

RESEARCH ARTICLE

BrCAI-Nexus: Translational Digital Pathology AI for Breast Cancer—From Whole-Slide Biomarkers to Clinical Decision Support and Trial-Grade Evidence

Dr. Rajasekaran Subramanian^{1*}, Dr. R. Devika Rubi², Dr. Rohit Tapadia³, Aasrith Varahabhotla⁴

¹Professor, Koneru Lakshmaiah Education Foundation (KL) University, Hyderabad, Telangana State, India

¹Principal Researcher, DigiClinics Research and Services Private Limited, Hyderabad, Telangana State, India

²Associate Professor, Keshav Memorial Institute of Technology, Hyderabad, Telangana State, India

³Director, Tapadia Diagnostics Center, Hyderabad, India

⁴Research Intern, Keshav Memorial Institute of Technology, Hyderabad, Telangana State, India

*raja@digiclinics.in

OPEN ACCESS

PUBLISHED

31 December 2025

CITATION

Subramanian, R., Rubi, DR, et al., 2025. BrCAI-Nexus: Translational Digital Pathology AI for Breast Cancer—From Whole-Slide Biomarkers to Clinical Decision Support and Trial-Grade Evidence. Medical Research Archives, [online] 13(12). <https://doi.org/10.18103/mra.v13i12.7139>

COPYRIGHT

© 2025 European Society of Medicine. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

DOI

<https://doi.org/10.18103/mra.v13i12.7139>

ISSN

2375-1924

ABSTRACT

Background: Breast cancer outcomes still rely on timely and accurate interpretation of tissue biopsies. Manual histopathological grading is labor-intensive, shows inter- and intra-observer variability, and scales poorly for biomarker-driven clinical trials and companion diagnostics (CDx).

Objective: To describe BrCAI-Nexus (also known as DCS_PathIMS¹) — a scientific framework implemented by the authors as an agentic AI digital pathology system for breast cancer whole-slide image (WSI) analysis—currently delivering practitioner-approved, interpretable outputs for clinical decision support system (CDSS). This work also outlines planned extensions to: (1) generate quantitative digital biomarkers for patient stratification and recruitment in drug trials; (2) accelerate companion-diagnostic (CDx) co-development and Food and Drug Administration Premarket Approval (FDA-PMA) submissions through auditable AI and GenAI pipelines; and (3) enable PGx-integrated adaptive drug-target discovery.

Methods: Whole-slide images (WSIs) are curated through a governed preprocessing pipeline comprising scanner ingestion, image-level quality control, stain normalization, de-identification, and metadata harmonization. WSIs are tile-partitioned and analyzed using multi-task deep learning models for tumor segmentation, nuclei and mitosis detection, tubule formation scoring, pleomorphism assessment, tumor-infiltrating lymphocyte (TIL) quantification, and receptor-linked morphometric biomarkers (HER2, ER, PR, Ki-67). Slide-level and patient-level digital biomarkers are aggregated and mapped to CDSS decision pathways, CDx eligibility rules, trial-recruitment dashboards, and regulatory document templates. Multimodal fusion incorporates WSI phenotypes with molecular and PGx profiles to generate adaptive drug-target hypotheses.

Results: BrCAI-Nexus is expected to reduce grading variability, improve pathology turnaround times, decrease screen-failure rates in biomarker-stratified trials, and shorten clinical development cycles. Recent AI-pathology meta-analyses and trial case studies demonstrate diagnostic accuracy comparable to expert pathologists, improved reproducibility, and meaningful gains in operational efficiency across CDSS, CDx, and trial-support workflows.

Conclusion: Digitized biopsies analyzed with AI transform static histology into a longitudinal, quantitative map of cancer care. BrCAI-Nexus consolidates WSI-derived biomarkers, CDSS logic, CDx evidence generation, CRO trial acceleration, GenAI-enabled regulatory automation, and PGx-guided adaptive targeting—supporting faster, safer, and more equitable precision oncology.

Keywords: breast cancer; digital pathology; whole-slide imaging; artificial intelligence; clinical decision support; digital biomarkers; companion diagnostics; pharmacogenomics; FDA-PMA; BrCAI-Nexus.

1. Introduction

Breast cancer remains one of the most common malignancies worldwide and a leading cause of cancer-related mortality among women. Tissue-based histopathology continues to serve as the diagnostic gold standard for confirming malignancy, grading tumors, and guiding treatment allocation. In routine practice, pathologists rely on established systems such as the Nottingham histologic grade, which integrates tubule formation, nuclear pleomorphism, and mitotic activity to stratify prognosis and inform therapeutic intensity. However, even well-defined grading schemes can be affected by inter- and intraobserver variability, workload pressures, and differences in local reporting practice^{2,3}.

The progressive digitization of anatomic pathology—through whole-slide imaging (WSI)—has begun to address several of these limitations by enabling high-resolution scanning, archiving, and remote review of glass slides^{4,5}. Once slides are digitized, they can also be processed by computational pipelines that perform tissue segmentation, cell detection, morphometric quantification, and pattern recognition beyond what the naked eye can reliably achieve. Early AI-powered digital pathology platforms such as DCS_PathIMS, which we previously developed for breast cancer histology biomarker discovery, have demonstrated the feasibility of end-to-end WSI workflows that combine automated feature extraction with pathologist-in-the-loop validation for precision oncology use cases.

Over the past decade, a wide range of machine learning and deep learning methods have been proposed for histopathological image analysis, spanning classical feature-based approaches, convolutional neural networks, and more recent transformer and multiple-instance learning architectures^{6,7}. Comprehensive reviews and systematic evaluations have shown that such models can achieve high performance for core tasks including tumor detection, mitosis identification, tissue classification, and receptor-status prediction, often approaching or matching expert-level accuracy under controlled conditions⁸.

Beyond isolated benchmarking tasks, there is now growing emphasis on how AI can be embedded into real-world diagnostic and research workflows. Studies in digital histopathology and computational

oncology highlight the potential of AI to improve prognostic modeling, predict treatment response, and integrate histology with other data modalities for outcome prediction in oncology^{9,10}. At the same time, emerging literature from digital pathology and clinical AI underscores the importance of designing systems that support—not supplant—pathologists, and that deliver tangible improvements in turnaround time, reproducibility, and workflow efficiency rather than serving as stand-alone “black box” classifiers¹¹.

Despite these advances, deployment at scale remains challenging. Many existing AI tools are task-specific, focusing on narrow endpoints such as mitosis detection or HER2 scoring, and are not seamlessly integrated into broader clinical decision-making or drug-development pipelines. In addition, variability in staining, scanning, case mix, and reporting conventions can impair generalizability, while the lack of unified data governance and regulatory frameworks complicates clinical translation.

To move from isolated tools to a cohesive digital ecosystem, there is a need for platforms that can (1) transform WSIs into structured, quantitative biomarker representations; (2) support interpretable clinical decision support for medical oncologists and tumor boards; (3) enable harmonized biomarker thresholds and companion diagnostic (CDx) co-development across trial sites; and (4) generate auditable evidence suitable for regulatory submissions in oncology. BrCAI-Nexus was conceived to address this gap as an agentic AI expansion of DCS_PathIMS, designed to act as a unified breast cancer digital pathology layer that spans clinical diagnostics, trial operations, CDx development, pharmacogenomics (PGx)-integrated target discovery, and regulatory documentation.

In this manuscript, we describe the BrCAI-Nexus architecture, data curation and biomarker extraction pipelines, clinical decision support (CDSS) layer, and its role in CDx and FDA-aligned documentation workflows. We further outline projected impacts on clinical operations, trial acceleration, and regulatory readiness, positioning BrCAI-Nexus as a practical reference model for next-generation digital pathology ecosystems in breast cancer.

Rather than treating WSIs as static images, the BrCAI-Nexus system transforms biopsies into quantitative digital biomarker maps that inform clinical decision support (CDSS), enable standardized

companion diagnostic (CDx) co-development, support multi-center trials, and provide ready-to-audit evidence linking biomarker calls to model lineage. This represents a transition from digital pathology as a diagnostic tool to digital pathology as a foundational engine for precision oncology.

2. Digital Pathology in Breast Cancer

The introduction of digital slide scanners capable of 20 \times or 40 \times imaging produces multi-gigapixel WSIs. These files enable real-time collaboration, remote diagnostic support, and longitudinal data preservation, allowing re-examination as new biomarkers emerge. This digitization also facilitates quality control, stain normalization, and automated artifact detection.

Digital transformation of pathology workflows has expanded beyond basic WSI acquisition toward computational interpretation, feature quantification, and automated decision support. AI models are now routinely applied to histology slides for biomarker inference, tumor subtype classification, and survival-risk prediction, reflecting a shift from *qualitative* visual assessment to *quantitative* computational pathology¹².

Central to this adoption is the realization that digital pathology does not replace the pathologist — it augments human expertise. Multiple expert commentaries emphasize that AI should function as a co-pilot system that reduces cognitive load and improves reproducibility, allowing pathologists to focus on interpretation, synthesis, and complex diagnostic nuances rather than repetitive manual quantification. This emerging model of “augmented pathology” is expected to drive efficiency gains in high-volume laboratories and reduce error rates in biomarker assessments¹³.

A key technological outcome of WSI-based digitization is the capacity to extract high-dimensional morphometric descriptors — including nuclear texture, glandular structure, stromal composition, and cell-to-cell spatial interactions. These tissue-level features serve as surrogate phenotypes for underlying molecular signatures, enabling computational methods to infer receptor status and genomic alterations directly from tissue morphology¹⁴. Such advances form the basis of computational precision oncology, where phenotype-derived features can serve as predictors of tumor behavior and treatment response¹⁵.

