o2 "rre THE EUROPEAN SOCIETY OF MEDICINE

Medical Research Archives, Volume 13 Issue 12

RESEARCHARTICLE

BrCAIl-Nexus: Translational Digital Pathology Al for Breast Cancer—
From Whole-Slide Biomarkers to Clinical Decision Support and

Trial-Grade Evidence
Dr. Rajasekaran Subramanian™, Dr. R. Devika Rubi?, Dr. Rohit Tapadia®, Aasrith Varahabhotla*

'Professor, Koneru Lakshmaiah
Education Foundation (KL) University,
Hyderabad, Telangana State, India
"Principal Researcher, DigiClinics
Re search and Services Private Limited,
Hyderabad, Telangana State, India
2Associate Professor, Keshav Memorial
Institute of Te chnology, Hyderabad,
Telangana State, India

3Dire ctor, Tapadia Diagnostics Center,
Hyderabad, India

4Research Intern, Keshav Memorial
Institute of Te chnology, Hyderabad,
TelanganaState, India

“raja@digidlinics.in

a OPEN ACCESS

PUBLISHED
31 December 2025

CITATION

Subramanian, R., Rubi, DR, et al,,
2025. BrCAl-Nexus: Translational
Digital Pathology Al for Breast
Cancer—From Whole-Slide Biomarkers
to Clinical Decision Support and
Trial-Grade Evidence. Medical
Research Archives, [online] 13(12).
https://doi.org/10.18103/mra.v13
i12.7139

COPYRIGHT

© 2025 European Society of
Medicine. This is an open- access
article distributed under the tems
ofthe Creative Commons Attribution
License, which permits unrestricted
use, distribution, and re production
in any medium, provided the original
authorand source are credited.

DOI
https://doi.org/10.18103/mra.v13
i12.7139

ISSN
2375-1924

ABSTRACT

Background: Breastcanceroutcomesstill rely on timely and accurate interpretation
of tissue biopsies. Manual histopathological grading is labor-intensive, shows
inter- and intra-observer variability, and scales poorly for biomarker-driven
clinical trials and companion diagnostics (CDx).

Obijective: To describe BrCAI-Nexus (also known as DCS_PathIMS") — a scientific
framework implemented by the authors as an agentic Al digital pathology system
for breast cancer whole-slide image (WSI) analysis—currently delivering practitioner-
approved, interpretable outputs for clinical decision support system (CDSS). This
work also outlines planned extensions to: (1) generate quantitative digital
biomarkers for patient stratification and recruitment in drug trials; (2) accelerate
companion-diagnostic (CDx) co-development and Food and Drug Administration
Premarket Approval (FDA-PMA) submissions through auditable Al and GenAl
pipelines; and (3) enable PGx-integrated adaptive drug-target discovery.

Methods: Whole-slide images (WSIs) are curated through a govemed
preprocessing pipeline comprising scanneringestion, image -level quality control,
stain normalization, de-identification, and metadata harmonization. WSlIs are tile-
partitioned and analyzed using multi-task deep learning models for tumor
formation scoring,
pleomorphism assessment, tumor-infiltrating lymphocyte (TIL) quantification, and
receptor-linked morphometric biomarkers (HER2, ER, PR, Ki-67). Slide-level and
patient-level digital biomarkers are aggregated and mapped to CDSS decision
pathways, CDx eligibility rules, trial-recruitment dashboards, and regulatory

segmentation, nuclei and mitosis detection, tubule

document templates. Multimodal fusion incorporates WSI phenotypes with
molecular and PGx profiles to generate adaptive drug-target hypotheses.

Results: BrCAI-Nexus is expected to reduce grading variability, improve
pathology turnaround times, decrease screen-failure rates in biomarker-stratified
trials, and shorten clinical development cycles. Recent Al-pathology meta-
analyses and trial case studies demonstrate diagnostic accuracy comparable to
expert pathologists, improved reproducibility, and meaningful gains in
operational efficiency across CDSS, CDx, and trial-support workflows.

