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ABSTRACT

Obijective: To evaluate the extent to which clinical artificial intelligence
(Al) and machine learning (ML) models prioritize updating, transparency,
and demographic reporting in the published literature.

Patients and Methods: This study conducted a systematic review of clinical
Al/ML models using PRISMA guidelines from March 2020 until December
2021. A new checklist and scoring system were introduced to assess model
quality, with additional evaluation of demographic reporting, particularly
by ethnicity and race. A comprehensive search was performed across six
major databases, including Ovid Embase, MEDLINE, and Cochrane Library.
Across various study designs, eligible studies included human-based
predictive or prognostic AI/ML models using supervised learning and at
least two predictors. Studies not meeting these criteria were excluded.

Results: Out of 390 Al/ML studies reviewed, only 9% mentioned plans or
methods for future model updates. The vast majority (98%) of models were
still in the research phase, and only 2% had reached production. Additionally,
only 12% adhered to best practices in model development, and 84% failed
to report demographic compaosition by race or ethnicity.

Conclusion: These findings highlight key limitations in the current clinical
Al landscape—especially a lack of transparency, limited readiness for
deployment, and minimal consideration for inclusivity or generalizability.
Greater focus on model updating, adherence to development standards,
and demographic transparency is essential to improve the safety, reliability,
and equity of clinical Al/ML models.
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Introduction

There is a surge in healthcare artificial intelligence (Al)
and machine learning (ML) algorithms due to their
potential to improve clinical efficiency and overall
quality of care!. These algorithms can automate
insights directly from data without using standard
computer programming and analyze large data
sets with high dimensionality to yield insights and
predictions on complex associations without prior
assumptions from traditional statistical methods,
differentiating Al and ML models from other statistical
models?*. Supervised and unsupervised learning are
the two general methods of gaining insights from data
in Al: supervised learning involves making predictions
based on a set of prespecified input, references, and
output variables, whereas unsupervised learning is
used to draw inferences from data sets consisting
of input data without labeled responses®.

Just like biological systems undergo programmed
cell death, a well-known characteristic of Al and ML
algorithms is that their performance degrades over
time due to the occurrence of model calibration
(calibration drift), which refers to a shift in the accuracy
of risk estimates in terms of the agreement between
the predicted risks of events and their actual observed
frequencies®. Calibration drift arises due to deploying
amodel in a dynamic environment, with the resulting
difference between the population or setting in
which the model was trained and that in which it was
implemented’.

Patient-level algorithm predictions must prioritize
consistency and accuracy due to the risk of patient
harm; therefore, an appropriate model-updating
process is essential across the model's lifetime®. The
best practice is to update a clinical model rather
than abandon the model, build another, or repeat
the selection of predictors, which leads to a loss of
the previous scientific information captured®°,

The existence of multiple models for the same clinical
scenario without model-updating methods declared
ab initio leaves clinicians uncertain of which model
is appropriate to use®. For example, there are more

than 80 models for the prognosis of stroke!, more
than 20 models predicting intensive care unit stay
after cardiac surgery*?, more than 100 published
algorithms for prognosis after neurotrauma*®, and
over 50 models to predict outcomes after breast
cancer“.

Subtle population demographic changes, in addition
to changes in healthcare access and the heterogeneity
of health insurance coverage (health disparity), can
also deteriorate a model's future output™**. Changes
in best practice clinical guidelines and variations in
practice preferences across different healthcare
providers can also be a source of data shift, resulting
in sub-optimal model output'-®1°16-20 Health centers
can update or change aspects of their information
systems, database and data archiving systems, and
digital health tools such as imaging software and
EHRs. In addition, there is constant change in clinical
nomenclature and disease coding, which can also
affect the output?’. The healthcare regulatory
landscape is constantly evolving as well?*%, The
enactment of the Affordable Care Act was associated
with many sweeping reforms to healthcare delivery
and redefining value in healthcare delivery®*, and,
as such, a model built to produce outputs based on
previous standards of care will likely be suboptimal.

Most Al tools are developed based on the nuances
of specific local healthcare workflows and the data
they generate; for example, consider an algorithm
developed to predict sepsis based on a patient's
lactate level. The algorithm will learn to correlate
the physician's lactate orders with a high possibility
of sepsis; however, model quality would be
reduced if a policy change required more frequent
ordering of lactate tests. Model validation will show
reduced performance in this situation, as the
learned pattern does not generalize across sites and
circumstances'>?®33, |n addition, there is systemic
bias in the geographic distribution of patient
cohorts, as algorithms trained on US data were
disproportionately trained on patients from just 3
states (New York, California, and Massachusetts)®.
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Label and causality leakage phenomena occur when
the model's prediction target is directly or indirectly
present in the training data set®. An example is a
model developed to predict hospital mortality in
patients admitted to the intensive care unit. An Al
model trained naively on all data will learn to correlate
extubating and turning off the ventilator with the
death of a patient and ultimately produce a near-
perfect predictive performance yet with absolutely
no clinical utility?®. Causality leakage in the clinical
model can occur in a situation whereby a clinician
orders a test based on a high index of suspicion of a
clinical outcome that the algorithm is meant to predict;
the algorithm then uses the test to generate an alert
that results in an action?’.