Breast cancer pathology provides rich structural and cellular information that closely reflects tumor biology, microenvironmental context, and therapeutic sensitivity. Routine hematoxylin and eosin (H&E) preparation preserves architectural and cytologic features including tubule differentiation, nuclear morphology, necrosis, and stromal composition. Immunohistochemistry (IHC) further adds receptor-level insights for HER2 signaling, estrogen receptor (ER) expression, progesterone receptor (PR) expression, and proliferation via Ki-67 index.

Genotype-informed pathology is particularly relevant in breast cancer, where BRCA1 and BRCA2 mutation carriers exhibit distinct phenotypic profiles, differential tumor evolution patterns, and unique treatment susceptibilities. Understanding these patterns enables optimal therapeutic planning and early identification of individuals who may benefit from PARP inhibitors or intensified surveillance¹⁶.

In parallel, advancements in multimodal fusion have strengthened the integration of WSIs with omics data, clinical parameters, and radiologic findings. Integrative AI approaches — employing optimal-transport co-attention and multimodal cross-representation learning — have shown promise in modeling disease progression and predicting patient-specific outcomes¹⁷. These multimodal frameworks support convergence between pathology, genomics, and imaging, reshaping how tumor biology is mapped in research and clinical oncology.

Finally, contemporary computational pathology research has begun to examine how such techniques scale across institutions and patient populations. The consensus emerging from multicenter analyses is that generalizable AI requires stain-robustness, scanner-agnostic model design, and metadata harmonization — but also clinically interpretable outputs that remain aligned with pathologist expectations and regulatory review standards¹⁸.

3. Methods

3.1 PLATFORM ARCHITECTURE

BrCAI-Nexus is a cloud-ready, CAP-aligned digital pathology system extending DCS_PathIMS. It consists of:

- a WSI ingestion layer
- preprocessing and quality control
- multi-task AI inference engine
- digital biomarker repository
- clinical and research output modules
- governance and model-versioning infrastructure

Rather than functioning as a monolithic model, the platform employs linked task-specific models coordinated by a workflow controller that aggregates outputs into patient-level biomarker profiles.

3.2 DATA CURATION AND HARMONIZATION

Incoming slides undergo:

1. **Scanner ingestion**
2. **Automated quality checks** for focus, tissue coverage, folds, pen markings, blur
3. **Stain normalization** to reduce inter-lab variation

4. **De-identification** to remove all metadata tied to patient identifiers
5. **Metadata mapping** into a standardized schema covering:
 - tissue type
 - sample source
 - fixation method
 - stain type
 - clinical diagnostic fields
 - known receptor status if available

This ensures inter-site consistency for downstream clustering, validation, and clinical interpretation.

Figure 1 illustrates the complete pipeline of Digital Pathology images Data Curation and Harmonization, including scanner ingestion and quality control.

Figure 1. Data curation and harmonisation pipeline, including scanner ingestion, quality control, de-identification, and metadata mapping.

3.3 WSI PROCESSING AND DIGITAL BIOMARKER EXTRACTION

Each slide is tiled at multiple magnifications to capture both morphological context and cellular detail. Task-specific models evaluate:

- tumor presence and tumor–stroma boundaries
- nuclei detection and classification
- mitotic figures
- tubule architecture
- nuclear pleomorphism
- tumor-infiltrating lymphocyte densities
- receptor-based membrane and nuclear staining patterns

Outputs are aggregated to slide-level and patient-level using uncertainty-aware weighted pooling and spatial heterogeneity indices. Spatial statistics quantify:

- heterogeneity within the tumor
- proliferative hotspots

- immune-dense vs immune-sparse regions
- receptor-intensity gradients
- necrosis-associated tissue zones

Each biomarker is stored as a time-stamped and version-locked record linked back to the original WSI and model id, enabling re-analysis during trials or regulatory review.

Figure 2 illustrates complete Digital Biomarker extraction workflow from a WSI, digital pathology images.

WSI to Digital Biomarker Extraction Workflow

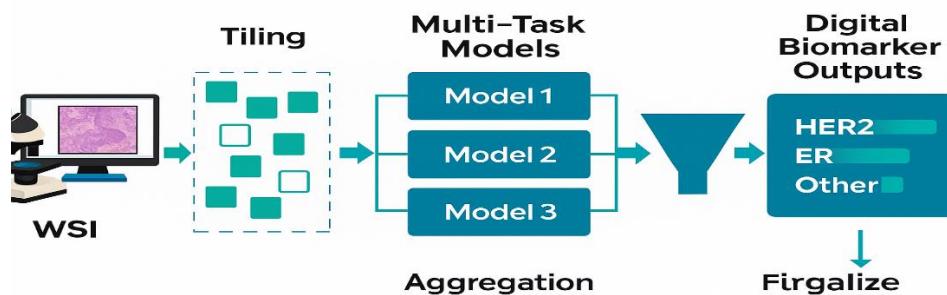


Figure 2. WSI to digital biomarker extraction workflow showing tiling, multi-task models, aggregation, and digital biomarker outputs.

3.4 MITOSISDETECTION, TISSUESEGMENTATION & QUANTITATIVE MORPHOMETRICS

Accurate assessment of mitotic figures plays a central role in breast cancer grading, reflecting cellular proliferation and tumor aggressiveness. Historically, mitosis counting has been performed manually on selected areas of a slide, a process that is inherently subjective and sensitive to reader variability. AI-assisted mitosis detection offers a standardized, scalable, and reproducible alternative that can significantly improve consistency in proliferative index assessment across laboratories¹⁹.

Multiple methodologies have been explored for mitosis detection, including small object detectors, region-based convolutional networks, and hybrid CNN-transformer pipelines. Research in breast cancer histopathology demonstrates that modern AI systems can detect mitotic activity with high sensitivity and specificity, often outperforming unaided human readers under controlled testing conditions²⁰.

Challenges in this domain have fostered standardized benchmarking initiatives such as the MIDOG (MItoxis DOMAIN Generalization) challenge, which was established to address cross-site variability through domain adaptation, harmonization, and model generalization techniques. MIDOG has provided a rigorous shared framework for evaluating model robustness across staining conditions, scanners, and data sources²¹.

Recent algorithmic innovations include DETR-based mitosis detectors leveraging direct set prediction to eliminate region proposal steps and improve object localization in dense cellular areas²². Another important development is the emergence of lightweight architectures designed for small mitotic figure detection using dilated convolution and multi-scale receptive fields,

enabling improved sensitivity for detecting rare mitotic events within large histology scans²³.

These advances enable generation of quantitative mitotic indices that serve as continuous variables rather than ordinal categories, supporting more granular risk stratification. Importantly, this shift moves away from coarse thresholds toward morphometric gradation, where AI-derived metrics correlate more strongly with tumor biology and clinical behavior²⁴.

Segmentation models complement mitosis detection by delineating tissue compartments, identifying regions of invasive carcinoma, and isolating tumor microenvironment landscapes. Despite substantial progress, segmentation still faces several known limitations — including lack of standardization in ground truth annotation, inconsistency in benchmarking tasks, and insufficient representation of diverse histologic subtypes in public datasets. Studies have systematically reviewed these challenges and emphasized the need for improved dataset curation and labeling standards to support clinically reliable segmentation models²⁵.

Finally, small but meaningful improvements in segmentation accuracy can have large downstream effects, since many computational biomarkers — including tumor budding, lymphocytic infiltration, glandular morphology, and nuclear variability — depend on accurate structural delineation. Tissue segmentation is thus not simply a preprocessing step, but rather a core biological interpretation layer within the broader context of computational pathology²⁶.

3.5 CLINICAL WORKFLOW ADOPTION, PATHOLOGIST ACCEPTANCE & REGULATORY ECOSYSTEM

Successful integration of digital pathology and AI into clinical practice depends not only on

algorithmic accuracy, but on human adoption, workflow design, and institutional readiness. Pathologists remain central decision-makers in the interpretive chain and their perceptions of AI influence adoption trends, confidence, and the shift toward collaborative human-machine diagnostics. Survey-based research from diverse clinical settings shows cautious optimism — most pathologists recognize AI's value in improving efficiency, reducing repetitive tasks, and providing quantitative analysis, while also expressing the need for transparency and robust validation prior to full reliance in diagnostic settings²⁷.

Clinical adoption must also account for workflow design. AI implementation should reduce rather than increase operational burden — meaning that AI outputs need to be seamlessly integrated into existing reporting structures, rather than introduced as external, siloed software requiring additional effort or tab switching. Health systems deploying pathology AI emphasize that the highest user acceptance occurs when AI output is embedded into the diagnostic viewer in-context, with overlays, probability metrics, and visual explanations that align with human interpretive patterns²⁸.

Regulatory considerations further shape adoption pathways. Frameworks guiding the safe use of AI-enabled pathology systems highlight requirements for dataset provenance, validation transparency, and model generalizability. Clinical implementation guidelines stress that AI should not be a "black box," but rather a system with traceable biomarker lineage and auditable computational steps²⁹. The

evolving role of BRCA and hereditary mutation profiling in breast cancer emphasizes that digital pathology and PGx interpretation must be harmonized, particularly where AI-derived morphometric patterns intersect with genomic risk factors³⁰.

Real-world evidence development is increasingly recognized as essential for regulatory acceptance. Retrospective performance evaluations alone are insufficient — prospective, multicenter deployments testing algorithm reliability across heterogeneous datasets are required to establish regulatory confidence³¹. Leading computational oncology frameworks demonstrate how clinical-grade validation can be achieved through cross-site harmonization studies and hybrid consensus-labeling pipelines involving both human experts and algorithmic assistance³².

