABORATIVE STRUCTURES AND 
ORGANIZATIONAL DESIGNS FOR SCALABLE AI 
(RQ2) 
The findings address RQ2 by identifying the 
collaborative structures and organizational 
capabilities that enable AI systems to move from 
pilot demonstrations to enterprise-scale platforms. 
They show strong alignment between the literature 
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and interview data: scalable AI platforms require 
reinforcing external collaboration structures and 
internal organizational architectures.  
 
Relative to collaborative structures, five emerged 
across sources: 
 
 

1. Platform ecosystems: Scholars highlight 
platform-based collaboration as a mechanism 
for distributed innovation, standardization, and 
cumulative learning.11 Interviewees observe 
similar patterns in biopharma, where platform 
partnerships with AI vendors support discovery, 
trial simulation, and multimodal analysis. 

 

2. Pharma startup partnerships: Gwee, 
Ratnakumar, Tiwari, and Brown all describe 
the central role of AI startups such as Insilico 
Medicine, Exscientia, and LivAi in pushing the 
frontier of discovery and clinical-trial analytics. 
These partnerships reflect industry patterns 
documented in the literature.39 

 

3. Venture-client models: Ratnakumar describe 
"venture-clienting," in which firms become 
early customers of startups to shape product 
development without taking equity an 
increasingly preferred model for rapid AI 
integration within established firms. 

 

4. Regulatory and scientific consortia: Cross-
border harmonization efforts including AI 
validation consortia reduce uncertainty around 
real-world use and model retraining cycles.46 
Interviewees continue to emphasize their 
importance in safety-critical domains such as 
oncology. 

 

5. Human-centered co-creation: Service design 
emphasizes collaboration among patients, 
clinicians, regulators, and internal teams to 
align AI systems with workflow realities.6,10 
Fortenbacher and Guarraia highlight how co-
creation practices eliminate resistance, surface 
hidden constraints, and improve adoption. 

 

The next area involved organizational designs, in which 
internal structures determine whether collaborative 
learning translates into operational capability: 

1. Risk-tiered governance: Gwee describes a 
four-level risk framework ranging from low-
risk automation to high-risk clinical decision 
support (Table 1). This construct aligns with 
regulatory expectations for human-in-the-
loop controls and auditability.44,56 

 

2. AI-maturity progression: Industry studies 
show that firms evolve through exploratory, 
operational, strategic, and transformational 
stages (Table 2).36,37 Interviewees' experiences 
reflect this uneven maturity, particularly among 
mid-sized organizations. 

 

3. Hybrid data architectures: Hybrid cloud plus 
internal stewardship models have become 
foundational for scalable AI deployment.40 
Interviewees cite these architectures as 
prerequisites for multimodal data integration 
and transparent model behavior. 

 

4. Service-design driven workflow transformation: 
Fortenbacher emphasize that scalable adoption 
requires redesigning processes around "lived 
experiences rather than inherited workflows," 
consistent with service-design scholarship.6,10  

 

5. Dynamic capabilities and learning loops: 
Interviewees described iterative prototyping, 
continuous model validation, and recombination 
of cross-functional expertise all of which are 
hallmarks of dynamic capabilities.12  

 

INTEGRATING THE FINDINGS 
Across the literature and interviews, the results 
demonstrate that scalable AI platforms emerge when 
external collaboration and internal organizational 
design reinforce one another. Platform ecosystems, 
startup partnerships, and regulatory consortia 
expand learning capacity and reduce systemic 
uncertainty. At the same time, internal governance, 
hybrid architectures, and human-centered redesign 
create the conditions for AI to align with workflow, 
compliance, and clinical expectations. Together, 
these mechanisms explain why some organizations 
convert pilot projects into enterprise-level capabilities 
while others remain constrained by risk, data quality, 
and procedural inertia. 



Perspectives on Accelerating Successful Implementation of Artificial Intelligence in Biopharma and Healthcare 

© 2025 European Society of Medicine 14 

EMERGENT MODEL 
This study's primary contribution is an explanatory 
model (Figure 1), which synthesizes the conceptual 
architecture revealed through the literature and 
expert interviews. The overall logic for this model 
is that scalable AI platforms emerge when external 

ecosystem collaboration fuels learning and 
standardization, and internal organizational design 
converts learning into trusted, workflow-embedded 
capabilities that generate value across the biopharma 
value chain.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Artificial Intelligence Scaling Architecture in Biopharma 
 

 

The model depicts scalable AI adoption as the 
product of two interdependent systems:   
 
The first involves the external collaborative system 
or open innovation ecosystem,61 which expands an 
organization's access to knowledge, talent, data, 
and validated practices. Platform ecosystems11 and 
partnerships with specialized AI startups22,24,39,40 
accelerate innovation by providing technical depth 
and rapid experimentation capacity. Regulatory and 

scientific consortia46 reduce uncertainty by harmonizing 
requirements for explainability, validation, and model 
monitoring. Service-design-driven co-creation6,10 
ensures that AI solutions emerge from the lived 
experiences of clinicians, patients, and regulators 
rather than from abstract technical objectives. 
Interviewees such as Gwee, Ratnakumar, and Tiwari 
repeatedly emphasized that no single organization 
possesses the resources or expertise to build these 
capabilities alone. 
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The second considers the internal organizational 
design and capability systems, which determine 
whether external learning becomes an operational 
reality. Risk-tiered governance structures, per Gwee 
and the literature,44,56 clarify where AI experimentation 
is safe and where oversight must intensify. Hybrid data 
architectures40 create secure, scalable environments 
for multimodal AI. Workflow redesign through service 
design6,10 bridges the gap between technical 
possibility and practical adoption. Finally, dynamic 
capabilities12 and elements of triple-loop learning60 

in continuous learning, iterative testing, and cross-
functional recombination enable firms to adapt AI 
tools to evolving regulatory, scientific, and ethical 
requirements.  
 

