
© 2025 European Society of Medicine 1 

 

 
 
 
 
 
 

 
 
 

 

1Digital Health 360 Degrees at Digital Health 
Solutions, LLC, White Plains, NY, United States. 
2College of Public Health, George Mason 
University, Fairfax, VA, United States. 
3Zaporozhye State Medical University, 
Zaporizhzhia, Ukraine. 
4Department of Epidemiology and 
Biostatistics, Graduate School of Public 
Health and Management, City University of 
New York, NY, United States. 
5House Calls Physician, NY, United States. 
6Department of Health Policy and 
Management, Graduate School of Public 
Health and Management, City University of 
New York, NY, United States.  
7 School of Dentistry, University of Alabama 
at Birmingham, Birmingham, USA 
 

OPEN ACCESS 
 
PUBLISHED 
31 December 2025 
 
CITATION 
Otokiti, A.U., et al., 2025. A scoping 
review of AI/ML algorithm updating 
practices for model continuity and patient 
safety using a simplified checklist. Medical 
Research Archives, [online] 13(12).  
https://doi.org/10.18103/mra.v13i12.
7083 
 

COPYRIGHT 
© 2025 European Society of 
Medicine. This is an open- access 
article distributed under the terms of 
the Creative Commons Attribution 
License, which permits unrestricted 
use, distribution, and reproduction in 
any medium, provided the original 
author and source are credited.  
 

DOI 
https://doi.org/10.18103/mra.v13i12.
7083 
 

ISSN 
2375-1924 

 

 
 
 
 
 

 
 

 
 

ABSTRACT 
Objective: To evaluate the extent to which clinical artificial intelligence 
(AI) and machine learning (ML) models prioritize updating, transparency, 
and demographic reporting in the published literature. 
 
Patients and Methods: This study conducted a systematic review of clinical 
AI/ML models using PRISMA guidelines from March 2020 until December 
2021. A new checklist and scoring system were introduced to assess model 
quality, with additional evaluation of demographic reporting, particularly 
by ethnicity and race. A comprehensive search was performed across six 
major databases, including Ovid Embase, MEDLINE, and Cochrane Library. 
Across various study designs, eligible studies included human-based 
predictive or prognostic AI/ML models using supervised learning and at 
least two predictors. Studies not meeting these criteria were excluded. 
 
Results: Out of 390 AI/ML studies reviewed, only 9% mentioned plans or 
methods for future model updates. The vast majority (98%) of models were 
still in the research phase, and only 2% had reached production. Additionally, 
only 12% adhered to best practices in model development, and 84% failed 
to report demographic composition by race or ethnicity. 
 

Conclusion: These findings highlight key limitations in the current clinical 
AI landscape especially a lack of transparency, limited readiness for 
deployment, and minimal consideration for inclusivity or generalizability. 
Greater focus on model updating, adherence to development standards, 
and demographic transparency is essential to improve the safety, reliability, 
and equity of clinical AI/ML models. 
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Introduction 
There is a surge in healthcare artificial intelligence (AI) 
and machine learning (ML) algorithms due to their 
potential to improve clinical efficiency and overall 
quality of care1. These algorithms can automate 
insights directly from data without using standard 
computer programming and analyze large data 
sets with high dimensionality to yield insights and 
predictions on complex associations without prior 
assumptions from traditional statistical methods, 
differentiating AI and ML models from other statistical 
models2 4. Supervised and unsupervised learning are 
the two general methods of gaining insights from data 
in AI: supervised learning involves making predictions 
based on a set of prespecified input, references, and 
output variables, whereas unsupervised learning is 
used to draw inferences from data sets consisting 
of input data without labeled responses5. 
 
Just like biological systems undergo programmed 
cell death, a well-known characteristic of AI and ML 
algorithms is that their performance degrades over 
time due to the occurrence of model calibration 
(calibration drift), which refers to a shift in the accuracy 
of risk estimates in terms of the agreement between 
the predicted risks of events and their actual observed 
frequencies6. Calibration drift arises due to deploying 
a model in a dynamic environment, with the resulting 
difference between the population or setting in 
which the model was trained and that in which it was 
implemented7. 
 
Patient-level algorithm predictions must prioritize 
consistency and accuracy due to the risk of patient 
harm; therefore, an appropriate model-updating 
process is essential across the model's lifetime8. The 
best practice is to update a clinical model rather 
than abandon the model, build another, or repeat 
the selection of predictors, which leads to a loss of 
the previous scientific information captured9,10. 
 
The existence of multiple models for the same clinical 
scenario without model-updating methods declared 
ab initio leaves clinicians uncertain of which model 
is appropriate to use9. For example, there are more 

than 80 models for the prognosis of stroke11, more 
than 20 models predicting intensive care unit stay 
after cardiac surgery12, more than 100 published 
algorithms for prognosis after neurotrauma13, and 
over 50 models to predict outcomes after breast 
cancer14. 
 
Subtle population demographic changes, in addition 
to changes in healthcare access and the heterogeneity 
of health insurance coverage (health disparity), can 
also deteriorate a model's future output1,15. Changes 
in best practice clinical guidelines and variations in 
practice preferences across different healthcare 
providers can also be a source of data shift, resulting 
in sub-optimal model output1 8,10,16 20. Health centers 
can update or change aspects of their information 
systems, database and data archiving systems, and 
digital health tools such as imaging software and 
EHRs. In addition, there is constant change in clinical 
nomenclature and disease coding, which can also 
affect the output21. The healthcare regulatory 
landscape is constantly evolving as well22,23. The 
enactment of the Affordable Care Act was associated 
with many sweeping reforms to healthcare delivery 
and redefining value in healthcare delivery24, and, 
as such, a model built to produce outputs based on 
previous standards of care will likely be suboptimal. 
 
Most AI tools are developed based on the nuances 
of specific local healthcare workflows and the data 
they generate; for example, consider an algorithm 
developed to predict sepsis based on a patient's 
lactate level. The algorithm will learn to correlate 
the physician's lactate orders with a high possibility 
of sepsis; however, model quality would be 
reduced if a policy change required more frequent 
ordering of lactate tests. Model validation will show 
reduced performance in this situation, as the 
learned pattern does not generalize across sites and 
circumstances15,23,(p31). In addition, there is systemic 
bias in the geographic distribution of patient 
cohorts, as algorithms trained on US data were 
disproportionately trained on patients from just 3 
states (New York, California, and Massachusetts)25. 
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Label and causality leakage phenomena occur when 
the model's prediction target is directly or indirectly 
present in the training data set26. An example is a 
model developed to predict hospital mortality in 
patients admitted to the intensive care unit. An AI 
model trained naively on all data will learn to correlate 
extubating and turning off the ventilator with the 
death of a patient and ultimately produce a near-
perfect predictive performance yet with absolutely 
no clinical utility26. Causality leakage in the clinical 
model can occur in a situation whereby a clinician 
orders a test based on a high index of suspicion of a 
clinical outcome that the algorithm is meant to predict; 
the algorithm then uses the test to generate an alert 
that results in an action27. 
 
The need to prioritize model updating is equally 
significant in the application of Large Language 
Models (LLMs). Generative Artificial Intelligence (Gen 
A.I)28,29 types of LLM, such as Generative Pre-trained 
Transformers (GPT), are gradually being integrated 
into various aspects of healthcare operations and 
clinical care29. Applications include medical text 
summarization, translation, clinical decision support, 
clinical documentation, patient education, adverse 
effect detection, and clinical research data 
management30 Gen A.I. models differ from traditional 
rule-based systems as they operate on much higher 
data dimensionality and volume. For instance, GPT-4 
was trained on data with one trillion parameters 
(OpenAI)28,29. Another defining characteristic is the 
use of techniques like Reinforcement Learning from 
Human Feedback (RLHF), which incorporates few-
shot learning and chain-of-thought reasoning30. 
However, LLMs also present challenges such as a 
lack of explainability, hallucinations, bias propagation, 
overdependence bias, and the potential weakening 
of clinicians  critical thinking abilities31. The complexity 
of Gen A.I. models, coupled with their lack of complete 
explainability leading to issues such as hallucination 
and bias propagation underscores the importance 
of model updating, especially for Gen A.I. and LLMs32. 
 