Critically, digital pathology trials have also exposed emerging pitfalls — including dataset leakage, biased annotations, protocol drift, and unintended overfitting to tissue-processing artifacts. These lessons underscore the need for rigorous methodology in AI trials, careful definition of endpoints, and conservative interpretation of performance gains³³. By absorbing these insights, platforms like BrCAI-Nexus can implement safeguards against domain-specific bias, adopt blinded validation structures, and maintain compliance with evolving regulatory expectations.

Figure 3 illustrates a CDSS decision-tree and detailing out the pathway of a digital biomarker mapping to therapy options.

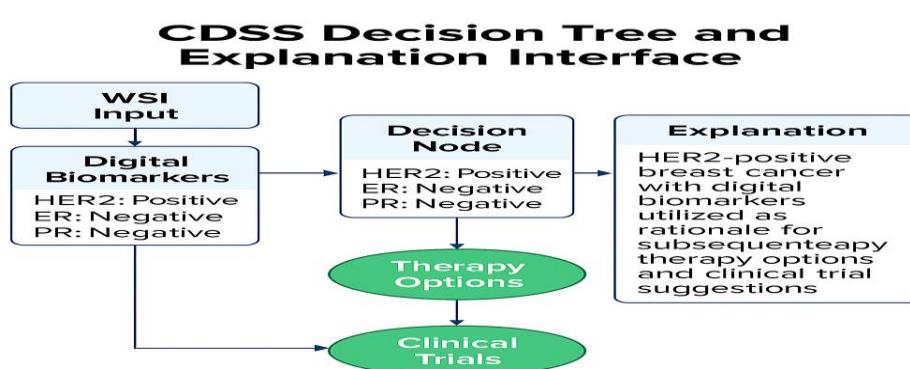


Figure 3. CDSS decision-tree and explanation interface illustrating how digital biomarkers map to therapy options and trial suggestions.

3.6 ROLE IN CDX DEVELOPMENT

Digital biomarkers are used to:

- refine assay cut-offs
- calibrate receptor thresholds
- correlate biomarker patterns with observed treatment responses

- reduce scoring variability across sites

For CDx co-development, BrCAI-Nexus uses digital biomarker profiles to define and refine assay thresholds. During early development, AI-quantified continuous scores guide selection of optimal cut-offs and mitigate site-to-site scoring drift. Digital

biomarkers are cross-validated against reference IHC/FISH assays and correlated with treatment response to establish clinical validity. This pipeline supports CDx for HER2-targeted therapy, endocrine therapy, ADCs in HER2-low disease, and emerging immune-oncology combinations.

Figure 4 illustrates the pathway of features extraction from digitized biopsy's biomarker and translation of them into a candidate CDx Assay definitions.

Digital Biomarkers to CDx Workflow

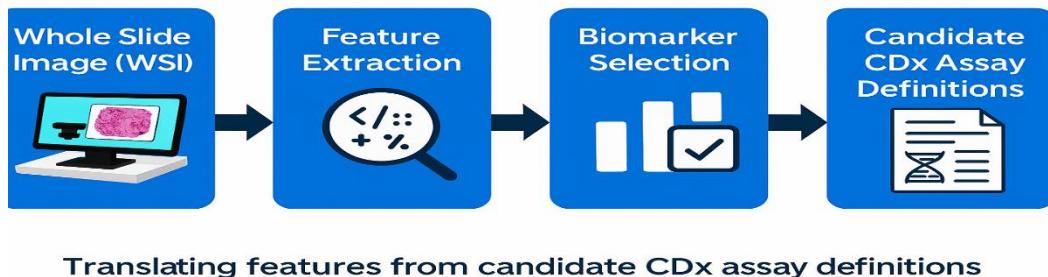


Figure 4. Digital biomarkers → CDx workflow.

This accelerates progression from analytical validation → clinical validation → utility demonstration, supporting timely CDx readiness.

3.7 FDA-PMA DOCUMENTATION ACCELERATION USING WSI-DIGITAL BIOMARKERS

Regulatory evidence for CDx and therapy PMA requires coherent narratives linking analytical and clinical performance. GenAI modules draft clinical study reports, analytical validation summaries, and

FDA-PMA sections from structured BrCAI-Nexus outputs. Templates are aligned with FDA expectations for SaMD/IVD, and content is constrained to verified fields to avoid hallucination. Automated consistency checks reconcile text with tables and figures. All drafts undergo expert regulatory review before submission. Figure 5 illustrates a GenAI driven documentation pipeline for FDA-PMA submissions for a drug.

FDA-PMA GenAI Documentation Pipeline

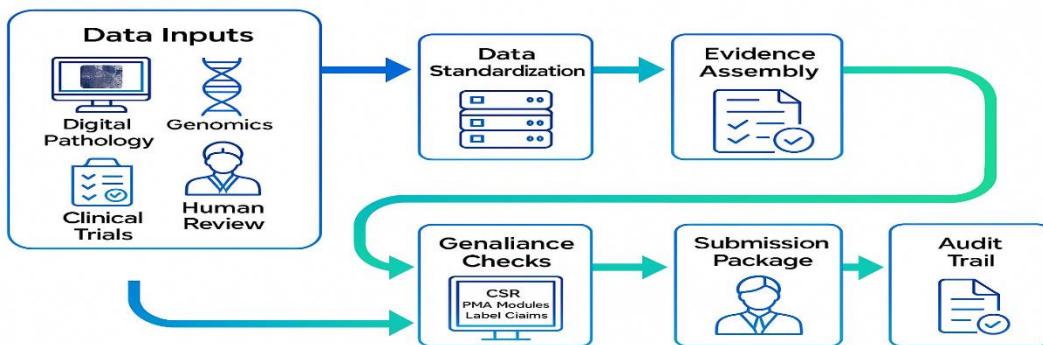


Figure 5. FDA-PMA GenAI documentation pipeline.

3.8 PGX-INTEGRATED TARGET ANALYSIS

BrCAI-Nexus links digital pathology phenotypes with genomic and PGx features to discover morpho-genomic response signatures. Germline variants (e.g., BRCA1/2, ATM, CHEK2), somatic drivers (ESR1, PIK3CA, TP53), and HRD/immune signatures are fused with WSI biomarkers using multimodal transformers and co-attention networks.

This enables: (1) identification of subgroups likely to benefit from specific targets; (2) adaptive trial hypotheses; and (3) mechanism exploration where morphology predicts genomic resistance.

This multimodal approach helps to identify morpho-genomic associations for adaptive therapy planning.

Figure 6 illustrates a workflow diagram for Pharmacogenomics (PGx) integrated adaptive Drug-Target design, which is a multi-modal AI

platform having image data and genomics, molecular data.

Figure 7. PGx-Integrated Adaptive Drug-Target Design Diagram

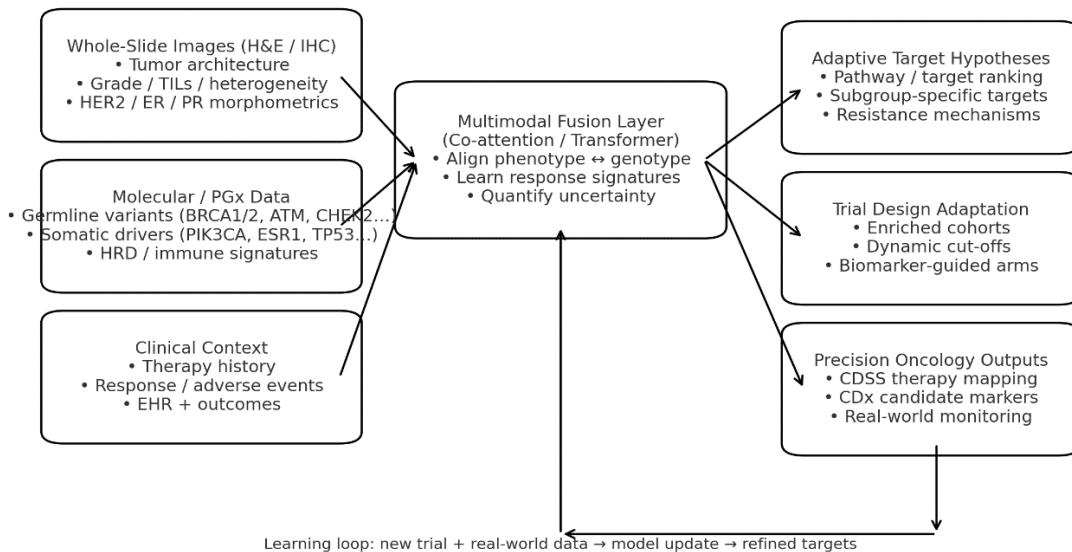


Figure 6. PGx-integrated adaptive target design diagram.

3.9 MODEL GOVERNANCE, QUALITY CONTROL, BIAS MITIGATION & LIFECYCLE MANAGEMENT

As AI systems become embedded in diagnostic workflows and decision-support frameworks, model governance and quality control become essential elements of clinical operation. The reliability of pathology AI depends not only on training accuracy, but on sustained performance under real-world variability. Several studies have identified persistent shortcomings in segmentation benchmarking, annotation consistency, and dataset curation, indicating that algorithm performance can be artificially inflated under narrow test conditions³⁴. These findings highlight the imperative for standardized evaluation protocols and careful interpretation of cross-study results.