The need to prioritize model updating is equally
significant in the application of Large Language
Models (LLMSs). Generative Atrtificial Intelligence (Gen
A.1)?829 types of LLM, such as Generative Pre-trained
Transformers (GPT), are gradually being integrated
into various aspects of healthcare operations and
clinical care®. Applications include medical text
summarization, translation, clinical decision support,
clinical documentation, patient education, adverse
effect detection, and clinical research data
management® Gen A.l. models differ from traditional
rule-based systems as they operate on much higher
data dimensionality and volume. For instance, GPT-4
was trained on data with one trillion parameters
(OpenAl)?22_ Another defining characteristic is the
use of techniques like Reinforcement Learning from
Human Feedback (RLHF), which incorporates few-
shot learning and chain-of-thought reasoning®.
However, LLMs also present challenges such as a
lack of explainability, hallucinations, bias propagation,
overdependence bias, and the potential weakening
of clinicians’ critical thinking abilities®'. The complexity
of Gen A.l. models, coupled with their lack of complete
explainability—leading to issues such as hallucination
and bias propagation—underscores the importance
of model updating, especially for Gen A.l. and LLMs™®,

Agentic Al systems are models that can act
independently and autonomously to achieve

predefined objectives®. Although many modern Al
implementations combine both capabilities of Gen
A.l and agentic A.l, the autonomous state of agentic
A.I models sets them apart from Gen A.I*. Considering
that these higher level models are built on multiple
layers of neural networks and volumes of data, the
need for their model updating becomes even more
important to ensure safety and continuity. There are
several methods that address the data shift required
to update models#23>3%, The least complex method
involves adjusting the model intercept to a different
prevalence or incidence rate according to the new
population assuming risk factors still confer the same
level of risk. Another option is to adjust the population
prevalence rate and add a single adjustment to all
risk factors in the model; one or more risk factor
relationships may also need to be adjusted, given the
changes in relationships over time. A more complex
method involves adjusting both the prevalence and
the coefficients and adding new risk factors into the
model. The last option involves refitting the entire
model based on a new data sample, either alone or
in combination with the addition of new potential
risk factors; this essentially remodels the problem
from scratch based on a new sample®.

Real-time calibration drift detection and updating
is the most computationally intensive approach;
however, real-time detection provides users with
the peace of mind that their models are accurate at
the time of use without requiring manual steps®¢. A
similar approach is incremental updating, in which
models are updated based on new instances as they
become available®=¢, Fixed and batch updating at
specified intervals is another option, with models
evaluated and updated at specific intervals®>2°,

Generally speaking, Gen A.l and Agentic Al models
can be updated by the following methods; long
context, fine tuning and Retrieval-augmented
generation (RAG)**°, RLHF (Reinforcement Learning
from Human Feedback)*“*;RLAIF (Reinforcement
Learning from Al Feedback), experience-based
learning, iterative optimization, self-reflection®?43,
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Our main study obijective is to evaluate clinical model
updating in peer-reviewed Al and ML models and
assess model updating practices used in direct
patient-provider clinical decision-making. Phases of
model development pertaining to applicability and
reproducibility (model updating, impact assessment,
and implementation) have received less attention in
the scientific literature®*. Clinical model-updating
processes seek to prevent model deterioration with
adverse consequences of model inaccuracy. The
lack of model updating in clinical settings can impact
the generalizability and reproducibility of clinical
models*. The model-updating processes of clinical
algorithms should be determined proactively from
the time of initial model development?*#* to ensure
patient safety and quality of care. Additionally,
identifying possible algorithmic risk in the form of
pre-deployment risk assessment should be an
integral part of determining the level of aggressive
ongoing auditing and reassessment required during
model implementation.

Methods

INCLUSION AND EXCLUSION CRITERIA

Our original protocol was developed based on the
PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) protocols*. All studies
that were published from March 2020 until December
2021 were reviewed (Textbox 1). We chose to include
papers from March 2020 to December 2021 because
we were more interested in the latest model updating
practices amongst healthcare Al models that have
contemporary implications on patient safety. Bearing
in mind, the rapid acceleration of Al implementation
in healthcare settings, this duration corresponded
to the previous recent years as at the time of our
review and literature search. Studies were included
without geographic or regional preferences. More
detailed justifications for our inclusion and exclusion
criteria items can be found in our earlier published
protocol of this systematic review*. Failure to meet
eligibility criteria resulted in exclusion from the
review (Textbox 2).

OUTCOMES

The primary outcome of this scoping review is the
percentage of published algorithms that prioritize
model-updating methods (model updating is
considered prioritized if it is part of the algorithm
protocol). We identified the type of relationship
between studies that prioritize model updating and
the following model characteristics: geographic
region, quality of studies and by setting of model
development. In addition, we assessed how frequently
EHR records were used for model development*™°.

As a secondary end point, we captured the amount
(percentages) of models reporting the demographic
breakdown of their data (ethnic background and
gender); this is of particular importance owing to
potential societal harm and resulting Al and ML
algorithm setbacks due to the use of nonrepresentative
data*.