Agentic AI systems are models that can act 
independently and autonomously to achieve 

predefined objectives33. Although many modern AI 
implementations combine both capabilities of Gen 
A.I and agentic A.I, the autonomous state of agentic 
A.I models sets them apart from Gen A.I34. Considering 
that these higher level models are built on multiple 
layers of neural networks and volumes of data, the 
need for their model updating becomes even more 
important to ensure safety and continuity. There are 
several methods that address the data shift required 
to update models1,9,21,35,36. The least complex method 
involves adjusting the model intercept to a different 
prevalence or incidence rate according to the new 
population assuming risk factors still confer the same 
level of risk. Another option is to adjust the population 
prevalence rate and add a single adjustment to all 
risk factors in the model; one or more risk factor 
relationships may also need to be adjusted, given the 
changes in relationships over time. A more complex 
method involves adjusting both the prevalence and 
the coefficients and adding new risk factors into the 
model. The last option involves refitting the entire 
model based on a new data sample, either alone or 
in combination with the addition of new potential 
risk factors; this essentially remodels the problem 
from scratch based on a new sample36. 
 

Real-time calibration drift detection and updating 
is the most computationally intensive approach; 
however, real-time detection provides users with 
the peace of mind that their models are accurate at 
the time of use without requiring manual steps36. A 
similar approach is incremental updating, in which 
models are updated based on new instances as they 
become available35,36. Fixed and batch updating at 
specified intervals is another option, with models 
evaluated and updated at specific intervals35,36. 
 
Generally speaking, Gen A.I and Agentic AI  models 
can be updated by the following methods; long 
context, fine tuning and Retrieval-augmented 
generation (RAG)37 39, RLHF (Reinforcement Learning 
from Human Feedback)40,41;RLAIF (Reinforcement 
Learning from AI Feedback), experience-based 
learning, iterative optimization, self-reflection42,43. 
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Our main study objective is to evaluate clinical model 
updating in peer-reviewed AI and ML models and 
assess model updating practices used in direct 
patient-provider clinical decision-making. Phases of 
model development pertaining to applicability and 
reproducibility (model updating, impact assessment, 
and implementation) have received less attention in 
the scientific literature34. Clinical model-updating 
processes seek to prevent model deterioration with 
adverse consequences of model inaccuracy. The 
lack of model updating in clinical settings can impact 
the generalizability and reproducibility of clinical 
models44. The model-updating processes of clinical 
algorithms should be determined proactively from 
the time of initial model development23,44 to ensure 
patient safety and quality of care. Additionally, 
identifying possible algorithmic risk in the form of 
pre-deployment risk assessment should be an 
integral part of determining the level of aggressive  
ongoing auditing and reassessment required during 
model implementation. 
 

Methods 
 

INCLUSION AND EXCLUSION CRITERIA  
Our original protocol was developed based on the 
PRISMA (Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses) protocols45. All studies 
that were published from March 2020 until December 
2021 were reviewed (Textbox 1). We chose to include 
papers from March 2020 to December 2021 because 
we were more interested in the latest model updating 
practices amongst healthcare AI models that have 
contemporary implications on patient safety. Bearing 
in mind, the rapid acceleration of AI implementation 
in healthcare settings, this duration corresponded 
to the previous recent years as at the time of our 
review and literature search. Studies were included 
without geographic or regional preferences. More 
detailed justifications for our inclusion and exclusion 
criteria items can be found in our earlier published 
protocol of this systematic review46. Failure to meet 
eligibility criteria resulted in exclusion from the 
review (Textbox 2). 
 

OUTCOMES 
The primary outcome of this scoping review is the 
percentage of published algorithms that prioritize 
model-updating methods (model updating is 
considered prioritized if it is part of the algorithm 
protocol). We identified the type of relationship 
between studies that prioritize model updating and 
the following model characteristics: geographic 
region, quality of studies and by setting of model 
development. In addition, we assessed how frequently 
EHR records were used for model development47 49. 
 

As a secondary end point, we captured the amount 
(percentages) of models reporting the demographic 
breakdown of their data (ethnic background and 
gender); this is of particular importance owing to 
potential societal harm and resulting AI and ML 
algorithm setbacks due to the use of nonrepresentative 
data50. 
 

SEARCH STRATEGY  
A comprehensive literature search was conducted 
using the following databases: Ovid Embase, Ovid 
MEDLINE, Ovid PsycINFO, Web of Science Core 
Collection, Scopus, and the Cochrane Library. 
Searches were originally limited to articles published 
from January 1, 2018, to December 31, 2021; 
however, the study team decided only to include 
articles from March 2020-December 2021. We 
were more interested in the latest model updating 
practices amongst healthcare AI models. Bearing 
in mind, the accelerating wave in AI evolution, this 
duration corresponded to the previous recent years 
as at the time of our review and literature search. 
 
The search strategy for each database was developed 
by a medical librarian (SW) in concert with the rest 
of the team. Each search strategy used a combination 
of keywords and subject headings related to ML, 
predictive algorithms, medical diseases and disorders, 
and study design (Appendix A). 
 

MODEL ANALYSIS 
To evaluate the reporting quality, we adapted a 
verified tool available for model quality assessment51. 
The CHARMS is an 11-item checklist, with each 
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item created to assess the model on the domains 
of risk of bias and applicability (Appendix B). The 
checklist is a comprehensive guide created from a 
combination of eight other published guides that 
include both criteria to ascertain applicability and 
reproducibility with implications for patient safety, 
as well as technical validity of a model's results, 
some of which are beyond the scope of our review. 
 

CREATION OF A CLINICAL MODEL QUALITY 
ASSESSMENT TOOL (MODIFIED CHARMS 
CHECKLIST)       
We created our quality assessment checklist by 
extracting criteria that are more specific to applicability 
and reproducibility analysis that could potentially 
impact patient safety and quality of care at the clinical 
model deployment level, resulting in our six-item 
checklist for study quality assessment (Textbox 3). 
 

Our goal was to focus on established factors and 
best practices that indicate a study's applicability 
and low risk of bias to ensure generalizability beyond 
the model's technical output as follows52 54: 
 

● Applicability: the extent to which the study 
fits within the inclusion and exclusion criteria  
 

● Risk of bias: the extent to which any flaws in 
the study lead to overly optimistic estimates 
of predictive performance measures 

 

● Generalizability: the degree to which the study 
results are relevant to the larger population 

 

● Reproducibility: the ability to duplicate the study 
using the same methods as in the original 
study 

 

The target users of our modified checklist are clinicians 
interested in the objective assessment (based on the 
dimensions of applicability and reproducibility) of 
published AI/ML models who may not be technically 
savvy about the inner workings of data science or 
machine learning algorithms. 
 

The original CHARMS checklist comes with some 
technical variables that are more advanced than the 
comprehension of such clinicians and some variables 
that are not directly related to applicability and 

reproducibility, hence our rationale for the creation 
of the modified checklist. 
 

A total of five items out of our six-item checklist were 
adapted from the CHARMS checklist (CHARMS 
checklist has 11 items); our last criterion, the model 
development checklist standard, was obtained from 
the literature review of best practices for model 
development. 
 

Our determination of criteria that are more specific 
to applicability and reproducibility at the level of care 
was based on the recommendation of the CHARMS 
checklist as published by Moons et'al51. In the 
published CHARMS checklist, apart from identifying 
the 11 domains of model quality assessment, they 
also highlighted specific items within the domains 
that impacts applicability, generalizability and overall 
model quality. 
 

Since our goal is to assess model applicability and 
generalizability at the clinical level and not to evaluate 
the technical validity of healthcare models, we took 
the initiative to exclude domains that focus on 
technical validity and with less impact on applicability 
and generalizability as per CHARMS checklist 
recommendations. We then unanimously excluded 
these six domains listed below from the CHARMS 
checklist leaving us with five domains to build our 
modified CHARMS checklist. 
 

1. Participants 
2. Candidate predictors 
3. Sample size 
4. Model development 
5. Model performance 
6. Results. 
 

Our 6th checklist item (Model development and 
reporting standards) was included based on our 
findings from literature search showing that adhering 
to a model development and reporting standard can 
ensure study reproducibility and applicability55 57. 
 

Most clinical models do not declare any model 
development and reporting standards they may have 
adopted. Despite the availability of these guidelines, 
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there is poor overall reporting of adopted model 
development standards in many published AI 
models54 56,58     .  
 

We reviewed the following reporting standards as 
part of our literature review for this study; SPIRIT-
AI (Standard Protocol Items: Recommendation for 
Interventional Trials-Artificial Intelligence), CONSORT-
AI (Consolidated Standards of Reporting Trials-
Artificial Intelligence), TRIPOD (Transparent 
Reporting of a Multivariable Prediction Model of 
Individual Prognosis Or Diagnosis), REMARK 
(Reporting Recommendations for Tumour Marker 
Prognostic Studies), and GRIPS (Genetic Risk Prediction 
Studies)59 67. 
 