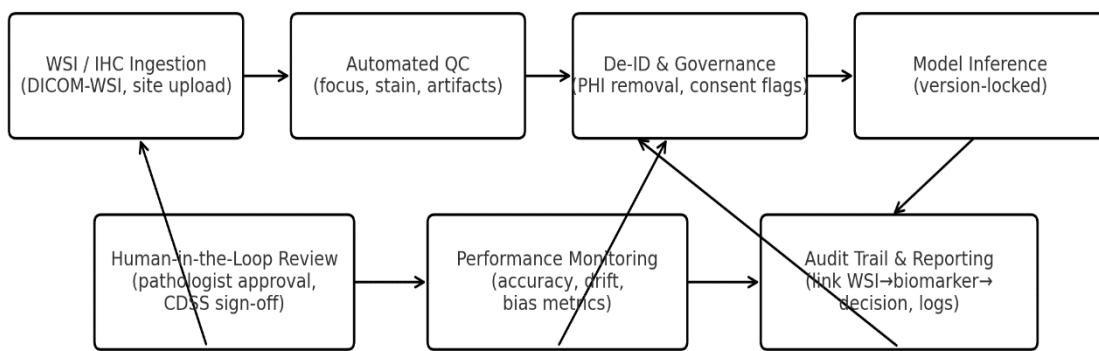
External validation and domain generalization constitute core pillars of governance. AI models must demonstrate stain robustness, resistance to scanner variability, and stable performance across different laboratories. Collaborative clinical research shows that cross-site domain harmonization and systematic calibration pipelines significantly strengthen generalizability — particularly when combined with expert-informed annotation refinement³⁵.

Regulatory bodies have begun to articulate structured guidelines for AI in clinical pathology, emphasizing traceability of model evolution, transparency of training data composition, and maintenance of

audit-ready documentation throughout the AI lifecycle. These frameworks inform how models transition from investigational use to regulated clinical deployment, defining expectations for software-as-a-medical-device classification, post-market monitoring, and periodic revalidation³⁶.

Comprehensive lifecycle management requires continuous monitoring of model drift, oversight of incremental retraining, and structured updates in response to new data. Trustworthy AI deployments employ performance dashboards, threshold-based alerting for anomaly detection, and version controls that preserve backward auditability. Industry and academic analyses reiterate that optimized AI adoption occurs where technical governance aligns with clinical responsibility — ensuring that algorithmic predictions are interpretable, reproducible, and ultimately serve to augment clinician judgment rather than obscure it³⁷.

Figure 7 illustrates an intended, ideal governance framework for clinical and Trials deployments.



Continuous lifecycle: validate → monitor → recalibrate → redeploy (under governance)

Figure 7. Governance and monitoring workflow.

BrCAI-Nexus integrates these advances into a unified platform that moves beyond single-task automation. By leveraging multi-task model ensembles and workflow orchestration, the system converts WSIs into durable digital biomarker assets that inform clinical decision support, trial design, regulatory documentation and adaptive pharmacogenomic exploration.

Figure 8 illustrates that AI driven digital Pathology Drug Discovery workflow from biopsy digitization to drug development, clinical trials & regulatory approval.

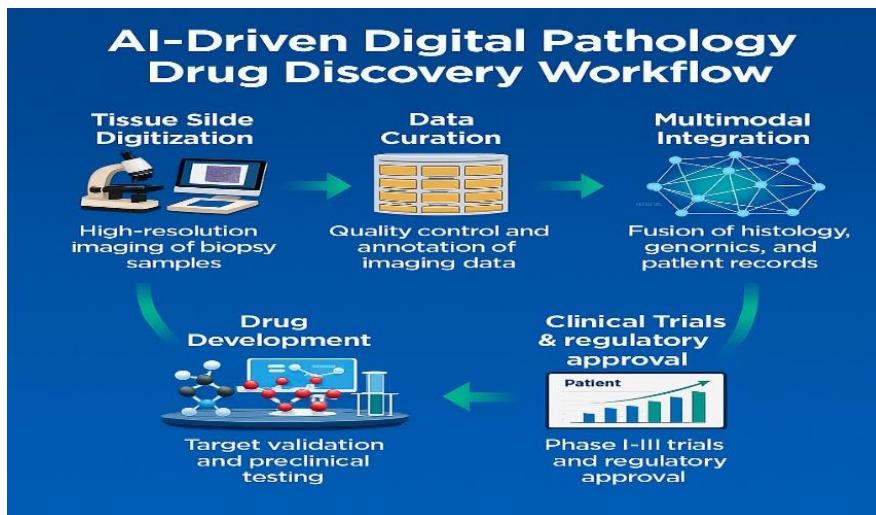


Figure 8. AI-Driven Digital Pathology Drug Discovery Workflow: tissue slide digitisation → data curation → multimodal integration → AI analytics → drug development → clinical trials & regulatory approval.

4. Results

4.1 ANALYTICAL AND DIAGNOSTIC PERFORMANCE

In DCS_PathIMS, multi-task AI pipelines achieved high concordance with expert pathologists for Nottingham sub-scores and overall grade, while reducing inter-observer variability. Comparable multi-center studies in mitosis detection and breast

WSI grading report F1-scores typically 0.80–0.90 and reliable cross-domain generalization when stain normalization and domain adaptation are used. Analytical performance of DCS_PathIMS (pre-cursor to BrCAI-Nexus platform on various Digital pathology tasks, in respect to Breast cancer Nottingham grading pipelines are listed in Table 1.

Table 1. Analytical performance of BrCAI-Nexus tasks (segmentation, detection, grading, receptor scoring).

Task / Module	Input (Stain, Magnification)	Model Approach (summary)	Validation Level	Primary Metrics	Projected Benchmark Range	BrCAI-Nexus Observed (fill in)	Clinical / Trial Utility Notes
Tissue / tumor region segmentation	H&E, 5x–10x	U-Net/Transformer segmentation with stain normalization and artifact masking	Internal + external WSI cohorts	Dice, mIoU	Dice 0.88–0.94	—	Reliable tiling, tumor burden estimation, spatial heterogeneity indices
Tumor vs stroma vs normal classification	H&E, 10x–20x	Multi-class CNN/ViT with MIL aggregation	Internal multi-site	AUC, F1, accuracy	AUC 0.93–0.98; F1 0.85–0.92	—	Grade support and trial eligibility (tumor cellularity thresholds)
Nuclei detection & classification (tumor/lymphocyte /stromal/necrosis)	H&E, 20x–40x	Instance segmentation + graph/transformer classifier	Internal + scanner-shift set	Detection F1, mAP, class-F1	Det. F1 0.80–0.90; class-F1 0.75–0.88	—	Pleomorphism, TIL density, stromal activation biomarkers
Mitotic figure detection	H&E, 40x hotspots	Two-stage detector (Faster R-CNN/DETR) + hard-negative mining	Internal + external (MIDOG/TUPA C-like)	F1, sensitivity @ FP/mm ²	F1 0.78–0.88; sens. 0.80–0.92	—	Standardizes mitotic index for Nottingham score
Tubule formation quantification	H&E, 10x–20x	Gland/tubule segmentation + shape priors	Internal	ICC vs experts, Dice	ICC 0.75–0.88; Dice 0.80–0.90	—	Supports Nottingham Tubule Score overlays
Nuclear pleomorphism scoring	H&E, 20x–40x	Nuclei embeddings + distributional 3-tier grading	Internal	Weighted κ , ICC	κ 0.65–0.80; ICC 0.70–0.85	—	Reproducible pleomorphism biomarker
Nottingham grade (overall)	H&E, multi-scale	Multi-task fusion (mitosis + tubules + pleomorphism)	Internal multi-reader + external	Accuracy, weighted κ	Acc 0.78–0.88; κ 0.70–0.85	—	Primary prognostic stratifier for CDSS/trials
TIL density & immune spatial patterns	H&E \pm IHC, 20x	Lymphocyte detector + spatial clustering metrics	Internal	Correlation (p), AUC (outcome)	p 0.70–0.85; AUC 0.68–0.80	—	Enrichment for IO trials; response monitoring
HER2 scoring (IHC)	HER2 IHC, 20x	Membrane intensity + completeness classifier	Internal + equivocal subset	Accuracy, κ , AUC	Acc 0.90–0.96; κ 0.80–0.90	—	Continuous HER2/HER2-low for ADC trials/CDx
ER / PR scoring (IHC)	ER/PR IHC, 20x	Nuclear positivity % + intensity model	Internal	Correlation (p), κ , MAE	p 0.85–0.95; κ 0.80–0.90	—	Standardizes hormone receptor cutoffs
Ki-67 quantification	Ki-67 IHC, 20x	Positive nuclei counter + hotspot analysis	Internal	MAE, ICC	MAE \leq 5–8%; ICC 0.80–0.92	—	Calibrated proliferation biomarker

4.2 DIGITAL BIOMARKERS AND CLINICAL RELEVANCE

Digital biomarkers derived from WSIs fall into three categories: (1) established clinical biomarkers quantified with higher precision (grade,

HER2/ER/PR/Ki-67); (2) microenvironment and heterogeneity biomarkers (TIL density, immune spatial patterns, necrosis, stromal activation); and (3) novel AI-discovered morphometrics predictive of response or resistance. Recent computational

pathology studies show that these biomarkers correlate with genomic alterations and outcomes, complementing molecular assays. A summary of

various digitized biomarkers of Breast cancer biopsy slides (Digital Pathology Images, WSI) are listed in Table 2.