SEARCH STRATEGY

A comprehensive literature search was conducted
using the following databases: Ovid Embase, Ovid
MEDLINE, Ovid PsycINFO, Web of Science Core
Collection, Scopus, and the Cochrane Library.
Searches were originally limited to articles published
from January 1, 2018, to December 31, 2021,
however, the study team decided only to include
articles from March 2020-December 2021. We
were more interested in the latest model updating
practices amongst healthcare Al models. Bearing
in mind, the accelerating wave in Al evolution, this
duration corresponded to the previous recent years
as at the time of our review and literature search.

The search strategy for each database was developed
by a medical librarian (SW) in concert with the rest
of the team. Each search strategy used a combination
of keywords and subject headings related to ML,
predictive algorithms, medical diseases and disorders,
and study design (Appendix A).

MODEL ANALYSIS

To evaluate the reporting quality, we adapted a
verified tool available for model quality assessment®.
The CHARMS is an 11-item checklist, with each

© 2025 European Society of Medicine 4
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item created to assess the model on the domains
of risk of bias and applicability (Appendix B). The
checklist is a comprehensive guide created from a
combination of eight other published guides that
include both criteria to ascertain applicability and
reproducibility with implications for patient safety,
as well as technical validity of a model's results,
some of which are beyond the scope of our review.

CREATION OF A CLINICAL MODEL QUALITY
ASSESSMENT TOOL (MODIFIED CHARMS
CHECKLIST)

We created our quality assessment checklist by
extracting criteria that are more specific to applicability
and reproducibility analysis that could potentially
impact patient safety and quality of care at the clinical
model deployment level, resulting in our six-item
checklist for study quality assessment (Textbox 3).

Our goal was to focus on established factors and
best practices that indicate a study's applicability
and low risk of bias to ensure generalizability beyond
the model's technical output as follows®>>>4;

o Applicability: the extent to which the study
fits within the inclusion and exclusion criteria

e Risk of bias. the extent to which any flaws in
the study lead to overly optimistic estimates
of predictive performance measures

e Generalizability. the degree to which the study
results are relevant to the larger population

e Reproducibility: the ability to duplicate the study
using the same methods as in the original
study

The target users of our modified checklist are clinicians
interested in the objective assessment (based on the
dimensions of applicability and reproducibility) of
published Al/ML models who may not be technically
savvy about the inner workings of data science or
machine learning algorithms.

The original CHARMS checklist comes with some
technical variables that are more advanced than the
comprehension of such clinicians and some variables
that are not directly related to applicability and

reproducibility, hence our rationale for the creation
of the modified checklist.

A total of five items out of our six-item checklist were
adapted from the CHARMS checklist (CHARMS
checklist has 11 items); our last criterion, the model
development checklist standard, was obtained from
the literature review of best practices for model
development.

Our determination of criteria that are more specific
to applicability and reproducibility at the level of care
was based on the recommendation of the CHARMS
checklist as published by Moons et'al®’. In the
published CHARMS checklist, apart from identifying
the 11 domains of model quality assessment, they
also highlighted specific items within the domains
that impacts applicability, generalizability and overall
model quality.

Since our goal is to assess model applicability and
generalizability at the clinical level and not to evaluate
the technical validity of healthcare models, we took
the initiative to exclude domains that focus on
technical validity and with less impact on applicability
and generalizability as per CHARMS checklist
recommendations. We then unanimously excluded
these six domains listed below from the CHARMS
checklist leaving us with five domains to build our
modified CHARMS checklist.

. Participants

. Candidate predictors
Sample size

Model development
. Model performance

. Results.

oA wWN R

Our 6th checklist item (Model development and
reporting standards) was included based on our
findings from literature search showing that adhering
to a model development and reporting standard can
ensure study reproducibility and applicability®>*’.

Most clinical models do not declare any model
development and reporting standards they may have
adopted. Despite the availability of these guidelines,
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there is poor overall reporting of adopted model
development standards in many published Al
models>+-°6:38

We reviewed the following reporting standards as
part of our literature review for this study; SPIRIT-
Al (Standard Protocol Items: Recommendation for
Interventional Trials-Artificial Intelligence), CONSORT-
Al (Consolidated Standards of Reporting Trials-
Artificial Intelligence), TRIPOD (Transparent
Reporting of a Multivariable Prediction Model of
Individual Prognosis Or Diagnosis), REMARK
(Reporting Recommendations for Tumour Marker
Prognostic Studies), and GRIPS (Genetic Risk Prediction
Studies)>*-%’.