RATIONALE FOR CHECKLIST ITEMS 
 

Checklist Items Adapted from the CHARMS 
Checklist:  

● Study Design/Data Source for Model 
Development: The data used to develop the 
algorithm may be sourced from retrospective 
and prospective cohorts including RCTs and 
cross-sectional studies. In addition, there is a 
proliferation of sourcing model data from 
registries, databases, and EHRs. Although RCTs 
are considered the gold standard, they also 
have shortcomings similar to all other methods. 
Although RCTs are designed to reduce biased 
outcomes, their findings can lead to impaired 
generalizability of outcomes in real-life clinical 
scenarios owing to the rigid eligibility criteria 
of study participants. Data sources for model 
development are critical for the predictive 
accuracy, applicability, and reproducibility of 
any algorithm10,51,64      
 

● Outcomes: the lack of well-defined study 
outcomes increases risk of bias and adversely 
affects model reproducibility in real-life clinical 
scenarios51. For example, 40% of cancer 
prognostic model studies were found to have 
poorly defined outcomes65. For our quality 
assessment, a well-defined outcome is 
considered to occur when the definition and 

measurement of the outcome events or target 
disease clearly correspond to the outcome 
definition of the study objective51     . 
 

● Model testing and evaluation methods: model 
validation is the process of quantifying model 
performance in other individuals beyond the 
training and testing data set used to develop the 
model66. Whenever the predictive performance 
of a model is estimated using the same data 
set that was used to develop the model, it is 
referred to as apparent performance 51. 
Regardless of which modeling technique is 
used, apparent performance tends to be biased, 
as it can overestimate performance relative to 
the performance of other individuals. It is very 
important that all models be evaluated in an 
independent data set (external validation) 
before deployment50. Externally validated 
models (either temporal or geographic 
validation) provided the best insights into the 
usefulness of the model for other individuals, 
centers or settings, and regions. Several reviews 
have shown that external validation studies are 
generally uncommon5,13,67,68, as most studies 
are only internally validated by a random split 
sample of the data into development and 
validation samples5. (Table 1) 
 

● Model updating method recommendation: in 
the event that an existing model shows poor 
performance when evaluated in other settings 
(geographic or temporal), it is best practice to 
adjust, update, or recalibrate the original 
model to increase performance51, as there are 
well-established methods to achieve successful 
model updating. It is also best practice that 
the potential techniques for updating a model 
on external deployment can be identified before 
deployment1,23.  

 

● Model interpretation and generalizability 
concerns: best practice guidelines for reporting 
medical studies recommend discussing 
strengths, weaknesses, and future challenges 
with regard to the generalizability of the 
studies60,69,70. For models, these studies should 

https://www.researchprotocols.org/2023/1/e37685/#table1
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therefore provide insight into the model s 
applicability, usefulness, and intended users51. 
This discussion also serves as a basis for 
comparison with other studies. Therefore, our 

quality checklist will include a score (1 star) for 
a study that mentions the strengths and 
weaknesses of their model in the Discussion 
section. 

 
Table 1. Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling 
Studies. 
 

Domains and key items General Applicability Risk of bias 
Source of data 

  
Source of data (cohort, case-
control, randomized trial 
participants, or registry data) 

  ✓ ✓ 

Participants 

  

Participant eligibility and recruitment 
methods (consecutive participants, 
location, number of centers, setting, 
and inclusion and exclusion criteria) 

✓ ✓   

  Participant descriptions ✓ ✓   

  Details of treatment received, if 
relevant   ✓ ✓ 

  Study dates ✓ ✓   
Outcome to be predicted 

  Definition and methods for 
outcome measurements   ✓ ✓ 

  

Determine if the same outcome 
definition and method for 
measurement was used in all 
patients 

    ✓ 

  Type of outcome (single or 
combined end points) ✓ ✓   

  
Determine if the outcome was 
assessed without knowledge of 
candidate predictors (blinded) 

    ✓ 

  
Determine if candidate predictors 
were part of the outcome (in panel 
or consensus diagnosis) 

    ✓ 

  
Time of outcome occurrence or 
summary of duration of follow-up   ✓   
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Candidate Predictors (or Index Test) 

  

Number and type of predictors 
(demographics, patient history, 
physical examination, additional 
testing, and disease characteristics) 

✓     

  Definition and method for 
measuring candidate predictors 

  ✓ ✓ 

  
Timing of predictor measurement 
(patient presentation, diagnosis, 
and treatment initiation) 

  ✓   

  
Determine if predictors were 
assessed blinded for outcome and 
for each other (if relevant) 

    ✓ 

  
Handling predictors in the modeling 
(continuous, linear, and nonlinear 
transformation or categorized) 

    ✓ 

Sample size 

  
Number of participants and 
number of outcomes or events ✓     

  
Number of outcomes or events in 
relation to the number of candidate 
predictors (events per variable) 

    ✓ 

Missing data 

  
Number of participants with any 
missing values (including predictors 
and outcomes) 

✓   ✓ 

  
Number of participants with 
missing data for each predictor     ✓ 

  
Handling of missing data (complete 
case analysis, imputation, or other 
methods) 

    ✓ 

Model development 

  
Modeling methods (logistics, survival, 
neural networks, or machine learning 
techniques) 

✓     

  Modeling assumptions satisfied     ✓ 

  

Method for selecting predictors for 
inclusion in multivariable modeling 
(all candidate predictors and 
preselection based on unadjusted 
association with the outcome) 

    ✓ 
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Methods for selecting predictors 
during multivariable modeling (full 
model approach backward or forward 
selection) and criteria used (P value 
and Akaike Information Criterion) 

    ✓ 

  

Shrinkage of predictor weights or 
regression coefficients (no 
shrinkage, uniform shrinkage, and 
penalized estimation) 

  ✓ ✓ 

Model performance 

  

Calibration (calibration plots, 
calibration slope, and Hosmer-
Lemeshow test) and discrimination 
(C-statistic, D-statistic, and log-rank) 
measures with CIs 

  ✓   

  

Classification measures (sensitivity, 
specificity, predictive values, and 
net reclassification improvement) 
and whether a priori cut points 
were used 

    ✓ 

Model evaluation 

  

Method used for testing model 
performance: development data 
set only (random split of data, 
resampling methods, bootstrap or 
cross-validation, or none) or separate 
external validation (temporal, 
geographic, different settings, and 
different investigators) 

    ✓ 

  

In case of poor validation, whether 
the model was adjusted or updated 
(intercept recalibrated, predictor 
effects adjusted, or new predictors 
added) 

  ✓ ✓ 

Results 

  

Final and other multivariable 
models (basic, extended, and 
simplified) presented, including 
predictor weights or regression 
coefficients, intercept, baseline 
survival, and model performance 
measures (with SEs or CIs) 

✓ ✓   
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Any alternative presentation of the 
final prediction models (sum score, 
nomogram, score chart, and 
predictions for a specific risk 
subgroup with performance) 

✓ ✓   

  

Comparison of the distribution of 
predictors (including missing data) 
for development and validation 
data sets 

    ✓ 

Interpretation and discussion 

  

Interpretation of presented models 
(confirmatory, model useful for 
practice vs exploratory, and more 
research needed) 

✓ ✓   

  
Comparison with other studies, 
discussion of generalizability, 
strengths, and limitations 

✓ ✓ 

  

 
Other CHARMS Checklist Items 
The remaining 6 items in CHARMS were excluded 
from our assessment tool because they were already 
considered during the initial screening stage of our 
review process (participant characteristics and 
predictors). We also excluded items that focused on 
technical assessment, as that is beyond the scope 
of our study objective of real-life clinical applicability 
(technical process of model development, model 
performance, results, and sample size). Although the 
checklist still needs to be validated, our adapted 
checklist captures the essence of our review. 
 

Checklist Items Based on a Literature Review of 
Best Practices of Clinical Model Studies: Model 
Development Reporting Standards 
The best practice standards for reporting primary 
prognostic and predictive model studies exist in the 
literature56 and include SPIRIT-AI (Standard Protocol 
Items: Recommendation for Interventional Trials- 
Artificial Intelligence), CONSORT-AI (Consolidated 
Standards of Reporting Trials-Artificial Intelligence), 
TRIPOD (Transparent Reporting of a Multivariable 
Prediction Model of Individual Prognosis Or 
Diagnosis), REMARK (Reporting Recommendations 

for Tumour Marker Prognostic Studies), and GRIPS 
(Genetic Risk Prediction Studies)59 61. Adhering to 
these guidelines may ensure study reproducibility 
and could improve future real-life applications55 57. 
Despite the availability of these guidelines, there is 
poor overall quality of reporting in many published 
AI models54 56,58. Therefore, we have included declaring 
a reporting standard as part of our checklist (reporting 
standard scores will receive 1 star). 
 