Conclusion: Digitized biopsies analyzed with Al transform static histology into a
longitudinal, quantitative map of cancer care. BrCAI-Nexus consolidates WSH-
derived biomarkers, CDSS logic, CDx evidence generation, CRO trial
acceleration, GenAl-enabled regulatory automation, and PGx-guided adaptive
targeting—supporting faster, safer, and more equitable precision oncology.

Keywords: breast cancer; digital pathology; whole-slide imaging; artificial

intelligence; clinical decision support; digital biomarkers; companion diagnostics;
pharmacogenomics; FDA-PMA; BrCAI-Nexus.
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1. Introduction

Breast cancer remains one of the most common
malignancies worldwide and a leading cause of
cancer-related mortality among women. Tissue-
based histopathology continues to serve as the

diagnostic gold standard for confirming
malignancy, grading tumors, and guiding
treatment  allocation. In routine  practice,

pathologists rely on established systems such as
the Nottingham histologic grade, which integrates
tubule formation, nuclear pleomorphism, and
mitotic activity to stratify prognosis and inform
therapeutic intensity. However, even well-defined
grading schemes can be affected by inter- and
intraobserver variability, workload pressures, and
differences in local reporting practice?3.

The progressive digitization of anatomic
pathology—through whole-slide imaging (WSI)—
has begun to address several of these limitations
by enabling high-resolution scanning, archiving,
and remote review ofglass slides*>. Once slidesare
digitized, they can also be processed by
computational pipelines that perform tissue
segmentation, cell detection, morphometric
quantification, and pattern recognition beyond
what the naked eye canreliably achieve. Early Al-
powered digital pathology platforms such as
DCS_PathIMS, which we previously developed for
breastcancer histology biomarker discovery, have
demonstrated the feasibility of end-to-end WSI
workflows that combine automated feature
extraction with pathologist-in-the-loop validation
for precision oncology use cases.

Over the past decade, a wide range of machine
learning and deep learning methods have been
proposed for histopathological image analysis,
spanning classical feature-based approaches,
convolutional neural networks, and more recent
transformer and  multiple-instance  learning
architectures®’. Comprehensive reviews and
systematic evaluations have shown that such
models can achieve high performance for core
tasks  including detection, mitosis
identification, tissue classification, and receptor-
status prediction, often approaching or matching
expert-level accuracy under controlled conditions®.

tumor

Beyond isolated benchmarking tasks, there is now
growing emphasis on how Al can be embedded
into real-world diagnostic and research workflows.
Studies in digital histopathology and computational

oncology highlight the potential of Al to improve
prognostic modeling, predict treatment response,
and integrate histology with other data modalities
for outcome prediction in oncology”'°. Atthe same
time, emerging literature from digital pathology
and clinical Al underscores the importance of
designing systems that support—not supplant—
pathologists, and thatdelivertangible improvements
in turnaround time, reproducibility, and workflow
efficiency rather than serving as stand-alone “black
box" classifiers'".

Despite these advances, deployment at scale
remains challenging. Many existing Al tools are
task-specific, focusing on narrow endpoints such as
mitosis detection or HER2 scoring, and are not
seamlessly integratedinto broader clinical decision-
making or drug-development pipelines. In addition,
variability in staining, scanning, case mix, and
reporting conventions can impair generalizability,
while the lack of unified data governance and
regulatory frameworks complicates clinical translation.

To move from isolated tools to a cohesive digital
ecosystem, there is a need for platforms that can
(1) transform WSlIs into structured, quantitative
biomarkerrepresentations; (2) supportinterpretable
clinical decision support for medical oncologists
and tumorboards; (3) enable harmonized biomarker
thresholds and companion diagnostic (CDx) co-
development across trial sites; and (4) generate
auditable evidence suitable forregulatory submissions
in oncology. BrCAI-Nexus was conceived to
address this gap as an agentic Al expansion of
DCS_PathIMS, designed to act as a unified breast
cancer digital pathology layer that spans clinical
diagnostics, trial operations, CDx development,
pharmacogenomics  (PGx)-integrated  target
discovery, and regulatory documentation.