RATIONALE FOR CHECKLIST ITEMS

Checklist Items Adapted from the CHARMS
Checklist:

e Study Design/Data Source for Model
Development: The data used to develop the
algorithm may be sourced from retrospective
and prospective cohorts including RCTs and
cross-sectional studies. In addition, there is a
proliferation of sourcing model data from
registries, databases, and EHRs. Although RCTs
are considered the gold standard, they also
have shortcomings similar to all other methods.
Although RCTs are designed to reduce biased
outcomes, their findings can lead to impaired
generalizability of outcomes in real-life clinical
scenarios owing to the rigid eligibility criteria
of study participants. Data sources for model
development are critical for the predictive
accuracy, applicability, and reproducibility of
any algorithm?5%64

e Outcomes: the lack of well-defined study
outcomes increases risk of bias and adversely
affects model reproducibility in real-life clinical
scenarios®. For example, 40% of cancer
prognostic model studies were found to have
poorly defined outcomes®. For our quality
assessment, a well-defined outcome is
considered to occur when the definition and

measurement of the outcome events or target
disease clearly correspond to the outcome
definition of the study objective®

Model testing and evaluation methods: model
validation is the process of quantifying model
performance in other individuals beyond the
training and testing data set used to develop the
model®. Whenever the predictive performance
of a model is estimated using the same data
set that was used to develop the model, it is
referred to as “apparent performance”>.
Regardless of which modeling technique is
used, apparent performance tends to be biased,
as it can overestimate performance relative to
the performance of other individuals. It is very
important that all models be evaluated in an
independent data set (external validation)
before deployment®. Externally validated
models (either temporal or geographic
validation) provided the best insights into the
usefulness of the model for other individuals,
centers or settings, and regions. Several reviews
have shown that external validation studies are
generally uncommon®*%768  as most studies
are only internally validated by a random split
sample of the data into development and
validation samples®. (Table 1)

Model updating method recommendation: in
the event that an existing model shows poor
performance when evaluated in other settings
(geographic or temporal), it is best practice to
adjust, update, or recalibrate the original
model to increase performance®, as there are
well-established methods to achieve successful
model updating. It is also best practice that
the potential techniques for updating a model
on external deployment can be identified before
deployment!?3,

Model interpretation and generalizability
concerns: best practice guidelines for reporting
medical studies recommend discussing
strengths, weaknesses, and future challenges
with regard to the generalizability of the
studies®®%%° For models, these studies should

© 2025 European Society of Medicine 6
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therefore provide insight into the model’s
applicability, usefulness, and intended users®'.
This discussion also serves as a basis for

comparison with other studies. Therefore, our

quality checklist will include a score (1 star) for
a study that mentions the strengths and
weaknesses of their model in the Discussion

section.

Table 1. Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling

Studies.

Domains and key items

General Applicability

Risk of bias

Source of data

Source of data (cohort, case-
control, randomized trial
participants, or registry data)

Participants

Participant eligibility and recruitment
methods (consecutive participants,

location, number of centers, setting,
and inclusion and exclusion criteria)

Participant descriptions

Details of treatment received, if
relevant

Study dates

Outcome to be predicted

Definition and methods for
outcome measurements

Determine if the same outcome
definition and method for
measurement was used in all
patients

Type of outcome (single or
combined end points)

Determine if the outcome was
assessed without knowledge of
candidate predictors (blinded)

Determine if candidate predictors
were part of the outcome (in panel
or consensus diagnosis)

Time of outcome occurrence or
summary of duration of follow-up

© 2025 European Society of Medicine
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Candidate Predictors (or Index Test)

Number and type of predictors
(demographics, patient history,
physical examination, additional
testing, and disease characteristics)

Definition and method for
measuring candidate predictors

Timing of predictor measurement
(patient presentation, diagnosis, v
and treatment initiation)

Determine if predictors were
assessed blinded for outcome and v
for each other (if relevant)

Handling predictors in the modeling
(continuous, linear, and nonlinear N
transformation or categorized)

Sample size
Number of participants and ¥
number of outcomes or events
Number of outcomes or events in
relation to the number of candidate v
predictors (events per variable)
Missing data

Number of participants with any
missing values (including predictors v v
and outcomes)

Number of participants with
missing data for each predictor

Handling of missing data (complete
case analysis, imputation, or other v
methods)

Model development

Modeling methods (logistics, survival,
neural networks, or machine learning v
techniques)

Modeling assumptions satisfied v

Method for selecting predictors for
inclusion in multivariable modeling
(all candidate predictors and v
preselection based on unadjusted

association with the outcome)

© 2025 European Society of Medicine 8
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Methods for selecting predictors
during multivariable modeling (full
model approach backward or forward v
selection) and criteria used (P value
and Akaike Information Criterion)

Shrinkage of predictor weights or
regression coefficients (no
shrinkage, uniform shrinkage, and
penalized estimation)

Model performance

Calibration (calibration plots,
calibration slope, and Hosmer-
Lemeshow test) and discrimination v
(C-statistic, D-statistic, and log-rank)
measures with Cls

Classification measures (sensitivity,
specificity, predictive values, and
net reclassification improvement) N
and whether a priori cut points
were used

Model evaluation

Method used for testing model
performance: development data
set only (random split of data,
resampling methods, bootstrap or
cross-validation, or none) or separate
external validation (temporal,
geographic, different settings, and
different investigators)

In case of poor validation, whether
the model was adjusted or updated
(intercept recalibrated, predictor v v
effects adjusted, or new predictors
added)

Results

Final and other multivariable
models (basic, extended, and
simplified) presented, including
predictor weights or regression v v
coefficients, intercept, baseline
survival, and model performance
measures (with SEs or ClIs)