For each checklist item fulfilled by the study reviewed, 
studies will be scored with 1 or 2 stars as described 
above, with a possible maximum score of 10 stars 
for each study. 
 
Quantitative assessment of the quality of the 
reviewed studies using our modified CHARMS 
checklist 
Based on our literature search, it was evident that 
there is no universally accepted standard definition 
for assessing the quality of studies and evaluating 
the risk of bias in research papers related to our 
study. To address this, we established a baseline 
for quality assessment in this study: 
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Research Study Design and Handling of Missing 
Data: For studies conducted using randomized 
controlled trials, we assigned 2 points. For other 
research sources and designs, including cohorts, 
registries, and convenience sampling, 1 point each 
was allocated. 
 

Articles demonstrating effective handling of missing 
data were assigned 1 point. This criterion is not to 
assess the level or degree of missing data in a study 
enough to affect its technical validity. Rather, we are 
interested in whether the studies have declared how 
they handled missing data. As such, this criterion has 
a binary answer; either they declared it or did not 
declare it. 
 

Clearly Defined Primary Outcome: Studies explicitly 
defining their primary outcome were given 1 point. 
 

Model Testing and Evaluation Methods: Because 
of the higher impact of external validation on model 
applicability in real-life clinical scenarios, we prioritize 
these models in our checklist. Research papers that 
incorporated separate external validation methods 
spanning geographical, temporal, and population 
variations received 2 points. Studies relying solely on 
the same development data for validation, including 
random splits like 80/20 or 70/30 and reassembly 
techniques (e.g., bootstrap and cross-validation), 
were allocated 1 point. 
 

Model Updating Information: The primary outcome 
of our review is the proactive determination of 
possible model-updating methods. As such, we 
will prioritize any study that proactively suggests a 
model-updating method as part of its study method 
by scoring it as 2 points. 
 

Declaration of Model limitations and strength: If a 
paper included an evaluation of the model's strengths, 
weaknesses, and risk of bias, it was given 1 point. If 
this information was absent, no points were awarded. 
 

Adherence to Model Development and Reporting 
Standards: If the study conformed to recognized 
best practice standards for model development and 
reporting, and if it cited relevant standards such as 

CONSORT-AI, SPIRIT-AI, DECIDE-AI, NEUR-UPDA 
ML, TRIPOD-ML, PROBAST-ML, and STROBE, it 
received 1 point. 
 

A study was considered to meet the baseline if it 
scored at least 5 points (Textbox 4), with a basic 
acceptable score being 5, in the following categories: 
Study design (1 point); Handling of missing data (1 
point); Well-defined primary outcome (1 point); 
Adequate model testing and evaluation methods (1 
point); Model update (N/A); Model interpretation 
and limitation concerns (1 point); Model reporting 
and development standard (N/A). Subsequently, we 
also created a new variable named "quality baseline," 
which was categorized as either "yes" for papers 
meeting the quality baseline (i.e., scoring 5 points or 
more) or "no" for those falling short of this baseline. 
This quality assessment framework provided a 
structured approach for evaluating the research 
papers in our study. 
 
STUDY SELECTION AND DATA EXTRACTION 
All search results were imported into Covidence 
software for deduplication and screening61. Covidence 
facilitates a blind review process, and results from 
multiple databases can be imported, deduplicated, 
and screened for eligibility. Following the title and 
abstract screening phase, the full text of all included 
abstracts were gathered and imported into the 
Covidence software. Covidence created a PRISMA 
flowchart and facilitated data extraction and quality 
appraisal phases62. 
 

Two reviewers (team members A.O and H.S) used 
the Covidence software to screen the title and 
abstract of each article and the full text of all included 
abstracts. Two independent reviewers resolved 
disparities whenever there was a lack of agreement 
in the papers selected.  
 

Data extraction and quality assurance were conducted 
by all team members simultaneously using the 
Covidence software. For any particular data point 
to be accepted, at least two reviewers must agree 
with the data extracted. It was also set up to resolve 
conflict between two reviewers by allowing for a third 
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reviewer to serve as a tiebreaker in any particular 
study with a contested data point. 
 
STATISTICAL ANALYSIS 
The screening process was documented and 
presented using the PRISMA flow diagram (Figure 1). 
Prior to title and abstract screening, the review 
team met to screen a random sample of 50 records 
to validate the inclusion and exclusion criteria. 
 
For each checklist item fulfilled by the study reviewed, 
studies were scored with 1 or 2 points as described 
above in Textbox 3, with a possible maximum score 
of 10 stars for each model reviewed. 
 
Our preliminary search on geographic clusters of 
reported AI adoption and model implementation 
revealed that AI and ML adoption is mostly clustered 
in the United States, Canada, the United Kingdom, 
Australia, the European Union, China, Taiwan, and 
Israel49,60. We added the following categories to 
our geographical regions based on the clusters of 
models from our preliminary results: Japan, Korea, 
India, Pakistan, South America, Other Asia, and Others 
(other countries not specified in the predefined 
categories).  
 
After extracting data from the studies, we conducted 
a narrative synthesis. Data were summarized using 
descriptive statistics, figures, and tables for 
visualization. Categorical data were presented as 
percentages. The distribution of continuous data 
such as sample size and the number of predictors 
were described using means and SDs for normally 
distributed data using median and 25th and 75th 
percentiles for nonnormally distributed data. The 
results were characterized by study design, outcomes, 
service delivery type, ML techniques, and model-
updating properties. 
 
ETHICS APPROVAL 
On August 13, 2021, our systematic review protocol 
was registered with the International PROSPERO 
(Prospective Register of Systematic Reviews) 
CRD4202124547071. Our protocol was developed 
based on the PRISMA-P (Preferred Reporting Items 

for Systematic Reviews and Meta-Analysis Protocols) 
2015 statement45. Our study does not require an 
ethics committee review because our research 
does not directly involve human subject data, and 
it was conducted on publicly available data from 
published articles. 
 

DEVIATION FROM OUR REGISTERED PROTOCOL 
The main deviation from our registered protocol was 
the duration of studies included in the systematic 
review. Our initial protocol was to include the previous 
ten years of A.I research. We included only the last 
two years to capture the latest AI study characteristics 
in the review as explained in our method section 
above. 
 

Results 
The search resulted in 390 articles for exaction. Most 
aims of these publications were predictive in nature 
(300, 75.8%) and carried out in academic centers 
(261, 66%), with mainly neural network algorithms 
(288, 72.7%) (Table 2;). Cardiology (67, 16.9%), 
Neurology (55, 13.9%), Respiratory (47, 11.9%), ID 
(38, 9.6%), and GU (33, 8.33) models were most 
prevalent (Table 2; Figure 3). Most models were 
also in the research phase (388, 98%); only (8, 2%) 
were in the production phase. Geographically, most 
models in our sample were from China, Taiwan, EU, 
US, Japan, and Korea (Figure 2). Only 16% of the 
models were built using accessible open data 
registries. 
 

Based on our endpoint and quality assessment tool 
components (Modified CHARMS checklist) (Table 
3), only 6% of the total studies were randomized 
controlled trials (RCTs). Furthermore, a mere 9% of 
studies attempted to ensure the model would be 
updated in the future; over half of the studies (53%) 
neglected to declare their approach to handling 
missing data. Furthermore, only 32% of these studies 
accurately defined their primary outcomes, and a 
mere 27% diligently tested their models using external 
validation methods; only 12% reported following a 
best practice standard. 
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1Table 2. Study characteristics 
 

Characteristics Results 

Total 396 Numbers (%)  

Publication Setting  

 Academic 261 (65.91) 

 Non-academic medical center 112 (28.28) 

 Vendor/Industry 12 (3.03) 

 Governmental 11 (2.78) 

Study Aim  

 Predictive 300 (75.76) 

 Prognostic 96 (24.24) 

Disease-biological system of study  

 Neurology  55 (13.89) 

 Endocrinology  29 (7.32) 

 ENT  6 (1.52) 

 Cardiovascular  67 (16.92) 

 Respiratory 47 (11.87) 

 Gastroenterology  27 (6.82) 

 Genitourinary  33 (8.33) 

 Orthopedics/MSK  31 (7.83) 

 Infectious disease  38 (9.60) 

 Dermatology  2 (0.51) 

 Multi-systemic  28 (7.07) 

 Rheumatology 7 (1.77) 

 Hematology Oncology 8 (2.02) 

 Other: Anesthesiology 1 (0.25) 

 Other: ICU 2 (0.51) 

 Other: Ophthalmology 7 (1.77) 

 Other: Opioid 2 (0.51) 

 Other: Patient Priorities Care 2 (0.51) 

 Other: Surgery 1 (0.25) 