In this manuscript, we describe the BrCAI-Nexus
architecture, data curation and biomarker extraction
pipelines, clinical decision support (CDSS) layer,
and its role in CDxand FDA-aligned documentation
workflows. We furtheroutline projectedimpacts on
clinical operations, trial acceleration, andregulatory
readiness, positioning BrCAI-Nexus as a practical
reference model for next-generation digital
pathology ecosystems in breastcancer.

Rather than treating WSIs as static images, the
BrCAI-Nexus system transforms biopsies into
quantitative digital biomarker maps that inform
clinical decision support(CDSS), enable standardized
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companion diagnostic (CDx) co-development,
support multi-center trials, and provide ready-to-
audit evidence linking biomarker calls to model
lineage. This represents a transition from digital
pathology as a diagnostic tool to digital pathology
as a foundational engine for precision oncology.

2. Digital Pathology in Breast Cancer

The introduction of digital slide scanners capable
of 20x or 40x imaging produces multi-gigapixel
WSls. These files enable real-time collaboration,
remote diagnostic support, and longitudinal data
preservation, allowing re-examination as new
biomarkers emerge. This digitization also facilitates
quality control, stain normalization, and automated
artifact detection.

Digital transformation of pathology workflows has
expanded beyond basic WSI acquisition toward
computationalinterpretation, feature quantification,
and automated decision support. Al models are
now routinely applied to histology slides for
biomarker inference, tumor subtype classification,
and survival-risk prediction, reflecting a shift from
qualitative visual assessment to quantitative
computational pathology ™.

Central to this adoption is the realization that
digital pathology does not replace the pathologist
— it augments human expertise. Multiple expert
commentaries emphasize that Al should function
as a co-pilot system that reduces cognitive load
and improves reproducibility, allowing pathologists
to focus on interpretation, synthesis, and complex
diagnostic nuances rather than repetitve manual
quantification. This emergingmodel of “augmented
pathology” is expected to drive efficiency gains in
high-volume laboratories and reduce error rates in
biomarker assessments 3.

A key technological outcome of WSI-based
digitization is the capacity to extract high-
dimensionalmorphometric descriptors —including
nuclear texture, glandular structure, stromal
composition, and cell-to-cell spatial interactions.
These tissue-level features serve as surrogate
phenotypes for underlying molecular signatures,
enabling computational methods to infer receptor
status and genomic alterations directly from tissue
morphology'. Such advances form the basis of
computational precision oncology, where phenotype-
derived features can serve as predictors of tumor
behavior and treatment response ™.

Breast cancer pathology provides rich structural
and cellular information that closely reflects tumor
biology, microenvironmental context, and
therapeutic sensitivity. Routine hematoxylin and
eosin (H&E) preparation preserves architectural
and cytologic features including tubule
differentiation, nuclear morphology, necrosis, and
stromal composition. Immunohistochemistry (IHC)
further adds receptor-level insights for HER2
signaling, estrogen receptor (ER) expression,
progesterone receptor (PR) expression, and
proliferation via Ki-67 index.

Genotype-informed pathology is particularly
relevant in breast cancer, where BRCA1 and
BRCA2 mutation carriers exhibit distinct
phenotypic profiles, differential tumor evolution
patterns, and unique treatment susceptibilities.
Understanding these patterns enables optimal
therapeutic planning and early identification of
individuals who may benefit from PARP inhibitors
or intensified surveillance ™.

In parallel, advancements in multimodal fusion
have strengthened the integration of WSIs with
omics data, clinical parameters, and radiologic
findings. Integrative Al approaches — employing
optimal-transport co-attention and multimodal
cross-representation learning — have shown
promise in modeling disease progression and
predicting patient-specific outcomes'. These
multimodal frameworks support convergence
between pathology, genomics, and imaging,
reshaping how tumor biology is mapped in
research and clinical oncology.

Finally, contemporary computational pathology
research has begun to examine how such
techniques scale across institutons and patient
populations. The consensus emerging from
multicenter analyses is that generalizable Al
requires stain-robustness, scanner-agnostic model
design, and metadata harmonization — but also
clinically interpretable outputs that remain aligned
with pathologist expectations and regulatory
review standards’®.