© 2025 European Society of Medicine 9



A scoping review of Al/ML algorithm updating practices for model continuity and patient safety using a simplified checklist

Any alternative presentation of the

nomogram, score chart, and
predictions for a specific risk
subgroup with performance)

final prediction models (sum score,

Comparison of the distribution of
predictors (including missing data)
for development and validation
data sets

Interpretation and discussion

(confirmatory, model useful for
practice vs exploratory, and more
research needed)

Interpretation of presented models

Comparison with other studies,
discussion of generalizability,
strengths, and limitations

Other CHARMS Checklist Items

The remaining 6 items in CHARMS were excluded
from our assessment tool because they were already
considered during the initial screening stage of our
review process (participant characteristics and
predictors). We also excluded items that focused on
technical assessment, as that is beyond the scope
of our study objective of real-life clinical applicability
(technical process of model development, model
performance, results, and sample size). Although the
checklist still needs to be validated, our adapted
checklist captures the essence of our review.

Checklist Items Based on a Literature Review of
Best Practices of Clinical Model Studies: Model
Development Reporting Standards

The best practice standards for reporting primary
prognostic and predictive model studies exist in the
literature® and include SPIRIT-Al (Standard Protocol
Iltems: Recommendation for Interventional Trials-
Artificial Intelligence), CONSORT-AI (Consolidated
Standards of Reporting Trials-Artificial Intelligence),
TRIPOD (Transparent Reporting of a Multivariable
Prediction Model of Individual Prognosis Or
Diagnosis), REMARK (Reporting Recommendations

for Tumour Marker Prognostic Studies), and GRIPS
(Genetic Risk Prediction Studies)*-*'. Adhering to
these guidelines may ensure study reproducibility
and could improve future real-life applications®->’.
Despite the availability of these guidelines, there is
poor overall quality of reporting in many published
Al models>*5%8, Therefore, we have included declaring
areporting standard as part of our checklist (reporting
standard scores will receive 1 star).

For each checklist item fulfilled by the study reviewed,
studies will be scored with 1 or 2 stars as described
above, with a possible maximum score of 10 stars
for each study.

Quantitative assessment of the quality of the
reviewed studies using our modified CHARMS
checklist

Based on our literature search, it was evident that
there is no universally accepted standard definition
for assessing the quality of studies and evaluating
the risk of bias in research papers related to our
study. To address this, we established a baseline
for quality assessment in this study:

© 2025 European Society of Medicine 10
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Research Study Design and Handling of Missing
Data. For studies conducted using randomized
controlled trials, we assigned 2 points. For other
research sources and designs, including cohorts,
registries, and convenience sampling, 1 point each
was allocated.

Articles demonstrating effective handling of missing
data were assigned 1 point. This criterion is not to
assess the level or degree of missing data in a study
enough to affect its technical validity. Rather, we are
interested in whether the studies have declared how
they handled missing data. As such, this criterion has
a binary answer; either they declared it or did not
declare it.

Clearly Defined Primary Outcome: Studies explicitly
defining their primary outcome were given 1 point.

Model Testing and Evaluation Methods. Because
of the higher impact of external validation on model
applicability in real-life clinical scenarios, we prioritize
these models in our checklist. Research papers that
incorporated separate external validation methods
spanning geographical, temporal, and population
variations received 2 points. Studies relying solely on
the same development data for validation, including
random splits like 80/20 or 70/30 and reassembly
techniques (e.g., bootstrap and cross-validation),
were allocated 1 point.

Model Updating Information. The primary outcome
of our review is the proactive determination of
possible model-updating methods. As such, we
will prioritize any study that proactively suggests a
model-updating method as part of its study method
by scoring it as 2 points.

Declaration of Model limitations and strength. If a
paper included an evaluation of the model's strengths,
weaknesses, and risk of bias, it was given 1 point. If
this information was absent, no points were awarded.

Adherence to Model Development and Reporting
Standards. If the study conformed to recognized
best practice standards for model development and
reporting, and if it cited relevant standards such as

CONSORT-AI, SPIRIT-Al, DECIDE-AI, NEUR-UPDA
ML, TRIPOD-ML, PROBAST-ML, and STROBE, it
received 1 point.

A study was considered to meet the baseline if it
scored at least 5 points (Textbox 4), with a basic
acceptable score being 5, in the following categories:
Study design (1 point); Handling of missing data (1
point); Well-defined primary outcome (1 point);
Adequate model testing and evaluation methods (1
point); Model update (N/A); Model interpretation
and limitation concerns (1 point); Model reporting
and development standard (N/A). Subsequently, we
also created a new variable named "quality baseline,"
which was categorized as either "yes" for papers
meeting the quality baseline (i.e., scoring 5 points or
more) or "'no" for those falling short of this baseline.
This quality assessment framework provided a
structured approach for evaluating the research
papers in our study.