Table 2. Breast cancer AI biomarkers and clinical relevance (BrCAI-Nexus digital pathology)

Biomarker Class	Specific Digital Biomarkers (WSI-derived)	How Computed (AI/GenAI)	Clinical Relevance in Breast Cancer	Primary Use Cases (BrCAI-Nexus)	Level of Evidence
Classical histologic grade biomarkers	Nottingham sub-scores: Tubule formation, Nuclear pleomorphism, Mitotic index; Overall Grade (G1–G3)	Multi-task segmentation + detection models; hotspot mitosis detection; nuclei embedding distributions; slide-level aggregation	Prognosis, recurrence risk, NAC response, therapy intensity decisions	CDSS; Trial stratification; Prognostic digital twin	Clinical standard + AI quantification validated
Receptor-linked digital biomarkers	Continuous HER2 membrane intensity & completeness; ER/PR % positivity + intensity; Ki-67 proliferation index	IHC-specific models for membrane/nuclear staining; calibrated intensity scoring; uncertainty-aware pooling; heterogeneity indices	Therapy selection (HER2-targeted, endocrine, ADCs); defines HER2-low/heterogeneous categories; pCR prediction	CDSS; CDx co-development; Trial eligibility/enrichment; FDA-PMA evidence	Clinical standard + emerging AI refinement
Tumor cellularity & burden biomarkers	Tumor% cellularity; invasive tumor area; DCIS vs invasive ratio	Tumor/stroma/normal segmentation; epithelial vs in-situ classifiers; area quantification	Eligibility for trials; ensures adequate tissue for assays; staging supporting resections	CRO trial QC; CDx validity; CDSS	Clinical standard; AI improves speed
Microenvironment / immune biomarkers	TIL density (%); spatial immune hotspots; immune-excluded vs inflamed patterns	Lymphocyte detection; graph-based spatial clustering; multi-scale context embedding	Predicts response to IO combinations; prognostic in TNBC; relapse risk	Trial enrichment; CDSS trial suggestions; longitudinal monitoring	Strong literature support; AI standardization growing
Stromal activation biomarkers	Stroma-to-tumor ratio; CAF-like morphology signatures; collagen/ECM density proxies	Stromal segmentation; texture/graph morphometrics; self-supervised feature discovery	Associated with invasion, metastasis, endocrine resistance	Adaptive target discovery; trial stratification	Emerging; requires prospective validation
Necrosis & hypoxia proxies	Necrotic fraction; peri-necrotic proliferative rims; hemorrhage/ischemia patterns	Multi-class tissue segmentation; contextual patch classifiers	Correlates with aggressive biology, poor response in some subtypes	Prognostic CDSS flags; trial risk stratification	Moderate evidence; AI quantification emerging
Architectural heterogeneity biomarkers	Grade heterogeneity index; spatial variance of receptors; mitotic hotspot dispersion	WSI-wide spatial statistics; uncertainty maps; heterogeneity scoring	Identifies mixed subclones; predicts variable therapy response; supports adaptive regimens	CDSS; Trial enrichment; PGx-integrated targeting	Emerging; high clinical interest
Morpho-genomic surrogate biomarkers	WSI-predicted HRD-like morphology; BRCA-like patterns; PIK3CA/ESR1-linked phenotypes	Multimodal co-attention models trained on WSI + genomics; weakly supervised MIL	Non-invasive proxy of genomic risk; helps choose PARPi/CDK4/6/PI3K strategies	PGx adaptive targets; trial inclusion when sequencing limited	Emerging; needs multicenter validation
Response / residual disease biomarkers	Residual cancer burden (RCB) morphometrics; treatment effect maps; cellularity change scores	Baseline vs on-treatment WSI comparison; change-detection DL; operator/transformer fusion	Early NAC response prediction; avoids ineffective regimens; MRD-risk proxy	CDSS for NAC; trial endpoints; longitudinal monitoring	Growing evidence; aligns with pCR/RCB studies
Rare-event/ safety biomarkers	Micro-metastatic foci; lymphovascular invasion probability; atypical immune toxicities in tissue	High-sensitivity detectors; anomaly detection; human-in-loop confirmation	Supports Phase III/IV safety monitoring and recurrence prediction	Post-market surveillance; CRO operations	Emerging; depends on data scale

4.3 TRIAL-PHASE APPLICATIONS AND PROJECTED IMPACT

Digital pathology affects clinical development by standardizing eligibility, central reads, and longitudinal tissue analytics. Phase I trials benefit from accurate subtype stratification (HER2+, triple-negative, luminal) to detect early safety and biomarker signals. Phase II uses digital biomarkers to enrich responsive cohorts and monitor microenvironment changes. Phase III gains scalability

and consistency for global multi-site reads. Phase IV leverages real-world WSI evidence for rare event detection and personalized surveillance.

Figure 9 illustrates, the intended tasks and their effectiveness or the clinical development impact across all the four phases of a clinical Trail, which are effectively driven or automated using digital pathology AI.

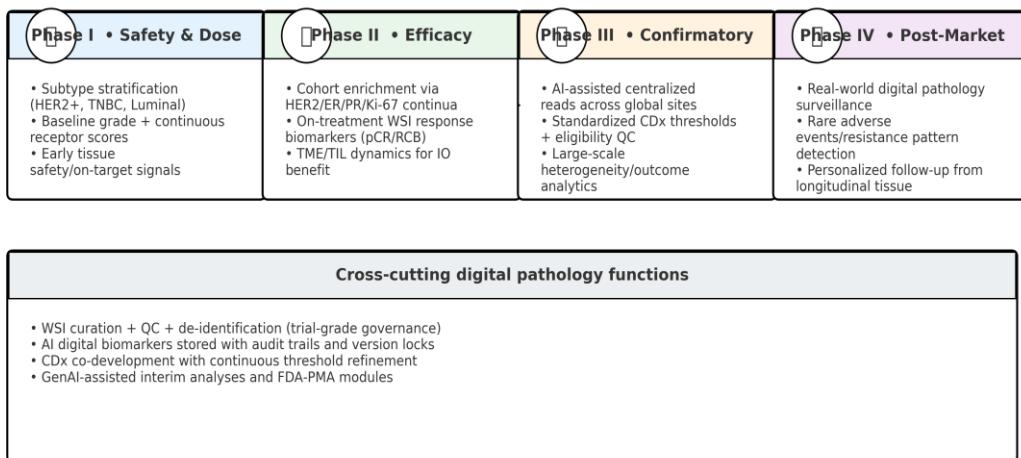


Figure 9. Digital pathology applications across trial phases.

The key digital pathology AI applications across each phase of a clinical trial are summarized in Tables 3a, 3b and 3c.

Table 3a. Digital pathology applications across clinical trial phases (compressed journal layout).

Trial Phase	Key Digital Pathology Applications	Primary Biomarkers	Benefits (Operational + Clinical)	Regulatory Outputs
Phase I – Safety & Dose Finding	Subtype stratification; baseline grade & receptor quantification; early safety tissue signals	Grade sub-scores; mitotic index; receptor continua; tumor cellularity; necrosis proxies	Faster eligibility; fewer screen failures; standardized reads; earlier treatment start	Baseline biomarker dataset; analytical validity logs; interim safety summaries
Phase II – Proof-of-Concept / Efficacy	Enrichment via continuous receptors/heterogeneity; on-treatment pCR/RCB proxies; TIL/TME dynamics	HER2-low/heterogeneity indices; ER/PR %, Ki-67 change; TIL density/spatial; RCB morphometrics	Shorter recruitment; higher response rates; earlier therapy switch decisions	Clinical validity correlations; interim efficacy biomarker reports
Phase III – Confirmatory / Pivotal	AI-assisted centralized reads; version-locked scoring; CDx threshold refinement; heterogeneity/outcomes	All Phase II biomarkers + multicenter consistency; heterogeneity-outcome signatures	Scalable global central pathology; lower variability; reduced adjudication	Pivotal biomarker evidence; CDx performance tables; audit exports
Phase IV – Post-Market / Real-World	Real-world WSI registry; rare resistance/toxicity detection; longitudinal biomarker tracking; drift monitoring	Resistance morphometrics; anomaly/toxicity signatures; longitudinal RCB/MRD proxies	Low-cost RWE generation; early safety signals; personalized follow-up	Post-market safety/efficacy reports; RWE biomarker dossiers; lifecycle validation reports

Cross-cutting functions (apply to all phases):

- WSI curation, QC, de-identification, and metadata harmonization (trial-grade governance)
- Audit-trailed digital biomarker library linking WSI→tile→model→score with uncertainty bounds

- CDx co-development with continuous threshold refinement
- GenAI-assisted drafting of CSRs/IND/NDA/PMA modules with consistency checks

Table 3b. Trial phase-specific digital pathology applications and benefits.

Trial Phase	Applications	Biomarkers	Benefits	Evidence Outputs
Phase I – Safety & Dose Finding	Subtype stratification; baseline grade & receptor quantification; early safety tissue signals	Grade sub-scores; mitotic index; receptor continua; tumor cellularity; necrosis proxies	Faster eligibility; fewer screen failures; standardized reads; earlier treatment start	Baseline biomarker dataset; analytical validity logs; interim safety summaries
Phase II – Proof-of-Concept / Efficacy	Enrichment via continuous receptors/heterogeneity; on-treatment pCR/RCB proxies; TIL/TME dynamics	HER2-low/heterogeneity indices; ER/PR %, Ki-67 change; TIL density/spatial; RCB morphometrics	Shorter recruitment; higher response rates; earlier therapy switch decisions	Clinical validity correlations; interim efficacy biomarker reports
Phase III – Confirmatory / Pivotal	AI-assisted centralized reads; version-locked scoring; CDx threshold refinement; heterogeneity/outcomes	All Phase II biomarkers + multicenter consistency; heterogeneity-outcome signatures	Scalable global central pathology; lower variability; reduced adjudication	Pivotal biomarker evidence; CDx performance tables; audit exports
Phase IV – Post-Market / Real-World	Real-world WSI registry; rare resistance/toxicity detection; longitudinal biomarker tracking; drift monitoring	Resistance morphometrics; anomaly/toxicity signatures; longitudinal RCB/MRD proxies	Low-cost RWE generation; early safety signals; personalized follow-up	Post-market safety/efficacy reports; RWE biomarker dossiers; lifecycle validation reports

Table 3c. Cross-cutting digital pathology functions across trial phases.