3. Methods

3.1 PLATFORM ARCHITECTURE

BrCAIl-Nexus is a cloud-ready, CAP-aligned digital
pathology system extending DCS_PathIMS. It
consists of:
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e a WSl ingestion layer

e preprocessing and quality control

o multi-task Al inference engine

« digital biomarker repository

e clinical and research output modules

e governance and model-versioning infrastructure

Rather than functioning as a monolithic model, the
plattorm employs linked task-specific models
coordinated by a workflow controller thataggregates
outputs into patient-level biomarker profiles.

3.2 DATA CURATION AND HARMONIZATION
Incoming slides undergo:

1.Scanner ingestion

2.Automated quality checks for focus, tissue
coverage, folds, pen markings, blur

3.Stain normalization to reduce inter-lab variation

4. De-identification to remove all metadata tied to
patient identifiers

5.Metadata mapping into a standardized schema
covering:

o tissue type

o sample source

o fixation method

o stain type

o clinical diagnostic fields

o known receptor status if available

This ensures inter-site consistency for downstream
clustering, validation, and clinical interpretation.

Figure 1 illustrates the complete pipeline of Digital
Pathology images Data Curation and Harmonization,
including scanner ingestion and quality control.

Data Curation and Harmonization Pipeline

Scanner
Ingestion

Quality
Control

Identification

Metadata
Mapping

Figure 1. Data curation and harmonisation pipeline, including scanner ingestion, quality control, de -identification, and metadata mapping.

3.3WSI PROCESSING AND DIGITAL BIOMARKER
EXTRACTION

Each slide is tled at multiple magnifications to
capture both morphological context and cellular
detail. Task-specific models evaluate:

e tumor presence and tumor—stroma boundaries
* nuclei detection and classification

e mitotic figures

« tubule architecture

e nuclear pleomorphism

e tumor-infiltrating lymphocyte densities

e receptor-based membrane and nuclear staining
patterns

Outputs are aggregated to slide-level and patient-level
using uncertainty-aware weighted pooling and spatial
heterogeneity indices. Spatial statistics quantify:

 heterogeneity within the tumor
« proliferative hotspots

e immune-dense vs immune-sparse regions
* receptor-intensity gradients
e necrosis-associated tissue zones

Each biomarker is stored as a time-stamped and
version-locked record linked back to the original
WSl andmodelid, enabling re-analysis during trials
or regulatory review.

Figure 2 illustrates complete Digitial Biomarker
extraction workflow from a WSI, digital pathology
images.

© 2025 European Society of Medicine 4



WSI to Digital Biomarker Extraction Workflow

3 Multi-Task Digital
Tiling Models Biomarker
————— Outputs
|
ﬁ 1 - - - | Model 1
N I

Fr-b: [:]-- | Model 2 Y» ER

I (I : H Other
il oy

Aggregation

Model 3

1
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Figure 2. WSl to digital biomarker extractionworkflow showingtiling, multi-task models, aggregation, and digital biomarker outputs.

3.4MITOSISDETECTION, TISSUESEGMENTATION
& QUANTITATIVE MORPHOMETRICS

Accurate assessment of mitotic figures plays a
central role in breast cancer grading, reflecting
cellular proliferation and tumor aggressiveness.
Historically, mitosis counting has been performed
manually on selected areas of a slide, a process
that is inherently subjective and sensitive to reader
variability. Al-assisted mitosis detection offers a
standardized, scalable, and reproducible altematve
that can significantly improve consistency in
proliferative index assessmentacross laboratories™.

Multiple methodologies have been explored for
mitosis detection, including small objectdetectors,
region-based convolutional networks, and hybrid
CNN-transformer pipelines. Research in breast
cancer histopathology demonstrates that modem
Al systems can detect mitotic activity with high
sensitivity andspecificity, often outperforming unaided
humanreadersundercontrolled testing conditions®.