The final piece involves the interdependencies of the 
dynamics of these combined systems. Bellow the 
model represents the outcome: AI systems that 
operate reliably across discovery, clinical development, 
regulatory affairs, pharmacovigilance, manufacturing, 
and commercial functions. The model reflects the 
consensus across interviews: AI scales only when 
collaborative structures and organizational capabilities 
evolve together. 
 

CONTRIBUTIONS 
This paper advances a unified framework that links 
the current landscape of AI and LLM implementation 
in biopharma with the collaborative and organizational 
mechanisms needed for scale. It proposes an 
integrated model (in the previous section) that 
connects external collaborative structures with internal 
organizational designs required for scalable AI 
capability. The study provides a consolidated view 
of the current state of AI and LLM adoption across 
discovery, clinical development, regulatory operations, 
and manufacturing, synthesizing evidence that is often 
fragmented in the literature. By integrating diffusion-
of-innovation theory, service-design principles, and 
expert insights, the analysis explains why adoption 
remains uneven and offers a practical blueprint for 
how firms can combine governance, workflow design, 
and multi-stakeholder collaboration to build resilient, 
enterprise-level AI capability within regulated 
biopharmaceutical environments. 

LIMITATIONS AND FUTURE RESEARCH 
As with all research, limits do exist. Several shape 
the scope and interpretation of this study. First, the 
mixed-methods design emphasizes conceptual 
synthesis rather than empirical measurement. The 
narrative review prioritizes breadth across 
technological, organizational, regulatory, and 
stakeholder domains, but it depends on publicly 
available sources from 2020 2025, which may omit 
proprietary or emerging organizational practices not 
yet reflected in the literature. Second, the interview 
component, while intentionally diverse, reflects 
insights from six experts whose experiences span 
biopharma, MedTech, service design, and clinical 
development. These perspectives provide insight 
across key segments of the value chain. They do 
not capture the full heterogeneity of the 
biopharmaceutical ecosystem, including payer, 
patient-advocacy, or regulatory-agency viewpoints. 
 
Third, the study applies an informed-expert 
methodology that emphasizes interpretive reasoning 
and thematic convergence rather than formal qualitative 
generalizability. Interview data were not intended to 
support grounded-theory generation or produce 
saturation; instead, they illuminate patterns that 
complement and contextualize findings from the 
literature. As such, the explanatory model developed 
here should be viewed as a conceptual framework 
rather than a prescriptive maturity model or empirically 
validated readiness index. Finally, AI technologies 

and regulatory expectations surrounding them -
are evolving at exceptional speed. As multimodal, 
agentic, and autonomous systems continue to 
advance, elements of the current landscape may shift, 
requiring future empirical work to update, validate, 
and stress-test the model presented in this study. 
 
These limitations do not detract from the study's 
contributions but instead provide direction for future 
research. Large-scale comparative studies, multi-
stakeholder ethnographic work, and quantitative 
assessments of governance or workflow readiness 
would help extend and empirically ground the 
framework developed here. 
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Conclusion 
This study examined two primary questions: (1) the 
current status of AI and LLM adoption in biopharma 
(RQ1) and (2) the collaborative and organizational 
mechanisms that enable scalable, value-generating 
platforms (RQ2). The analysis shows that AI 
deployment has advanced across discovery, 
clinical development, regulatory operations, and 
manufacturing, yet adoption remains fragmented 
because data readiness, validation practices, and 
organizational maturity vary widely. Interview evidence 
reinforces that risk-tiered governance, hybrid data 
architectures, and human-centered workflow design 
determine whether AI systems move beyond pilot 
demonstrations. At the ecosystem level, platform 
partnerships, startup collaborations, and regulatory 
consortia expand learning capacity and reduce 
uncertainty, while internal structures convert that 
knowledge into operational capability. 
 

This paper advances a unified framework that links 
the current landscape of AI implementation with 
the collaborative and organizational mechanisms 
needed for scale. By integrating diffusion-of-
innovation theory, service-design principles, and 
expert insights, the study explains why AI adoption 
remains uneven and offers a practical blueprint for 
combining governance, workflow alignment, and 
multi-stakeholder collaboration to build resilient, 
enterprise-level AI capability. The findings demonstrate 
how biopharmaceutical organizations can transition 
from fragmented experimentation to systematic, 
scalable AI integration in complex, regulated 
environments. 
 

Supplimental Material:  Supplemental Data- Full 
Interview Summaries 

https://www.dropbox.com/scl/fi/7eycudy1bllqjj8dyxwc7/Consolidated-Interview-Summaries-for-Perspectives-On-Accelerating-Successful-Implementation-of-AI-to-Biopharma-and-Healthcare.docx?rlkey=p0b2prwat6jw2219h8rdglmhp&st=dn8bc5qg&dl=0
https://www.dropbox.com/scl/fi/7eycudy1bllqjj8dyxwc7/Consolidated-Interview-Summaries-for-Perspectives-On-Accelerating-Successful-Implementation-of-AI-to-Biopharma-and-Healthcare.docx?rlkey=p0b2prwat6jw2219h8rdglmhp&st=dn8bc5qg&dl=0
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