 Other: Traumatology 1 (0.25) 

 Other: cognitive function 1 (0.25) 
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Type of algorithm  

 Traditional machine learning 9 (2.27) 

 Deep neural network 288 (72.72) 

 Both traditional machine learning/deep 
neural networks 

99 (25) 

Geographical region of publication  

 US. 70 (17.68) 

 Canada 8 (2.02) 

 China/Taiwan 126 (31.82) 

 UK 12 (3.03) 

 Australia/New Zealand 5 (1.26) 

 EU 86 (21.72) 

 Israel 5 (1.26) 

 India/Pakistan 8 (2.02) 

 Japan/Korea 43 (10.86) 

 South America 13 (3.03) 

 Other Asia 14 (3.54) 

 Other unclassified 5 (1.26) 

Stage of model implementation  

 Production/post research 8 (2.02) 

 Research 388 (97.98) 

Data sources registry  

 Closed registry/proprietary 330 (83.33) 

 Open registry/open source 65 (16.41) 

 Missing 1 (0.25) 

Oncology study  

 Yes 59 (14.90) 

 No 337 (85.10) 

COVID-19 Study  

 Yes 30 (7.58) 

 No 366 (92.42) 
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Table 3. Primary end point with other items in the quality assessment checklist (Modified CHARMS checklist) 
 

Characteristics Results 

Total 396 Numbers (%)  

Study design and missing data  

 RCT 24 (6.06) 

 Others 371 (93.69) 

 Missing 1 (0.25) 

Handling of missing data  

 Yes 181 (45.71) 

 No 210 (53.03) 

 Missing 5 (1.26) 

Primary outcome is well defined  

 Yes 127 (32.07) 

 No 268 (67.68) 

 Missing 1 (0.25) 

Model testing and evaluation methods  

 Yes 107 (27.02) 

 No 289 (72.98) 

Model updating method (primary end point)  

 Yes 38 (9.60) 

 No 358 (90.40) 

Model limitation and applicability concerns  

 Yes 302 (76.26) 

 No 94 (23.74) 

Model reporting and development standard  

 Yes 48 (12.12) 

 No 348 (87.88) 

 
Based on a two-way T-tests, the average quality 
score of studies that recommended model updating 
was higher than those that did not recommend any 
model updating method t(9394) = 2.5. p<0.001. 
There was, however, no significant relationship 
between the setting of model development (academic 

vs. non-academic) or geographical region and quality 
of study scores. A multiple/mixed regression analysis 
controlling for site of model development and 
nature of the model revealed a positive relationship 
between studies that suggested model updating 
and higher quality scores. 



A scoping review of AI/ML algorithm updating practices for model continuity and patient safety using a simplified checklist 

© 2025 European Society of Medicine 16 

In our sample, 31% of worldwide models did not 
disclose their gender composition while 23% of US 
focused models did not disclose gender (Table 4). 

84% of worldwide had no ethnicity composition 
reported while 44% of the US focused models did not 
show the ethnic composition of their training data. 

 
Table 4. Secondary end points 

 

Characteristics  Results; Numbers(%)  

Break down by ethnicity  Worldwide USA only 

 Yes 61 (15.40) 39 (55.71) 

 No 335 (84.60) 31 (44.29) 

Break down by gender    

 Yes 272 (68.69) 54 (77.14) 

 No 124 (31.31) 16 (22.86) 

 
Discussion 
 

PRINCIPAL FINDINGS AND COMPARISON TO 
PRIOR WORK 
Our study objective was to evaluate prioritization 
of clinical model updating in peer-reviewed/published 
AI and ML models that can be used in direct patient-
provider clinical decision-making. We also tested 
the relationship between the quality of published 
AI clinical models and prioritization of the model 
updating process. Our secondary outcomes included 
AI/ML model geographic distribution and inclusion 
of demographic data.  
 

In recent years, there has been a growing interest 
in the development and implementation of clinical 
AI/M) models in healthcare to improve patient 
outcomes and assist healthcare providers in decision-
making. However, our scoping review reveals that 
most studies were primarily predictive rather than 
prognostic in nature, suggesting that the focus has 
been on predicting and identifying certain conditions 
or outcomes (i.e., sepsis, readmission, deterioration 
risk, or CDI) rather than assessing long-term prognosis 
or patient trajectories. Predictive modeling can be 
complex and opaque thereby enhancing the distrust 

in AI systems used in clinical practice. Furthermore, 
our analysis revealed that neural network algorithms 
were the most commonly used given their efficacy 
in handling complex medical data but most neural 
network algorithms lack clarity due to their opaque 
nature (no explainability).  
 

Additionally, our analysis found that the majority of 
these studies were conducted in academic centers 
where research is prioritized, infrastructure/resources 
are available, and there is an established culture of 
pedagogy; this is further illustrated by our findings 
that most of the studies were in the research phase 
and not deployed in a clinical setting. Therefore, 
while there is significant interest and potential in 
clinical AI/ML models, there are still challenges and 
barriers to their widespread adoption in real-world 
clinical settings.  
 

Generalizability is defined as the ability of a model 
to perform well on datasets that have different 
characteristics from training data72. Most AI/ML 
models developed in academic centers are trained 
on homogenous patient populations that do not 
reflect subpopulations found in non-academic 
institutions and would generalize poorly in other 
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settings. External validation can be used to mitigate 
poor generalizability by evaluating model performance 
on datasets not used to develop the model73. In our 
review, only 27% of the studies externally validated 
their models.  
 

Certain subspecialties, such as cardiology, neurology, 
respiratory medicine, infectious diseases, and 
genitourinary medicine, were the most represented 
in terms of the number of AI/ML models developed. 
These findings highlight the potential impact of 
AI/ML models in these subspecialties and the need 
for further research in other areas of healthcare. 
Our analysis revealed that a significant number of 
studies on clinical AI/ML models were conducted in 
China, Taiwan, the European Union, the United States, 
Japan, and Korea, indicating a global interest and 
involvement in the development of these models 
but also an increasing gap between developed 
countries with economic resources/infrastructure and 
low resource countries. With most AI tools being 
developed in these regions, the training data excludes 
population characteristics found in these low resource 
regions, thereby exacerbating unintended bias and 
potentiating poor outcomes. Furthermore, our study 
found that only a small percentage (16%) of the AI/ML 
models utilized open data registries, highlighting the 
need for improved data sharing and accessibility in 
the field of clinical AI/ML. Proprietary/closed registry 
data negate the ability to independently validate 
models, thus going against the cardinal principle of 
replicability in research. 
 

Our study showed that a low percentage (6%) of the 
total studies were randomized controlled trials while 
32% of studies accurately identified their primary 
outcomes, suggesting a need for more rigorous 
study designs to evaluate the effectiveness of clinical 
AI/ML models. Only 12% of the studies reported 
following the best practice standard for model 
development, while 53% of studies did not explain 
how they dealt with missing data. Handling of missing 
data can have a large impact on the AI/ML models 
outcomes especially when used in healthcare73. In 
terms of model updating, our findings indicate that 

a small proportion of studies (9%) made attempts to 
ensure that AI/ML models would be updated in the 
future through recommendations or guidelines. There 
was a statistically significant positive relationship 
between our model quality scores and models 
declaring a model updating method. Quality scores 
were not affected by location of study (academic/ 
non-academic) or by geographic location. When 
controlling location of study and nature of model 
(predictive/prognostic), studies that recommended 
model updating had higher quality scores.  
 
In terms of gender and ethnic composition, our study 
found that, worldwide, 31% did not disclose gender 
and 84% did not disclose ethnicity. In the US, 23% 
of the studies did not disclose gender, and 44% did 
not provide ethnicity composition. However, due to 
the homogeneity of populations outside of the US, 
the lack of disclosure for ethnicity is not as surprising. 
Nevertheless, we believe reporting gender and 
ethnicity composition in US models is still sub-par 
considering the diverse nature of the US population.  
 
STRENGHTS AND LIMITATIONS 
There is no standardized, accepted simple checklist 
for clinical model assessment. Our results suggest 
a positive relationship between studies that 
recommended model updating and higher quality 
of study scores based on our modified CHARMS 
checklist tool. Based on this identified relationship 
our modified checklist may be validated further to 
serve as a quick validation tool for clinical models 
amongst clinicians who are not invested in the rigors 
of data science but rather more interested in the 
utility, safety, and applicability of a potential algorithm. 
 
With healthcare AI rapidly advancing toward 
agentic systems AI that operates with high levels 
of independence and autonomy we are entering 
dangerous territory without adequate safeguards. 
Clinicians urgently need accessible, standardized 
assessment tools to evaluate these systems before 
deployment. Without such checklists, we risk 
deploying AI agents that make critical clinical decisions 
without proper validation, potentially leading to 
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preventable patient harm and medical errors. The 
time to act now, before autonomous AI systems are 
integrated into clinical workflows without the safety 
mechanisms necessary to protect patients. 
 