Challengesin this domain have fostered standardzed
benchmarkinginitiatives such asthe MIDOG (Mltosis
DOmain Generalization) challenge, which was
establishedto address cross-site variability through
domain adaptation, harmonization, and model
generalization techniques. MIDOG has provided a
rigorous shared framework for evaluating model
robustness across staining conditions, scanners,
and data sources?'.

Recent algorithmic innovations include DETR-
based mitosis detectors leveraging direct set
prediction to eliminate region proposal steps and
improve object localization in dense cellular
areas®. Another important development is the
emergence of lightweight architectures designed
for small mitotic figure detection using dilated
convolution and multi-scale receptive fields,

enabling improved sensitivity for detecting rare
mitotic events within large histology scans?.

These advances enable generation of quantitative
mitotic indices that serve as continuous variables
rather than ordinal categories, supporting more
granular risk stratification. Importantly, this shift moves
away from coarse thresholds toward morphometric
gradation, where Al-derived metrics correlate more
strongly with tumor biology and clinical behavior?4.

Segmentation models complement mitosis detection
by delineating tissue compartments, identifying
regions of invasive carcinoma, and isolating tumor
microenvironmentlandscapes. Despite substantial
progress, segmentation still faces several known
limitatons — including lack of standardization in
ground truth  annotation, inconsistency in
benchmarking tasks, andinsufficient re presentation
of diverse histologic subtypes in public datasets.
Studies have systematically reviewed these
challenges and emphasized the need for improved
datasetcuration and labeling standards to support
clinically reliable segmentation models?>.

Finally, small but meaningful improvements in
segmentationaccuracy can have large downstream
effects, since many computational biomarkers —
including tumor budding, lymphocytic infiltration,
glandular morphology, and nuclear variability —
depend on accurate structural delineation. Tissue
segmentation is thus not simply a preprocessing
step, but rather a core biological interpretation
layer within the broader context of computational
pathology?®.

3.5 CLINICALWORKFLOW ADOPTION,
PATHOLOGIST ACCEPTANCE & REGULATORY
ECOSYSTEM

Successful integration of digital pathology and Al
into clinical practice depends not only on

© 2025 European Society of Medicine 5



algorithmic accuracy, but on human adoption,
workflow design, and institutional readiness.
Pathologists remain central decision-makers in the
interpretive chain and their perceptions of Al
influence adoption trends, confidence, andthe shift
toward collaborative human—machine diagnostics.
Survey-based research from diverse clinical
settings shows cautious optimism — most
pathologists recognize Al’s value in improving
efficiency, reducing repetitive tasks, and providing
quantitative analysis, while also expressing the
need for transparency and robust validation prior
to full reliance in diagnostic settings?’.

Clinical adoption must also account for workflow
design. Al implementation should reduce rather
than increase operational burden — meaning that
Al outputs need to be seamlessly integrated into
existing reporting structures, rather than introduced
as external, siloed software requiring additional
effort or tab switching. Health systems deploying
pathology Al emphasize that the highest user
acceptance occurs when Al output is embedded
into the diagnostic viewerin-context, with overlays,
probability metrics, and visual explanations that
align with human interpretive patterns?.

Regulatory considerations further shape adoption
pathways. Frameworks guiding the safe use of Al-
enabled pathology systems highlight requirements
for dataset provenance, validation transparency,
and modelgeneralizability. Clinicalimplementation
guidelines stress that Al should not be a “black
box,” but rather a system with traceable biomarker
lineage and auditable computational steps?. The

evolving role of BRCA and hereditary mutation
profiling in breast cancer emphasizes that digital
pathology and PGx interpretation must be harmonized,
particularly where Al-derived morphometric
patterns intersectwith genomic risk factors=°.

Real-world evidence development is increasingly
recognized as essential for regulatory acceptance.
Retrospective performance evaluations alone are
insufficient— prospective, multicenter deployments
testing algorithm reliability across heterogenous
datasets are required to establish regulatory
confidence®'. Leading computational oncology
frameworks demonstrate how clinical-grade
validation can be achieved through cross-site
harmonization studies and hybrid consensus-
labeling pipelines involving both human experts
and algorithmic assistance®.