STUDY SELECTION AND DATA EXTRACTION

All search results were imported into Covidence
software for deduplication and screening®:. Covidence
facilitates a blind review process, and results from
multiple databases can be imported, deduplicated,
and screened for eligibility. Following the title and
abstract screening phase, the full text of all included
abstracts were gathered and imported into the
Covidence software. Covidence created a PRISMA
flowchart and facilitated data extraction and quality
appraisal phases®.

Two reviewers (team members A.O and H.S) used
the Covidence software to screen the title and
abstract of each article and the full text of all included
abstracts. Two independent reviewers resolved
disparities whenever there was a lack of agreement
in the papers selected.

Data extraction and quality assurance were conducted
by all team members simultaneously using the
Covidence software. For any particular data point
to be accepted, at least two reviewers must agree
with the data extracted. It was also set up to resolve
conflict between two reviewers by allowing for a third
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reviewer to serve as a tiebreaker in any particular
study with a contested data point.

STATISTICAL ANALYSIS

The screening process was documented and
presented using the PRISMA flow diagram (Figure 1).
Prior to title and abstract screening, the review
team met to screen a random sample of 50 records
to validate the inclusion and exclusion criteria.

For each checklist item fulfilled by the study reviewed,
studies were scored with 1 or 2 points as described
above in Textbox 3, with a possible maximum score
of 10 stars for each model reviewed.

Our preliminary search on geographic clusters of
reported Al adoption and model implementation
revealed that Al and ML adoption is mostly clustered
in the United States, Canada, the United Kingdom,
Australia, the European Union, China, Taiwan, and
Israel**%°, We added the following categories to
our geographical regions based on the clusters of
models from our preliminary results: Japan, Korea,
India, Pakistan, South America, Other Asia, and Others
(other countries not specified in the predefined
categories).

After extracting data from the studies, we conducted
a narrative synthesis. Data were summarized using
descriptive statistics, figures, and tables for
visualization. Categorical data were presented as
percentages. The distribution of continuous data
such as sample size and the number of predictors
were described using means and SDs for normally
distributed data using median and 25" and 75"
percentiles for nonnormally distributed data. The
results were characterized by study design, outcomes,
service delivery type, ML techniques, and model-
updating properties.

ETHICS APPROVAL

On August 13, 2021, our systematic review protocol
was registered with the International PROSPERO
(Prospective Register of Systematic Reviews)
CRD420212454707. Our protocol was developed
based on the PRISMA-P (Preferred Reporting Items

for Systematic Reviews and Meta-Analysis Protocols)
2015 statement*. Our study does not require an
ethics committee review because our research
does not directly involve human subject data, and
it was conducted on publicly available data from
published articles.

DEVIATION FROM OUR REGISTERED PROTOCOL
The main deviation from our registered protocol was
the duration of studies included in the systematic
review. Our initial protocol was to include the previous
ten years of A.l research. We included only the last
two years to capture the latest Al study characteristics
in the review as explained in our method section
above.

Results

The search resulted in 390 articles for exaction. Most
aims of these publications were predictive in nature
(300, 75.8%) and carried out in academic centers
(261, 66%), with mainly neural network algorithms
(288, 72.7%) (Table 2;). Cardiology (67, 16.9%),
Neurology (55, 13.9%), Respiratory (47, 11.9%), ID
(38, 9.6%), and GU (33, 8.33) models were most
prevalent (Table 2; Figure 3). Most models were
also in the research phase (388, 98%); only (8, 2%)
were in the production phase. Geographically, most
models in our sample were from China, Taiwan, EU,
US, Japan, and Korea (Figure 2). Only 16% of the
models were built using accessible open data
registries.

Based on our endpoint and quality assessment tool
components (Modified CHARMS checklist) (Table
3), only 6% of the total studies were randomized
controlled trials (RCTs). Furthermore, a mere 9% of
studies attempted to ensure the model would be
updated in the future; over half of the studies (53%)
neglected to declare their approach to handling
missing data. Furthermore, only 32% of these studies
accurately defined their primary outcomes, and a
mere 27% diligently tested their models using external
validation methods; only 12% reported following a
best practice standard.
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Table 2. Study characteristics

Characteristics

Results

Total 396 Numbers (%)
Publication Setting
Academic 261 (65.91)
Non-academic medical center 112 (28.28)
Vendor/Industry 12 (3.03)
Governmental 11 (2.78)
Study Aim
Predictive 300 (75.76)
Prognostic 96 (24.24)
Disease-biological system of study
Neurology 55 (13.89)
Endocrinology 29 (7.32)
ENT 6 (1.52)
Cardiovascular 67 (16.92)
Respiratory 47 (11.87)
Gastroenterology 27 (6.82)
Genitourinary 33(8.33)
Orthopedics/MSK 31 (7.83)
Infectious disease 38 (9.60)
Dermatology 2 (0.51)
Multi-systemic 28 (7.07)
Rheumatology 7(1.77)
Hematology Oncology 8 (2.02)
Other: Anesthesiology 1(0.25)
Other: ICU 2 (0.51)
Other: Ophthalmology 7(.77)
Other: Opioid 2(0.51)
Other: Patient Priorities Care 2(0.51)
Other: Surgery 1(0.25)
Other: Traumatology 1(0.25)
Other: cognitive function 1(0.25)
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Type of algorithm