Study Limitations 
Interpretation of our review should bear some 
limitations in mind. First, AI and ML implementations 
in health care are novel and lack standardization 
across different regions and clinical specialty domains. 
Although we established our literature search strategy 
(Appendix A), this lack of standards can impact on 
the scope and sensitivity of our search and render 
the reproducibility of our review challenging. While 
the terms "AI" and "ML" are included in our search, 
terms used to describe models and modeling are 
not standardized, and therefore, it is possible that 
our strategy did not capture possible emerging or 
lesser-known terms. In addition, our search included 
only English-language publications, so we cannot 
generalize our findings to publications in other 
languages. Book chapters, theses, short papers, 
editorials, non peer-reviewed reports, or conference 
abstracts were also not included. Another factor to 
consider in interpreting our results is that the studies 
we reviewed were published during the global 
COVID-19 pandemic. The impact of the pandemic 
on nature and type of AI and ML studies published 
during this time is unknown. 
 

An important limitation to bear in mind is that we 
excluded 80 studies that were proprietary and did not 
disclose their AI/ML methodologies. Based on this, 
we are unable to verify if those studies considered 
model updating in their model development due to 
their opaque reporting. We cannot verify the extent 
to which their models would have skewed our result 
if they had actually reported their methodologies. 
 

Conclusion 
In conclusion, model updating is an essential part 
of the maintenance of a model to ensure optimal 
output during implementation. Contemporary 
models heavily ignore this important process and 
can adversely affect patient safety. There is a need 

to report the breakdown of gender and ethnicity 
data used to build models. Without this disclosure, 
there will likely be a worsening of gender and racial 
disparity in the implementation of models similar 
to what it obtains in biomedical therapeutics and 
device development. 
 

There are no consensus-accepted standards for 
evaluating and screening proposed clinical models 
at the bedside. Subject to further validation, our 
modified CHARMS checklist may serve as a quick 
screening tool for clinicians who are not savvy data 
scientists. Future considerations include validating 
the modified CHARMS checklist to confirm its 
applicability for different healthcare models. There is 
need for more models assessing long-term prognosis 
or patient trajectories rather than the present excess 
of models that predict patient immediate conditions 
like sepsis. Additionally, we hope that moving forward 
more clinical models will utilize open data registries 
as training data for ease of independent verification 
and enhanced applicability of the model. 
 

Acknowledgements 
We would like to acknowledge Martin, Lily librarian at 
the Levy Library at the Icahn school of Medicine in 
Mount Sinai, New York for her assistance with our 
search and setting up Covidence software. We would 
also like to acknowledge the following investigators 
who assisted in our preliminary data abstraction. 
 

● Rasheedat A. sadiq-onilenla MD. MBA. MPH. 
Msc 

 

● Maxwell Edomwande MBBS, MBA, CDIP, 
LSSBB (Umass Amherst) 

 

● Osazuwa Ighodaro, MBBS, Ekpoma 
 

● Gloria Yeesuf, MB, BS, MPH, MBA 
 

● Omotayo Olusola, MBBS, M.A, MPH 
 

● Soji Akin Ojo, MD - Pharmaceutical Product 
Development (PPD), Thermo Fisher Scientific, 
Wilmington, NC, United States.  

 

We also like to acknowledge the following subject 
matter experts who were the source of inspiration 
for conducting this review; 



A scoping review of AI/ML algorithm updating practices for model continuity and patient safety using a simplified checklist 

© 2025 European Society of Medicine 19 

● Robert Freeman, RN; Division of Data-Driven 
and Digital Medicine, Department of Medicine, 
Icahn School of Medicine at Mount Sinai, New 
York, New York  
 

● Matthew Levin, MD, PhD; Department of 
Anesthesiology, Perioperative and Pain 
Medicine, Icahn School of Medicine at Mount 
Sinai, New York, New York  

Data Availability 
The data that support the findings of this study are 
available from the corresponding author [AO] upon 
reasonable request. 
 
 

 
 

https://www.acpjournals.org/doi/10.7326/M23-0949


A scoping review of AI/ML algorithm updating practices for model continuity and patient safety using a simplified checklist 

© 2025 European Society of Medicine 20 

References: 
1. Matheny ME, Whicher D, Thadaney Israni S. 
Artificial Intelligence in Health Care: A Report From 
the National Academy of Medicine. JAMA. 2020; 
323(6):509-510. doi:10.1001/jama.2019.21579 
 

2. Bi Q, Goodman KE, Kaminsky J, Lessler J. What is 
Machine Learning? A Primer for the Epidemiologist. 
Am J Epidemiol. 2019;188(12):2222-2239. doi:10.10 
93/aje/kwz189 
 

3. Navarro CLA, Damen JAAG, Takada T, et al. 
Protocol for a systematic review on the methodological 
and reporting quality of prediction model studies 
using machine learning techniques. BMJ Open. 
2020;10(11):e038832. doi:10.1136/bmjopen-2020-
038832 
 

4. Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine 
learning in medicine: a practical introduction. BMC 
Med Res Methodol. 2019;19:64. doi:10.1186/s12874-
019-0681-4 
 

5. Brnabic A, Hess LM. Systematic literature review 
of machine learning methods used in the analysis of 
real-world data for patient-provider decision making. 
BMC Med Inform Decis Mak. 2021;21(1):54. doi:10.118 
6/s12911-021-01403-2 
 

6. Van Calster B, McLernon DJ, van Smeden M, et al. 
Calibration: the Achilles heel of predictive analytics. 
BMC Med. 2019;17(1):230. doi:10.1186/s12916-019-
1466-7 
 

7. Koola JD, Ho SB, Cao A, et al. Predicting 30 Day 
Hospital Readmission Risk in a National Cohort of 
Patients with Cirrhosis. Dig Dis Sci. 2020;65(4): 
1003-1031. doi:10.1007/s10620-019-05826-w 
 

8. Moons KGM, Kengne AP, Grobbee DE, et al. 
Risk prediction models: II. External validation, model 
updating, and impact assessment. Heart. 2012;98 
(9):691-698. doi:10.1136/heartjnl-2011-301247 
 

9. Janssen KJM, Moons KGM, Kalkman CJ, 
Grobbee DE, Vergouwe Y. Updating methods 
improved the performance of a clinical prediction 
model in new patients. J Clin Epidemiol. 2008;61 
(1):76-86. doi:10.1016/j.jclinepi.2007.04.018 
 

10. Steyerberg EW, Borsboom GJJM, van 
Houwelingen HC, Eijkemans MJC, Habbema JDF. 

Validation and updating of predictive logistic 
regression models: a study on sample size and 
shrinkage. Stat Med. 2004;23(16):2567-2586. 
doi:10.1002/sim.1844 
 

11. Counsell C, Dennis M. Systematic Review of 
Prognostic Models in Patients with Acute Stroke. 
Cerebrovasc Dis. 2001;12(3):159-170. doi:10.115 
9/000047699 
 

12. Prediction Models for Prolonged Intensive Care 
Unit Stay After Cardiac Surgery | Circulation. Accessed 
August 31, 2025.  
https://www.ahajournals.org/doi/10.1161/CIRCUL
ATIONAHA.109.926808?url_ver=Z39.88-
2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%
20%200pubmed 
 

13. Perel P, Edwards P, Wentz R, Roberts I. Systematic 
review of prognostic models in traumatic brain 
injury. BMC Med Inform Decis Mak. 2006;6:38. 
doi:10.1186/1472-6947-6-38 
 

14. Phung MT, Tin Tin S, Elwood JM. Prognostic 
models for breast cancer: a systematic review. BMC 
Cancer. 2019;19:230. doi:10.1186/s12885-019-5442-6 
 

15. Saria S, Subbaswamy A. Tutorial: Safe and 
Reliable Machine Learning. arXiv. Preprint posted 
online April 15, 2019. doi:10.48550/arXiv.1904.07204 
 

16. Debray TPA, Vergouwe Y, Koffijberg H, Nieboer 
D, Steyerberg EW, Moons KGM. A new framework 
to enhance the interpretation of external validation 
studies of clinical prediction models. J Clin Epidemiol. 
2015;68(3):279-289. doi:10.1016/j.jclinepi.2014.06.018 
 

17. Kappen TH, Vergouwe Y, van Klei WA, van 
Wolfswinkel L, Kalkman CJ, Moons KGM. Adaptation 
of Clinical Prediction Models for Application in 
Local Settings. Med Decis Making. 2012;32(3):E1-
E10. doi:10.1177/0272989X12439755 
 