Critically, digital pathology trials have also exposed
emerging pitfalls — including dataset leakage,
biased annotations, protocol drift, and unintended
overfiting to tissue-processing artifacts. These
lessons underscore the need for rigorous
methodology in Al trials, careful definiton of
endpoints, and conservative interpretation of
performance gains*®. By absorbing these insights,
platforms  like
safeguards against domain-specific bias, adopt
blinded validaton structures, and maintain
compliance with evolving regulatory expectations.

BrCAI-Nexus can implement

Figure 3 illustrates a CDSS decision-tree and
detailing out the pathway of a digital biomarker
mapping to therapy options.

CDSS Decision Tree anmnd
Explanation Interface

wWsi
Input

l Decision
Node

Explanation

HER2-positive
breast cancer
with digital
biomarkers
utilized as

Digital
Biomarkers HERZ2: Positive
ER: Negative
HERZ2: Positive PR: Negative
ER: Negative

PR: Negative

Therapy

Options

rationale for
subsecquenteapy
therapy options
and clinical trial
suggestions

Figure 3. CDSS decision-treeand explanation interface illustrating how digital biomarkers map to therapy options and trial suggestions.

3.6 ROLE INCDXDEVELOPMENT
Digital biomarkers are used to:

e refine assay cut-offs

o calibrate receptor thresholds

o correlate biomarker patterns with observed
treatment responses

 reduce scoring variability across sites

For CDx co-development, BrCAIl-Nexus uses
digital biomarker profiles to define and refine assay
thresholds. During early development, Al-quantified
continuous scores guide selection of optimal cut-offs
and mitigate site-to-site scoring drift. Digital

© 2025 European Society of Medicine 6
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biomarkers are cross-validated against reference
IHC/FISH assays and correlated with treatment
response to establish clinical validity. This pipeline

supports  CDx

for

HER2-targeted

therapy,

endocrine therapy, ADCs in HER2-low disease, and
emerging immune-oncology combinations.

Whole Slide

Image (WSI)

Feature

Extraction

D

Translating features from candidate CDx assay definitions

Figure 4.Digital biomarkers — CDxworkflow.

This accelerates progression from analytical validation
— clinical validation — utility demonstration,
supporting timely CDx readiness.

3.7 FDA-PMA DOCUMENTATION ACCELERATION
USING WSI-DIGITAL BIOMARKERS

Regulatory evidence for CDx and therapy PMA
requires coherent narratives linking analytical and
clinical performance. GenAl modules draft clinical
study reports, analytical validation summaries, and

Biomarker
Selection

[ |
1l=

Figure 4 illustrates the pathway of features
extraction from digitized biopsy’s biomarker and
translation of them into a candidate CDx Assay
definitions.

Digital Biomarkers to CDx Workflow

Candidate
CDx Assay
Definitions

FDA-PMA sections from structured BrCAIl-Nexus
outputs. Templates are aligned with FDA
expectations for SaMD/IVD, and content is
constrainedto verified fields to avoid hallucination.
Automated consistency checks reconcile text with
tables and figures. All drafts undergo expert
regulatory review before submission. Figure 5
lllustrates a GenAl driven documentation pipeline
for FDA-PMA submissions for a drug.

FDA-PMA GenAl Documentation Pipeline

.

Data Inputs

Genomics

S

Digital
Pathology

~ —

~

Data

Standardization

[ =] X

[ =] oo

Evidence

—> Assembly

~ D
T Human
Clinical Review
Trials o Genaliance Submission Audit
Checks _> Package Trail
CSR e
B et Craime =

i

Figure 5. FDA-PMA GenAl documentation pipeline.

3.8 PGX-INTEGRATED TARGET ANALYSIS

BrCAI-Nexus links digital pathology phenotypes
with genomic and PGx features to discover
morpho-genomic response signatures. Germline
variants (e.g., BRCA1/2, ATM, CHEK2), somatic
drivers (ESR1, PIK3CA, TP53), and HRD/immune
signatures are fused with WSI biomarkers using
multimodal transformers and co-attention networks.