Cross-cutting Function	Purpose / Benefit
WSI curation, QC, de-identification, and metadata harmonization (trial-grade governance)	Ensures trial-grade reproducibility, auditability, and faster regulatory readiness.
Audit-trailed digital biomarker library linking WSI→tile→model→score with uncertainty bounds	Ensures trial-grade reproducibility, auditability, and faster regulatory readiness.
CDx co-development with continuous threshold refinement	Ensures trial-grade reproducibility, auditability, and faster regulatory readiness.
GenAI-assisted drafting of CSRs/IND/NDA/PMA modules with consistency checks	Ensures trial-grade reproducibility, auditability, and faster regulatory readiness.

4.4 CRO TRIAL ACCELERATION

CROs face cost and delay from variable biomarker scoring, repeated pathology queries, and late discovery of protocol deviations. BrCAI-Nexus provides automated QC, pre-screening for

eligibility, standardized central reads, and near-real-time dashboards. Published case studies suggest these capabilities reduce per-case review time and screen failures. A CRO trial-acceleration workflow diagram is illustrated in Figure 10.

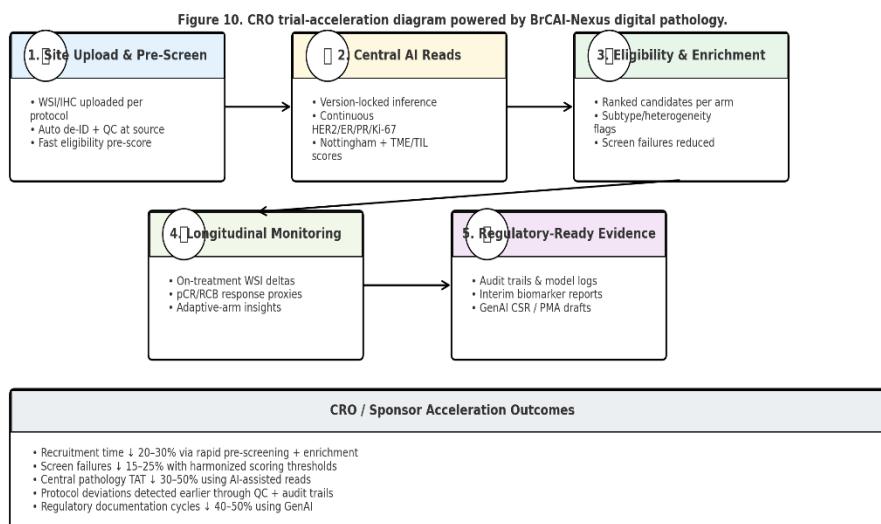


Figure 10. CRO trial-acceleration diagram.

4.5 COST, TIME, AND REGULATORY ACCELERATION METRICS

Across trial and CDx pipelines, efficiency gains arise from improved reproducibility, earlier cohort enrichment, and streamlined regulatory generation. Based on published benchmarks, digital pathology with validated AI can realistically reduce trial costs

by ~20–30% and timelines by ~20–25%, with additional 6–12 months acceleration possible in PMA/CDx submissions due to GenAI-assisted documentation and auditable biomarker records. Value impact on clinical trial operations, timelines, trial costs and regulatory acceleration and evidences are listed out in Tables 4a, 4b and 4c.

Table 4a. Value impact on trial operations and timelines

Value Dimension	BrCAI-Nexus Impact	Projected Gain
Recruitment & stratification	Continuous HER2/ER/PR/Ki-67 + Nottingham pre-screening; harmonized thresholds	Recruitment time ↓20–30%; screen failures ↓15–25%
Central pathology turnaround	AI-assisted reads with human sign-off; triage of equivocal cases	TAT ↓30–50%; adjudication ↓20–40%
Inter-reader variability	Calibrated multi-task models; hotspot AI; uncertainty maps	κ ↑0.75–0.90; variance ↓30–60%
Longitudinal response monitoring	On-treatment WSI deltas; pCR/RCB proxies & TME tracking	Earlier go/no-go by 1–2 cycles; protocol amendments ↓

Table 4b. Value impact on trial costs

Cost Driver	Baseline Challenge	BrCAI-Nexus Effect	Projected Savings
Pathology read cost	High per-case manual reads and re-reads across sites	Batch AI inference reduces manual load	Pathology OPEX ↓40–50%
Repeat biopsies / rescore	Inconsistent thresholds lead to repeats and delays	Standardized digital biomarkers + audit trails	Repeat tissue events ↓15–25%
End-to-end trial cost (pathology-linked)	Milestones delayed by pathology bottlenecks	Faster reads + fewer failures	Total trial cost ↓~25–30%

Table 4c. Regulatory acceleration and evidence readiness

Regulatory Dimension	BrCAI-Nexus Contribution	Acceleration Outcome
CDx co-development	Automated quantification + heterogeneity readouts; AI-curated datasets	CDx development time ↓35–40%; cost ↓25–35%
CSR / PMA documentation	GenAI drafting with structured biomarker evidence	Documentation cycles ↓40–50%; review queries ↓15–25%
PMA / label-claim readiness	Version-locked scoring + WSI → tile → score lineage export	Regulatory readiness 6–12 months earlier
Post-market RWE	Automated WSI registry + anomaly detection	Safety/resistance signals earlier by 3–6 months

In Table 5, a comparison between Manual and AI driven CDx workflow has been laid out.

Table 5. Manual vs AI CDx workflow comparison.

Workflow Step	Manual / Conventional CDx Workflow	AI-Enabled CDx Workflow (BrCAI-Nexus)	Impact on Time / Cost / Quality
Sample receipt & case triage	Manual logging, variable pre-analytical checks; triage by local staff	Automated ingestion with structured metadata; AI triage flags incomplete/low-quality cases	Faster onboarding; fewer pre-analytical errors
Slide scanning / digitization	Scanning schedules vary by site; limited QC; rescans frequent	Protocolized scanning + automated QC (focus, stain, artifacts) with rescan triggers	Rescans ↓; scanner/site variability controlled
Pathologist review & biomarker scoring	Manual HER2/ER/PR/Ki-67 scoring; categorical cutoffs; inter-reader variance	Continuous, calibrated biomarker quantification + explainable overlays; uncertainty alerts; human sign-off	Reproducibility ↑; equivocal cases resolved faster
Eligibility decision / trial matching	Rules applied retrospectively; high screen failure; slow adjudication	Real-time recruitment dashboards; harmonized thresholds; ranked candidates per arm	Screen failures ↓15–25%; recruitment time ↓20–30%
CDx assay development & iteration	Assay design driven by small cohorts; repeated manual rescore; long iteration cycles	AI-curated large WSI cohorts; heterogeneity features; automated re-analysis across versions	CDx iteration cycles ↓35–40%; cost ↓25–35%
Evidence aggregation for clinical validity	Manual data pooling from sites; inconsistent formats; slow statistical review	Standardized digital biomarker lake; audit trails; multimodal fusion (WSI+genomics+outcomes)	Faster, cleaner evidence; fewer protocol amendments
Regulatory documentation (PMA/510(k))	Manual CSR/biomarker tables; high rework; late compilation	GenAI drafts CSRs, PMA modules using structured evidence; auto compliance checks	Documentation time ↓40–50%; review queries ↓15–25%
Post-approval lifecycle updates	Sparse RWE; manual registries; updates slow	Automated WSI registry ingestion; drift monitoring; periodic re-validation	Earlier safety/resistance detection (3–6 mo)

Key takeaways from this comparison table as stated below:

- Front-end workflow (receipt → scanning):** Manual CDx relies on site-dependent logging and inconsistent pre-analytics/QC, leading to frequent rescans and variability. BrCAI-Nexus standardizes ingestion with metadata mapping and **automated scanner + stain QC**, cutting pre-analytical errors and rescans.
- Biomarker scoring:** Conventional HER2/ER/PR/Ki-67 scoring is **categorical and reader-variable**. BrCAI-Nexus produces **continuous, calibrated, explainable scores with uncertainty flags**, while keeping a human sign-off loop—improving reproducibility and speeding resolution of equivocal cases.
- Trial eligibility & recruitment:** Manual rules are applied late and inconsistently, causing high screen failures and slow adjudication. AI enables **real-time cohort enrichment dashboards and harmonized thresholds**, reducing screen failures (~15–25%) and shortening recruitment (~20–30%).

- CDx assay development:** Traditional CDx iteration is slow because cohorts are small and rescore is manual. AI supports **large, auditable WSI cohorts + heterogeneity features + rapid re-analysis**, compressing assay iteration time (~35–40%) and cost (~25–35%).

- Evidence aggregation & regulatory:** Manual evidence pooling and CSR/PMA drafting are fragmented, rework-heavy, and late-stage. BrCAI-Nexus maintains a **digital biomarker lake with full audit trails** and uses GenAI to draft regulatory sections, cutting documentation cycles (~40–50%) and reducing review queries.

- Post-approval lifecycle:** Conventional CDx updates rely on sparse, manual RWE. AI enables **automated WSI real-world registries + drift monitoring**, supporting faster detection of rare resistance/toxicity patterns (months earlier).