Traditional machine learning 9 (2.27)
Deep neural network 288 (72.72)
Both traditional machine learning/deep | 99 (25)
neural networks
Geographical region of publication
Us. 70 (17.68)
Canada 8(2.02)
China/Taiwan 126 (31.82)
UK 12 (3.03)
Australia/New Zealand 5(1.26)
EU 86 (21.72)
Israel 5(1.26)
India/Pakistan 8 (2.02)
Japan/Korea 43 (10.86)
South America 13 (3.03)
Other Asia 14 (3.54)
Other unclassified 5(1.26)
Stage of model implementation
Production/post research 8(2.02)
Research 388 (97.98)
Data sources registry
Closed registry/proprietary 330 (83.33)
Open registry/open source 65 (16.41)
Missing 1(0.25)
Oncology study
Yes 59 (14.90)
No 337 (85.10)
COVID-19 Study
Yes 30 (7.58)
No 366 (92.42)
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Table 3. Primary end point with other items in the quality assessment checklist (Modified CHARMS checklist)

Characteristics Results
Total 396 Numbers (%)
Study design and missing data

RCT 24 (6.06)

Others 371 (93.69)

Missing 1(0.25)
Handling of missing data

Yes 181 (45.71)

No 210 (53.03)

Missing 5(1.26)
Primary outcome is well defined

Yes 127 (32.07)

No 268 (67.68)

Missing 1(0.25)
Model testing and evaluation methods

Yes 107 (27.02)

No 289 (72.98)
Model updating method (primary end point)

Yes 38 (9.60)

No 358 (90.40)
Model limitation and applicability concerns

Yes 302 (76.26)

No 94 (23.74)
Model reporting and development standard

Yes 48 (12.12)

No 348 (87.88)

Based on a two-way T-tests, the average quality
score of studies that recommended model updating
was higher than those that did not recommend any
model updating method t(9394) = 2.5. p<0.001.
There was, however, no significant relationship
between the setting of model development (academic

vs. non-academic) or geographical region and quality
of study scores. A multiple/mixed regression analysis
controlling for site of model development and
nature of the model revealed a positive relationship
between studies that suggested model updating
and higher quality scores.
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In our sample, 31% of worldwide models did not
disclose their gender composition while 23% of US
focused models did not disclose gender (Table 4).

84% of worldwide had no ethnicity composition
reported while 44% of the US focused models did not
show the ethnic composition of their training data.

Table 4. Secondary end points

Characteristics Results; Numbers(%)

Break down by ethnicity Worldwide USA only
Yes 61 (15.40) 39 (55.71)
No 335 (84.60) 31 (44.29)

Break down by gender
Yes 272 (68.69) 54 (77.14)
No 124 (31.31) 16 (22.86)

Discussion

PRINCIPAL FINDINGS AND COMPARISON TO
PRIOR WORK

Our study objective was to evaluate prioritization
of clinical model updating in peer-reviewed/published
Al and ML models that can be used in direct patient-
provider clinical decision-making. We also tested
the relationship between the quality of published
Al clinical models and prioritization of the model
updating process. Our secondary outcomes included
Al/ML model geographic distribution and inclusion
of demographic data.

In recent years, there has been a growing interest
in the development and implementation of clinical
Al/M) models in healthcare to improve patient
outcomes and assist healthcare providers in decision-
making. However, our scoping review reveals that
most studies were primarily predictive rather than
prognostic in nature, suggesting that the focus has
been on predicting and identifying certain conditions
or outcomes (i.e., sepsis, readmission, deterioration
risk, or CDI) rather than assessing long-term prognosis
or patient trajectories. Predictive modeling can be
complex and opaque thereby enhancing the distrust

in Al systems used in clinical practice. Furthermore,
our analysis revealed that neural network algorithms
were the most commonly used given their efficacy
in handling complex medical data but most neural
network algorithms lack clarity due to their opaque
nature (no explainability).

Additionally, our analysis found that the majority of
these studies were conducted in academic centers
where research is prioritized, infrastructure/resources
are available, and there is an established culture of
pedagogy; this is further illustrated by our findings
that most of the studies were in the research phase
and not deployed in a clinical setting. Therefore,
while there is significant interest and potential in
clinical Al/ML models, there are still challenges and
barriers to their widespread adoption in real-world
clinical settings.

Generalizability is defined as the ability of a model
to perform well on datasets that have different
characteristics from training data’. Most Al/ML
models developed in academic centers are trained
on homogenous patient populations that do not
reflect subpopulations found in non-academic
institutions and would generalize poorly in other
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settings. External validation can be used to mitigate
poor generalizability by evaluating model performance
on datasets not used to develop the model”. In our
review, only 27% of the studies externally validated
their models.