18. Schulam P, Saria S. Can You Trust This Prediction? 
Auditing Pointwise Reliability After Learning. In: 
Proceedings of the Twenty-Second International 
Conference on Artificial Intelligence and Statistics. 
PMLR; 2019:1022-1031. Accessed August 31, 2025. 
https://proceedings.mlr.press/v89/schulam19a.html 
 

19. Shah ND, Steyerberg EW, Kent DM. Big Data 
and Predictive Analytics: Recalibrating Expectations. 

https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.109.926808?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.109.926808?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.109.926808?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.109.926808?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
https://proceedings.mlr.press/v89/schulam19a.html


A scoping review of AI/ML algorithm updating practices for model continuity and patient safety using a simplified checklist 

© 2025 European Society of Medicine 21 

JAMA. 2018;320(1):27-28. doi:10.1001/jama.201 
8.5602 
 

20. Toll DB, Janssen KJM, Vergouwe Y, Moons 
KGM. Validation, updating and impact of clinical 
prediction rules: a review. J Clin Epidemiol. 2008; 
61(11):1085-1094. doi:10.1016/j.jclinepi.2008.04.008 
 

21. Davis SE, Greevy RA Jr, Fonnesbeck C, Lasko TA, 
Walsh CG, Matheny ME. A nonparametric updating 
method to correct clinical prediction model drift. J 
Am Med Inform Assoc. 2019;26(12):1448-1457. 
doi:10.1093/jamia/ocz127 
 

22. Lipsitz LA. Understanding Health Care as a 
Complex System: The Foundation for Unintended 
Consequences. JAMA. 2012;308(3):243-244. 
doi:10.1001/jama.2012.7551 
 

23. Schulam P, Saria S. Reliable decision support 
using counterfactual models. In: Proceedings of the 
31st International Conference on Neural Information 
Processing Systems. NIPS 17. Curran Associates 
Inc.; 2017:1696-1706. 
 

24. Hall MA, Lord R. Obamacare: what the Affordable 
Care Act means for patients and physicians. BMJ. 
2014;349:g5376. doi:10.1136/bmj.g5376 
 

25. Kaushal A, Altman R, Langlotz C. Geographic 
Distribution of US Cohorts Used to Train Deep 
Learning Algorithms. JAMA. 2020;324(12):1212-
1213. doi:10.1001/jama.2020.12067 
 

26. Ghassemi M, Naumann T, Schulam P, Beam AL, 
Chen IY, Ranganath R. A Review of Challenges and 
Opportunities in Machine Learning for Health. AMIA 
Summits Transl Sci Proc. 2020;2020:191-200. 
 

27. Constructing the world: Active causal learning 
in cognition | Bramley Computational Cognitive 
Science Lab. Accessed August 31, 2025.  
https://www.bramleylab.ppls.ed.ac.uk/publication
/2017-01-01_bramley2017phdthesis/ 
 

28. How ChatGPT and our foundation models are 
developed. OpenAI Help Center. Accessed August 
31, 2025.  
https://help.openai.com/en/articles/7842364-how-
chatgpt-and-our-foundation-models-are-developed 
 

29. The Internet May Be Too Small for the AI Boom, 
Researchers Say - The Wall Street Journal Google 

Your News Update - WSJ Podcasts. The Wall Street 
Journal. Accessed August 31, 2025.  
https://www.wsj.com/podcasts/google-news-
update/the-internet-may-be-too-small-for-the-ai-
boom-researchers-say/a424f137-a5a4-46b7-b746-
c7fd3d0a483d 
 

30. Yu P, Xu H, Hu X, Deng C. Leveraging Generative 
AI and Large Language Models: A Comprehensive 
Roadmap for Healthcare Integration. Healthcare. 
2023;11(20):2776. doi:10.3390/healthcare11202776 
 

31. Busch F, Hoffmann L, Rueger C, et al. Current 
applications and challenges in large language models 
for patient care: a systematic review. Commun Med. 
2025;5:26. doi:10.1038/s43856-024-00717-2 
 

32. Kwong JCC, Wang SCY, Nickel GC, Cacciamani 
GE, Kvedar JC. The long but necessary road to 
responsible use of large language models in 
healthcare research. Npj Digit Med. 2024;7(1):177. 
doi:10.1038/s41746-024-01180-y 
 

33. Towards Urban Planing AI Agent in the Age of 
Agentic AI. Accessed August 31, 2025.  
https://arxiv.org/html/2507.14730 
 

34. White J. Building Living Software Systems with 
Generative & Agentic AI. arXiv. Preprint posted 
online August 3, 2024. doi:10.48550/arXiv.240 
8.01768 
 

35. Guajardo JA, Weber R, Miranda J. A model 
updating strategy for predicting time series with 
seasonal patterns. Appl Soft Comput. 2010;10(1): 
276-283. doi:10.1016/j.asoc.2009.07.005 
 

36. Davis SE, Greevy RA, Lasko TA, Walsh CG, 
Matheny ME. Detection of calibration drift in clinical 
prediction models to inform model updating. J 
Biomed Inform. 2020;112:103611. doi:10.1016/j.jb 
i.2020.103611 
 

37. Singh A, Pandey N, Shirgaonkar A, Manoj P, 
Aski V. A Study of Optimizations for Fine-tuning 
Large Language Models. arXiv. Preprint posted online 
June 6, 2024. doi:10.48550/arXiv.2406.02290 
 

38. Gao Y, Xiong Y, Gao X, et al. Retrieval-Augmented 
Generation for Large Language Models: A Survey. 
arXiv. Preprint posted online March 27, 2024. 
doi:10.48550/arXiv.2312.10997 

https://www.bramleylab.ppls.ed.ac.uk/publication/2017-01-01_bramley2017phdthesis/
https://www.bramleylab.ppls.ed.ac.uk/publication/2017-01-01_bramley2017phdthesis/
https://help.openai.com/en/articles/7842364-how-chatgpt-and-our-foundation-models-are-developed
https://help.openai.com/en/articles/7842364-how-chatgpt-and-our-foundation-models-are-developed
https://www.wsj.com/podcasts/google-news-update/the-internet-may-be-too-small-for-the-ai-boom-researchers-say/a424f137-a5a4-46b7-b746-c7fd3d0a483d
https://www.wsj.com/podcasts/google-news-update/the-internet-may-be-too-small-for-the-ai-boom-researchers-say/a424f137-a5a4-46b7-b746-c7fd3d0a483d
https://www.wsj.com/podcasts/google-news-update/the-internet-may-be-too-small-for-the-ai-boom-researchers-say/a424f137-a5a4-46b7-b746-c7fd3d0a483d
https://www.wsj.com/podcasts/google-news-update/the-internet-may-be-too-small-for-the-ai-boom-researchers-say/a424f137-a5a4-46b7-b746-c7fd3d0a483d
https://arxiv.org/html/2507.14730


A scoping review of AI/ML algorithm updating practices for model continuity and patient safety using a simplified checklist 

© 2025 European Society of Medicine 22 

39. Lewis P, Perez E, Piktus A, et al. Retrieval-
Augmented Generation for Knowledge-Intensive 
NLP Tasks. In: Advances in Neural Information 
Processing Systems. Vol 33. Curran Associates, 
Inc.; 2020:9459-9474. Accessed August 31, 2025. 
https://proceedings.neurips.cc/paper/2020/hash/
6b493230205f780e1bc26945df7481e5-
Abstract.html 
 

40. Ouyang L, Wu J, Jiang X, et al. Training 
language models to follow instructions with human 
feedback. arXiv. Preprint posted online March 4, 
2022. doi:10.48550/arXiv.2203.02155 
 

41. González Barman K, Lohse S, de Regt HW. 
Reinforcement Learning from Human Feedback in 
LLMs: Whose Culture, Whose Values, Whose 
Perspectives? Philos Technol. 2025;38(2):35. 
doi:10.1007/s13347-025-00861-0 
 

42. van Stein N, Vermetten D, V. Kononova A, Bäck T. 
Explainable Benchmarking for Iterative Optimization 
Heuristics. ACM Trans Evol Learn Optim. 2025;5(2): 
13:1-13:30. doi:10.1145/3716638 
 

43. Mitrevski A, Plöger PG, Lakemeyer G. 
Representation and Experience-Based Learning of 
Explainable Models for Robot Action Execution. In: 
2020 IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS). 2020:5641-
5647. doi:10.1109/IROS45743.2020.9341470 
 

44. de Hond AAH, Leeuwenberg AM, Hooft L, et al. 
Guidelines and quality criteria for artificial intelligence-
based prediction models in healthcare: a scoping 
review. Npj Digit Med. 2022;5(1):2. doi:10.1038/s 
41746-021-00549-7 
 