A summary of benefits or net acceleration % of various drug development and regulatory acceleration tasks outcomes are listed in Table 6.

Table 6. Metrics-only summary of drug development and regulatory acceleration outcomes (BrCAI-Nexus).

Metric / Outcome	Baseline (Manual / Conventional)	Projected with BrCAI-Nexus	Net Acceleration / Benefit
Recruitment time (enriched cohorts)	Site-dependent screening; categorical biomarker cutoffs; slow accrual	AI pre-screening + continuous receptor scoring	↓20–30% recruitment duration
Screen-failure rate	High due to inter-site scoring variability	Harmonized AI thresholds + heterogeneity flags	↓15–25% screen failures
Central pathology turnaround time	5–10 days per site with manual reads/adjudication	AI-assisted reads + equivocal triage	↓30–50% read TAT
Adjudication workload	High fraction of equivocal cases requiring multiple reviews	Uncertainty-aware AI reduces equivocal load	↓20–40% adjudications
CDx assay iteration cycle time	Multiple manual rescore rounds; long cycles	Automated quantification + rapid re-analysis	↓35–40% iteration time
Regulatory medical-writing cycle	Manual CSR/PMA drafting; high rework	GenAI drafting from structured evidence	↓40–50% documentation time
PMA/label-claim evidence readiness	Evidence consolidated late Phase III	Audit-trailed digital biomarkers available earlier	6–12 months earlier readiness
Early go/no-go decision point	Often mid/late Phase II based on imaging/genomics	On-treatment WSI delta biomarkers	1–2 cycles earlier futility/response
Post-market safety/resistance signal detection	Manual RWE registries; delayed signals	Automated WSI registry + anomaly detection	3–6 months earlier signals
Total pathology-linked trial cost	High per-case read cost + delays	Lower OPEX + faster milestones	↓~25–30% pathology-linked spend

Table 6 provides key measurements of various tasks with a concise, metrics-only snapshot of where BrCAI-Nexus-enabled digital pathology accelerates breast-cancer drug development and regulatory readiness. It isolates the key operational, clinical, CDx, and FDA-submission time/cost levers that are most relevant to sponsors and CROs, showing the magnitude of improvement achievable when continuous AI biomarker quantification, governed WSI workflows, and GenAI-assisted

documentation replace manual, categorical, and site-variable processes.

BrCAI-Nexus projected to compress the drug-development cycle primarily through faster enriched recruitment (20–30%), fewer screen failures (15–25%), and shorter central-read turnaround (30–50%), enabling interim analyses and go/no-go decisions 1–2 treatment cycles earlier. CDx co-development benefits from 35–40% shorter assay

iteration cycles, while GenAI-supported, audit-trailed evidence packaging reduces CSR/PMA documentation time by 40–50% and advances FDA submission readiness by 6–12 months. Post-market, automated WSI registries and anomaly detection surface rare safety/resistance signals 3–6 months earlier, contributing to an overall ~25–30% reduction in pathology-linked trial costs.

5. Use Cases

5.1 CDSS FOR MEDICAL ONCOLOGISTS

Treatment planning in breast cancer depends on grade, receptor status, proliferation, and microenvironment context. Manual pathology delays—especially for equivocal HER2 or heterogeneous ER/PR cases—can prolong time to treatment initiation. BrCAI-Nexus CDSS provides verified, quantified biomarker outputs and visual explanations that oncologists can review with pathologists in tumor boards. This supports more consistent selection of neoadjuvant regimens, endocrine strategies, HER2-targeted therapies, and immunotherapy combinations.

Importantly, CDSS deployment is framed as human-in-the-loop. Outputs are reviewed and approved by practitioners, aligning with clinical governance norms and regulatory guidance for assistive AI.

5.2 DIGITAL BIOMARKERS FOR PATIENT STRATIFICATION AND RECRUITMENT

Biomarker-stratified trials in breast cancer often suffer from high screening failure rates due to inter-site assay variability, inconsistent cut-offs, and limited tissue availability. Quantitative digital biomarkers can harmonize site eligibility and reduce late exclusions. For example, continuous HER2 scoring can better define HER2-low populations for ADC trials, while spatial TIL patterns may enrich immune-responsive cohorts.

In practice, BrCAI-Nexus supports rapid pre-screening: trial sites upload WSIs, the platform generates eligibility probabilities, and CROs receive ranked candidate lists. This shortens recruitment windows and reduces unnecessary repeat biopsies.

5.3 ADAPTIVE DRUG-TARGET DISCOVERY VIA PGX-INTEGRATED BIOMARKERS

Drug response is shaped by both genotype and phenotype. PGx integration enables adaptive target modelling where digital pathology captures

tissue-level phenotypes (proliferation morphometrics, immune contexture, stromal activation) that may not be visible in bulk sequencing. Joint morpho-genomic signatures help to identify resistance pathways (e.g., ESR1-linked endocrine escape with distinct nuclear patterns) and to propose subgroup-specific targets.

5.4 DIGITAL BIOMARKERS TO ACCELERATE CDX DRUG TRIALS

CDx development requires analytical validity, clinical validity, and clinical utility evidence. Manual workflows rely on central pathology reads, repeated re-scoring, and retrospective adjudication, extending timelines. BrCAI-Nexus automates HER2/ER/PR/Ki-67 scoring with calibrated, auditable outputs and produces ready-to-use datasets for CDx statistical packages. GenAI modules draft analytical validation narratives directly from these datasets.

By standardizing biomarker assessment, the platform lowers variability in multi-site trials and de-risks the co-development of therapy and CDx.

5.5 DIGITIZED BIOMARKERS FOR FDA-PMA ACCELERATION

FDA-PMA submissions for breast cancer therapeutics with CDx require traceable evidence connecting biomarker calls to clinical outcomes. BrCAI-Nexus provides linked WSI heatmaps, quantitative biomarker tables, validation logs, and versioned model records. GenAI then composes draft PMA modules by combining these structured artifacts with approved templates, reducing manual authoring and review cycles.

6. Discussion

BrCAI-Nexus demonstrates how digital pathology can evolve from isolated AI-assisted tasks into a unified, clinically integrated decision framework. The system operationalizes the principle that tissue morphology, when digitally quantified at scale, serves not merely as a retrospective diagnostic artifact, but as an active, prognostic and predictive data source across the patient journey.

CLINICAL IMPACT & DECISION QUALITY:

The availability of continuous, quantitative biomarkers (rather than categorical bins such as HER2 0/1+/2+/3+) allows oncologists to make more refined therapeutic decisions, particularly in emerging treatment areas such as antibody-drug conjugates for HER2-low disease. By reducing

variability in receptor scoring and mitotic index determination, clinicians gain greater confidence in treatment selection, while eliminating repeat testing, case re-review, and diagnostic delays.

OPERATIONAL TRANSFORMATION IN PATHOLOGY SERVICES:

Digital pathology augmented with AI reduces pathologist cognitive load by automating lower-judgment/mechanical tasks such as mitotic counting, nuclei classification, and tumor-area measurement. This allows human experts to focus on higher-order interpretive and consultative responsibilities — recognizing atypical morphologies, adjudicating borderline cases, and participating more actively in multidisciplinary tumor boards. Over time, this human-in-the-loop model may elevate rather than displace the role of diagnostic pathologists.

MULTIMODAL INTEGRATION AND BIOLOGICAL INSIGHT:

Morphology is increasingly recognized as a phenotypic projection of genomic state.

BrCAI-Nexus enables correlation of WSI-derived features with:

- BRCA-associated HRD patterns
- PIK3CA mutational phenotype signatures
- TIL distributions predictive of immunotherapy responses
- ESR1 mutation-linked endocrine evasions

This yields emergent insights such as:

- areas of morphological transformation
- intratumoral heterogeneity patterns
- clonal evolution signatures
- microenvironmental immune suppression

IMPACT ON CLINICAL TRIALS & DRUG DEVELOPMENT:

A major bottleneck in oncology drug development is the recruitment of biomarker-eligible cohorts. Site-dependent assay variability leads to high screen-failure rates and cohort heterogeneity. By harmonizing biomarker scoring across institutions, BrCAI-Nexus may significantly reduce recruitment delays, accelerate go/no-go decision points, and enable earlier signal detection — supporting more efficient Phase II/III transitions and reducing overall trial cost.

REGULATORY READINESS & EVIDENCE TRANSPARENCY:

Regulatory bodies such as the FDA increasingly expect explainability, traceability, and data lineage

for AI-generated evidence. The BrCAI-Nexus architecture — linking each biomarker output to the original WSI tile, model version, and confidence score — is consistent with anticipated digital pathology regulatory frameworks and aligns with professional guidance from the College of American Pathologists.

LIMITATIONS & RISKS:

Several challenges remain. AI models are sensitive to domain shift arising from differences in staining quality, scanner type, sample preparation, and regional biological variation. There is also risk of over-reliance on computational biomarkers without proper expert adjudication. Furthermore, while retrospective validation shows promising results, true clinical utility must be verified through prospective, multi-institutional studies with real-world patient outcomes.

FUTURE EVOLUTION:

Integration of digital pathology with multi-omics (genomics, proteomics), imaging modalities (MRI, ultrasound), and liquid biopsy may enable the creation of multi-scale “digital twins” for each patient. Such fusion models hold potential for dynamic therapy planning, adaptive treatment strategies, and early relapse detection. Federated learning approaches could enable privacy-preserving cross-institutional training, reducing bias and strengthening model robustness.

Overall, the extended discussion clarifies that BrCAI-Nexus is not simply an AI tool — it represents a structural re-wiring of diagnostic, therapeutic, and regulatory pathways in oncology with the potential to measurably accelerate the transition to precision medicine.