Certain subspecialties, such as cardiology, heurology,
respiratory medicine, infectious diseases, and
genitourinary medicine, were the most represented
in terms of the number of AI/ML models developed.
These findings highlight the potential impact of
Al/ML models in these subspecialties and the need
for further research in other areas of healthcare.
Our analysis revealed that a significant number of
studies on clinical Al/ML models were conducted in
China, Taiwan, the European Union, the United States,
Japan, and Korea, indicating a global interest and
involvement in the development of these models
but also an increasing gap between developed
countries with economic resources/infrastructure and
low resource countries. With most Al tools being
developed in these regions, the training data excludes
population characteristics found in these low resource
regions, thereby exacerbating unintended bias and
potentiating poor outcomes. Furthermore, our study
found that only a small percentage (16%) of the Al/ML
models utilized open data registries, highlighting the
need for improved data sharing and accessibility in
the field of clinical Al/ML. Proprietary/closed registry
data negate the ability to independently validate
models, thus going against the cardinal principle of
replicability in research.

Our study showed that a low percentage (6%) of the
total studies were randomized controlled trials while
32% of studies accurately identified their primary
outcomes, suggesting a need for more rigorous
study designs to evaluate the effectiveness of clinical
Al/ML models. Only 12% of the studies reported
following the best practice standard for model
development, while 53% of studies did not explain
how they dealt with missing data. Handling of missing
data can have a large impact on the Al/ML models
outcomes especially when used in healthcare™. In
terms of model updating, our findings indicate that

a small proportion of studies (9%) made attempts to
ensure that AI/ML models would be updated in the
future through recommendations or guidelines. There
was a statistically significant positive relationship
between our model quality scores and models
declaring a model updating method. Quality scores
were not affected by location of study (academic/
non-academic) or by geographic location. When
controlling location of study and nature of model
(predictive/prognostic), studies that recommended
model updating had higher quality scores.

In terms of gender and ethnic composition, our study
found that, worldwide, 31% did not disclose gender
and 84% did not disclose ethnicity. In the US, 23%
of the studies did not disclose gender, and 44% did
not provide ethnicity composition. However, due to
the homogeneity of populations outside of the US,
the lack of disclosure for ethnicity is not as surprising.
Nevertheless, we believe reporting gender and
ethnicity composition in US models is still sub-par
considering the diverse nature of the US population.

STRENGHTS AND LIMITATIONS

There is no standardized, accepted simple checklist
for clinical model assessment. Our results suggest
a positive relationship between studies that
recommended model updating and higher quality
of study scores based on our modified CHARMS
checklist tool. Based on this identified relationship
our modified checklist may be validated further to
serve as a quick validation tool for clinical models
amongst clinicians who are not invested in the rigors
of data science but rather more interested in the
utility, safety, and applicability of a potential algorithm.

With healthcare Al rapidly advancing toward
agentic systems—Al that operates with high levels
of independence and autonomy—we are entering
dangerous territory without adequate safeguards.
Clinicians urgently need accessible, standardized
assessment tools to evaluate these systems before
deployment. Without such checklists, we risk
deploying Al agents that make critical clinical decisions
without proper validation, potentially leading to
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preventable patient harm and medical errors. The
time to act now, before autonomous Al systems are
integrated into clinical workflows without the safety
mechanisms necessary to protect patients.

Study Limitations

Interpretation of our review should bear some
limitations in mind. First, Al and ML implementations
in health care are novel and lack standardization
across different regions and clinical specialty domains.
Although we established our literature search strategy
(Appendix A), this lack of standards can impact on
the scope and sensitivity of our search and render
the reproducibility of our review challenging. While
the terms "Al" and "ML" are included in our search,
terms used to describe models and modeling are
not standardized, and therefore, it is possible that
our strategy did not capture possible emerging or
lesser-known terms. In addition, our search included
only English-language publications, so we cannot
generalize our findings to publications in other
languages. Book chapters, theses, short papers,
editorials, non—peer-reviewed reports, or conference
abstracts were also not included. Another factor to
consider in interpreting our results is that the studies
we reviewed were published during the global
COVID-19 pandemic. The impact of the pandemic
on nature and type of Al and ML studies published
during this time is unknown.

An important limitation to bear in mind is that we
excluded 80 studies that were proprietary and did not
disclose their AI/ML methodologies. Based on this,
we are unable to verify if those studies considered
model updating in their model development due to
their opaque reporting. We cannot verify the extent
to which their models would have skewed our result
if they had actually reported their methodologies.

Conclusion

In conclusion, model updating is an essential part
of the maintenance of a model to ensure optimal
output during implementation. Contemporary
models heavily ignore this important process and
can adversely affect patient safety. There is a need

to report the breakdown of gender and ethnicity
data used to build models. Without this disclosure,
there will likely be a worsening of gender and racial
disparity in the implementation of models similar
to what it obtains in biomedical therapeutics and
device development.

There are no consensus-accepted standards for
evaluating and screening proposed clinical models
at the bedside. Subject to further validation, our
modified CHARMS checklist may serve as a quick
screening tool for clinicians who are not savvy data
scientists. Future considerations include validating
the modified CHARMS checklist to confirm its
applicability for different healthcare models. There is
need for more models assessing long-term prognosis
or patient trajectories rather than the present excess
of models that predict patient immediate conditions
like sepsis. Additionally, we hope that moving forward
more clinical models will utilize open data registries
as training data for ease of independent verification
and enhanced applicability of the model.
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