45. Shamseer L, Moher D, Clarke M, et al. Preferred 
reporting items for systematic review and meta-
analysis protocols (PRISMA-P) 2015: elaboration and 
explanation. BMJ. 2015;349:g7647. doi:10.1136/b 
mj.g7647 
 

46. Otokiti AU, Ozoude MM, Williams KS, et al. The 
Need to Prioritize Model-Updating Processes in 
Clinical Artificial Intelligence (AI) Models: Protocol 
for a Scoping Review. JMIR Res Protoc. 2023;12(1): 
e37685. doi:10.2196/37685 
 

47. Bell SK, Delbanco T, Elmore JG, et al. Frequency 
and Types of Patient-Reported Errors in Electronic 

Health Record Ambulatory Care Notes. JAMA 
Netw Open. 2020;3(6):e205867. doi:10.1001/jama 
networkopen.2020.5867 
 

48. Diaz-Garelli JF, Strowd R, Wells BJ, Ahmed T, 
Merrill R, Topaloglu U. Lost in Translation: Diagnosis 
Records Show More Inaccuracies After Biopsy in 
Oncology Care EHRs. AMIA Summits Transl Sci 
Proc. 2019;2019:325-334. 
 

49. Tse J, You W. How Accurate is the Electronic 
Health Record?  A Pilot Study Evaluating Information 
Accuracy in a Primary Care Setting. In: Health 
Informatics: The Transformative Power of Innovation. 
IOS Press; 2011:158-164. doi:10.3233/978-1-60750-
791-8-158 
 

50. Zou J, Schiebinger L. Ensuring that biomedical 
AI benefits diverse populations. eBioMedicine. 
2021;67. doi:10.1016/j.ebiom.2021.103358 
 

51. Moons KGM, de Groot JAH, Bouwmeester W, 
et al. Critical Appraisal and Data Extraction for 
Systematic Reviews of Prediction Modelling Studies: 
The CHARMS Checklist. PLoS Med. 2014;11(10): 
e1001744. doi:10.1371/journal.pmed.1001744 
 

52. Kim AA, Rachid Zaim S, Subbian V. Assessing 
reproducibility and veracity across machine learning 
techniques in biomedicine: A case study using TCGA 
data. Int J Med Inf. 2020;141:104148. doi:10.101 
6/j.ijmedinf.2020.104148 
 

53. Li J, Liu L, Le TD, Liu J. Accurate data-driven 
prediction does not mean high reproducibility. Nat 
Mach Intell. 2020;2(1):13-15. doi:10.1038/s42256-
019-0140-2 
 

54. Stevens LM, Mortazavi BJ, Deo RC, Curtis L, 
Kao DP. Recommendations for Reporting Machine 
Learning Analyses in Clinical Research. Circ 
Cardiovasc Qual Outcomes. 2020;13(10):e006556. 
doi:10.1161/CIRCOUTCOMES.120.006556 
 

55. Bouwmeester W, Zuithoff NPA, Mallett S, et al. 
Reporting and Methods in Clinical Prediction Research: 
A Systematic Review. PLoS Med. 2012;9(5):e100 
1221. doi:10.1371/journal.pmed.1001221 
 

56. Collins GS, Reitsma JB, Altman DG, Moons KG. 
Transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis (TRIPOD): 

https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html


A scoping review of AI/ML algorithm updating practices for model continuity and patient safety using a simplified checklist 

© 2025 European Society of Medicine 23 

the TRIPOD Statement. BMC Med. 2015;13(1):1. 
doi:10.1186/s12916-014-0241-z 
 

57. Rivera SC, Liu X, Chan AW, Denniston AK, 
Calvert MJ. Guidelines for clinical trial protocols for 
interventions involving artificial intelligence: the 
SPIRIT-AI Extension. BMJ. 2020;370:m3210. 
doi:10.1136/bmj.m3210 
 

58. Liu X, Faes L, Kale AU, et al. A comparison of 
deep learning performance against health-care 
professionals in detecting diseases from medical 
imaging: a systematic review and meta-analysis. 
Lancet Digit Health. 2019;1(6):e271-e297. doi:10.101 
6/S2589-7500(19)30123-2 
 

59. Collins GS, Dhiman P, Navarro CLA, et al. 
Protocol for development of a reporting guideline 
(TRIPOD-AI) and risk of bias tool (PROBAST-AI) for 
diagnostic and prognostic prediction model 
studies based on artificial intelligence. BMJ Open. 
2021;11(7):e048008. doi:10.1136/bmjopen-2020-
048008 
 

60. Altman DG, McShane LM, Sauerbrei W, Taube 
SE. Reporting recommendations for tumor marker 
prognostic studies (REMARK): explanation and 
elaboration. BMC Med. 2012;10:51. doi:10.1186/1 
741-7015-10-51 
 

61. Rivera SC, Liu X, Chan AW, Denniston AK, 
Calvert MJ. Guidelines for clinical trial protocols for 
interventions involving artificial intelligence: the 
SPIRIT-AI extension. Lancet Digit Health. 2020;2 
(10):e549-e560. doi:10.1016/S2589-7500(20)30219-3 
 

62. Janssens ACJW, Ioannidis JPA, Bedrosian S, et 
al. Strengthening the reporting of genetic risk 
prediction studies (GRIPS): explanation and 
elaboration. Eur J Epidemiol. 2011;26(4):313-337. 
doi:10.1007/s10654-011-9551-z 
 

63. Moher D, Hopewell S, Schulz KF, et al. CONSORT 
2010 Explanation and Elaboration: updated 
guidelines for reporting parallel group randomised 
trials. BMJ. 2010;340:c869. doi:10.1136/bmj.c869 
 

64. Steyerberg EW, Moons KGM, Windt DA van der, 
et al. Prognosis Research Strategy (PROGRESS) 3: 
Prognostic Model Research. PLOS Med. 2013;10 
(2):e1001381. doi:10.1371/journal.pmed.1001381 

65. Mallett S, Royston P, Dutton S, Waters R, Altman 
DG. Reporting methods in studies developing 
prognostic models in cancer: a review. BMC Med. 
2010;8(1):20. doi:10.1186/1741-7015-8-20 
 

66. Altman DG, Royston P. What do we mean by 
validating a prognostic model? Stat Med. 2000;19 
(4):453-473. doi:10.1002/(sici)1097-0258(2000022 
9)19:4<453::aid-sim350>3.0.co;2-5 
 

67. Dieren S van, Beulens JWJ, Kengne AP, et al. 
Prediction models for the risk of cardiovascular disease 
in patients with type 2 diabetes: a systematic review. 
Heart. 2012;98(5):360-369. doi:10.1136/heartjnl-
2011-300734 
 

68. Reilly BM, Evans AT. Translating Clinical Research 
into Clinical Practice: Impact of Using Prediction 
Rules To Make Decisions. Ann Intern Med. 2006; 
144(3):201-209. doi:10.7326/0003-4819-144-3-200 
602070-00009 
 

69. Bossuyt PM, Reitsma JB, Bruns DE, et al. The 
STARD Statement for Reporting Studies of Diagnostic 
Accuracy: Explanation and Elaboration. Ann Intern 
Med. 2003;138(1):W1-12. doi:10.7326/0003-4819-
138-1-200301070-00012-w1 
 

70. Liberati A, Altman DG, Tetzlaff J, et al. The 
PRISMA Statement for Reporting Systematic Reviews 
and Meta-Analyses of Studies That Evaluate Health 
Care Interventions: Explanation and Elaboration. 
PLOS Med. 2009;6(7):e1000100. doi:10.1371/jou 
rnal.pmed.1000100 
 

71. Artificial Intelligence in Healthcare. O Reilly 
Online Learning. Accessed August 31, 2025. 
https://www.oreilly.com/library/view/artificial-
intelligence-in/9780128184394/ 
 

72. Lu C, Ahmed SR, Singh P, Kalpathy-Cramer J. 
Estimating Test Performance for AI Medical 
Devices under Distribution Shift with Conformal 
Prediction. arXiv. Preprint posted online July 12, 
2022. doi:10.48550/arXiv.2207.05796 
 

73. Collins GS, de Groot JA, Dutton S, et al. 
External validation of multivariable prediction models: 
a systematic review of methodological conduct 
and reporting. BMC Med Res Methodol. 2014;14 
(1):40. doi:10.1186/1471-2288-14-40 

https://www.oreilly.com/library/view/artificial-intelligence-in/9780128184394/
https://www.oreilly.com/library/view/artificial-intelligence-in/9780128184394/