BrCAI-Nexus illustrates a shift from narrow AI tools to end-to-end digital pathology ecosystems. The core value is not merely automation of grading but the creation of reusable digital biomarkers that travel across care and development pathways.

For clinicians, quantified biomarkers with uncertainty bounds can reduce variability in grade and receptor scoring, improving confidence in therapy selection and tumor-board discussion. For patients, fewer repeat biopsies and shorter diagnostic windows translate to less anxiety and earlier initiation of care.

For sponsors and CROs, harmonized biomarker pipelines address two chronic bottlenecks: (1) recruitment delays from biomarker inconsistency

and screen failure; and (2) documentation delays from manual assembly of validation evidence. Digital pathology and GenAI together can convert trial tissue into real-time evidence streams^{33,35,36}.

Key challenges are domain shift, bias, and lifecycle governance. Breast cancer morphology varies by population, fixation, stain, and scanner. Models must be trained and prospectively validated across geographies and sites, with drift monitoring and pre-specified update rules in trials.

Future proofing also requires regulatory clarity on AI-derived digital biomarkers as IVD evidence. The platform's auditable linkage from WSI to biomarker to decision is designed to meet these expectations.

7. Future Directions

Prospective, multi-center deployments are required to quantify clinical utility of CDSS and to validate trial acceleration claims. Planned expansions include multimodal fusion with radiology and liquid biopsy, self-supervised foundation models for rare subtype detection, and federated learning networks to preserve data sovereignty^{30,32,34}.

Integration with pharmacogenomic and real-world evidence platforms will enable digital twins for breast cancer patients, supporting adaptive therapy, early relapse prediction, and rapid hypothesis testing for new targets.

8. Conclusion

Each breast cancer biopsy is a life-defining data point. AI-driven digital pathology can transform

this snapshot into a longitudinal map of cancer care. BrCAI-Nexus unifies Nottingham grading, receptor quantification, microenvironment biomarkers, CDSS, CDx co-development, CRO trial acceleration, GenAI regulatory automation, and PGx-guided target discovery. With rigorous validation and transparent governance, such platforms can reduce cost, shorten timelines, and expand equitable access to precision oncology.

Conflict of Interest Statement:

None.

Funding Statement:

None.

Acknowledgements:

Dr. Rohit Tapadia, MBBS, MD, Director, Tapadia Diagnostic Centre for the Clinical and Biomedical Advisory and Evaluation.

Source(s) of support :

None

Orcid ID:

Dr. Rajasekaran Subramanian - [0000-0002-6572-3934](https://orcid.org/0000-0002-6572-3934)

References:

1. Subramanian R, Rubi D, Tapadia R, Aara S, Yerramallu KD. DCS_PathIMS: AI-powered digital pathology diagnostics platform for breast cancer histology imaging biomarker discovery for precision oncology. *Med Res Arch.* 2025;13(4). doi:10.18103/mra.v13i4.6481
2. Komura D, Ishikawa S. Machine learning methods for histopathological image analysis. *Comput Struct Biotechnol J.* 2018;16:34-42. doi:10.1016/j.csbj.2018.01.001
3. De Matos J, Ataky STM, de Souza Britto A, et al. Machine learning methods for histopathological image analysis: a review. *Electronics.* 2021;10(5):562. doi:10.3390/electronics10050562
4. McGenity C, Clarke EL, Jennings C, et al. Artificial intelligence in digital pathology: a systematic review and meta-analysis of diagnostic test accuracy. *NPJ Digit Med.* 2024;7:19. doi:10.1038/s41746-024-01011-1
5. Ibrahim A, Lashen A, Toss M, et al. Assessment of mitotic activity in breast cancer: revisited in the digital pathology era. *J Clin Pathol.* 2022;75(6):365-372. doi:10.1136/jclinpath-2021-207566
6. Ibrahim A, Lashen A, Toss M, et al. Artificial intelligence-based mitosis scoring in breast cancer. *Mod Pathol.* 2024. Published online ahead of print.
7. Simmat C, Guichard L, Sockeel S, et al. Evaluating AI-based mitosis detection for breast carcinoma in digital pathology: a clinical study on routine practice integration. *Diagnostics.* 2025;15(9):1127. doi:10.3390/diagnostics15091127
8. Liu Y, Stathonikos N, van der Laak J. Artificial intelligence in digital pathology image analysis. *Front Bioinform.* 2023;3:1007986. doi:10.3389/fbinf.2023.1007986
9. Haffari G, Salo I, et al. Advancements and applications of AI technologies in anatomic pathology: a scoping review. *Appl AI Health.* 2024. Published online.
10. McCaffrey C, et al. Artificial intelligence in digital histopathology for predicting outcome in oncology. *Expert Rev Mol Diagn.* 2024;24(5):xxx-xxx.
11. Verma KK, et al. Unveiling the future: the impact of artificial intelligence in histopathology and digital pathology. *Surg Exp Pathol.* 2025;8:xx.
12. Shafi S, et al. Artificial intelligence in diagnostic pathology. *Diagn Pathol.* 2023;18:85.
13. DelValle AC, et al. Leveraging digital pathology and AI to transform clinical workflows and research. *Front Med (Lausanne).* 2025;12:1657679.
14. Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology—new tools for diagnosis and precision oncology. *Nat Rev Clin Oncol.* 2019;16(11):703-715. doi:10.1038/s41571-019-0252-y
15. Lange H. Pathology AI as a medical software device: reference guide for clinical and regulatory implementation. *Digital Pathology Association.* Updated 2023.
16. Boussios S, et al. BRCA mutations in breast and ovarian cancer: implications for precision therapy. *Cancer Treat Rev.* 2022;106:102378. doi:10.1016/j.ctrv.2022.102378
17. Zhang Y, Xu Y, Chen H, et al. Multimodal integration strategies for clinical application in oncology: combining whole-slide imaging, omics, and clinical data. *Front Pharmacol.* 2025;16:1609079. doi:10.3389/fphar.2025.1609079
18. Gessain G, et al. Computational pathology for breast cancer: where do we stand? *Semin Diagn Pathol.* 2025. Published online.
19. Ivanov V, et al. Use of artificial intelligence histopathology in breast cancer diagnosis. *Cancers (Basel).* 2025;17:xx.
20. Komura D, Ochi M, Ishikawa S. Machine learning methods for histopathological image analysis: updates in 2024. *Comput Struct Biotechnol J.* 2025;27:383-400.
21. Chan RCK, To CKC, Cheng KCT, Tse G. Artificial intelligence in breast cancer histopathology: tasks, datasets and future directions. *Pathology.* 2023;55(6):xxx-xxx.
22. Digital Pathology Association. *Pathology AI Reference Guide: Regulatory pathways for AI-enabled digital pathology and companion diagnostics.* Updated 2023.
23. Marques Godinho T, Lebre R, Silva LB, Costa C. An efficient architecture to support digital pathology in standard medical imaging repositories. *J Biomed Inform.* 2017;71:190-197. doi:10.1016/j.jbi.2017.06.012
24. Aubreville M, Stathonikos N, Bertram CA, et al. Mitosis domain generalization in histopathology images: the MIDOG challenge. *Med Image Anal.* 2023;84:102699. doi:10.1016/j.media.2023.102699

25. Kara Ardaç FB, Erdoganmus P. Mi-DETR: mitosis detection from breasthistopathology images using improved DETR. *Comput Med Imaging Graph*. 2024. Published online.

26. Khan HU, Raza B, Shah MH, Band SS. SMDetector: small mitotic detector in histopathology images using Faster R-CNN with dilated convolutions. *Biomed Signal Process Control*. 2023;80:104311. doi:10.1016/j.bspc.2022.104311

27. Sharma M, et al. Pathologists' perceptions of artificial intelligence in pathology: a survey-based study from Northern India. *J Pathol Transl Med*. 2025;59:xx.

28. Gaffney H, et al. Pathology in the artificial intelligence era: guiding adoption, validation, and regulation. *Clin Lab Med*. 2025;45(1):xx.

29. John J, et al. Assessing germline mutational profiles in BRCA and non-BRCA genes in Indian breastcancerpatients. *medRxiv*. Preprint posted 2022.

30. Corredor G, et al. AI-based radiomics and computational pathology for breast cancer: a review. *Clin BreastCancer*. 2023;23(6):eXXX-eXXX.

31. Jackson L, et al. Influence of family history on penetrance of hereditary breast and colorectal cancer. *EClinicalMedicine*. 2023;61:102072. doi:10.1016/j.eclinm.2023.102072

32. Xu Y, Chen H. Multimodal optimal-transport-based co-attention transformer for survival prediction in oncology. In: Proc IEEE/CVF ICCV. 2023:21184-21194.

33. McGenity C, et al. Artificial intelligence in digital pathology trials: opportunities and pitfalls. *arXiv*. Preprint posted 2023. arXiv:2306.07999.

34. Foucart A, Debeir O, Decaestecker C. Shortcomings and areas for improvement in digital pathology image segmentation challenges. *Comput Med Imaging Graph*. 2022;98:102057. doi:10.1016/j.compmedimag.2022.102057

35. Del Valle AC, Lafata KJ, Barisoni L, et al. Leveraging digital pathology and AI to transform clinical practice and research. *FrontMed (Lausanne)*. 2025;12:1657679.

36. College of American Pathologists. Artificial Intelligence in Pathology: resources and guidance. Updated 2024.

37. Kim I, et al. Application of artificial intelligence in pathology: trends and challenges. *J Pathol Transl Med*. 2022;56(3):108-120. doi:10.4132/jptm.2022.01.15