This enables: (1) identification of subgroups likely
to benefit from specific targets; (2) adaptive trial
hypotheses; and (3) mechanism exploration where
morphology predicts genomic resistance.

This multimodal approach helps to identify morpho
-genomic associations for adaptive therapy planning.

© 2025 European Society of Medicine 7



Figure 6 illustrates a workflow diagram for
Pharmacogenomics (PGx) integrated adaptive
Drug-Target design, which is a multi-modal Al

platform having image data and genomics,
molecular data.

Figure 7. PGx-Integrated Adaptive Drug-Target Design Diagram

— ~

Whole-Slide Images (H&E / IHC)
= Tumor architecture

r ~

Adaptive Target Hypotheses
* Pathway / target ranking

« Grade / TILs / heterogeneity ~
* HER2 / ER / PR morphometrics \

e >y

- ™

Molecular / PGx Data
* Ggrmline variants (BRCA1/2, ATM, CHEM2...
Komatic drivers (PIK3CA, ESR1, TP53|.

.

>

Multimodal Fusion Layer
(Co-attention / Transformer)
* Align phenotype < genotype

« Learn response signatures 'S )
* Quantify uncertainty .
Trial Design Adaptation

h 7 * Subgroup-specific targets

/ * Resistance mechanisms
A

N

\

, N * Enriched cohorts

* HRD / immune signatures

e
\

Clinical Context
« Therapy history
* Response [ adverse events
¢ EHR + outcomes

* Dynamic cut-offs
* Biomarker-guided arms

.

—

\ Precision Oncology Outputs
* CDSS therapy mapping

* CDx candidate markers

+ Real-world monitoring

e [ vy

J

Learning loop: new trial + real-world data » model update — refined targets

Figure 6. PGx-inte grated adaptive targetdesign diagram.

3.9 MODEL GOVERNANCE, QUALITY CONTROL,
BIAS MITIGATION & LIFECYCLE MANAGEMENT
As Al systems become embedded in diagnostic
workflows and decision-support frameworks,
model governance and quality control become
essential elements of clinical operation. The
reliability of pathology Al depends not only on
training accuracy, but on sustained performance
under real-world variability. Several studies have
identified persistentshortcomings in segmentation
benchmarking, annotation consistency, and dataset
curation, indicating that algorithm performance
can be artificially inflated under narrow test
conditions®*.  These findings highlight the
imperative for standardized evaluation protocols
and careful interpretation of cross-study results.

External validation and domain generalization
constitute core pillars of governance. Al models
must demonstrate stain robustness, resistance to
scanner variability, and stable performance across
differentlaboratories. Collaborative clinical research
shows that cross-site domain harmonization and
systematic calibration pipelines significantly strengthen
generalizability — particularly when combined with
expert-informed annotation refinement®.

Regulatory bodies have be gun to articulate structured
guidelines for Al in clinical pathology, emphasizing
traceability of model evolution, transparency of
training data composition, and maintenance of

audit-ready documentation throughout the Al
lifecycle. These frameworks inform how models
transition from investigational use to regulated
clinical deployment, defining expectations for
software-as-a-medical-device classification, post-
marketmonitoring, and periodic revalidation®.

Comprehensive lifecycle management requires
continuous monitoring of model drift, oversight of
incremental retraining, and structured updates in
response to new data. Trustworthy Al deployments
employ performance dashboards, threshold-based
alerting for anomaly detection, andversion controls
that preserve backward auditability. Industry and
academic analyses reiterate that optimized Al
adoption occurs where technical governancealigns
with clinical responsibility — ensuring that algorithmic
predictions are interpretable, reproducible, and
ultimately serve to augment clinician judgment
rather than obscure it*’.

Figure 7 illustrates an intended, ideal governance
framework for clinical and Trails deployments.

© 2025 European Society of Medicine 8
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WSI / IHC Ingestion Automated QC

v

(DICOM-WSI, site upload) (focus, stain, artifacts)

Model Inference
(version-locked)

De-ID & Governance
PHI removal, consent flags

\

/

Humanin-the-Loop Review
(pathdjogist approval,
CDXS sign-off)

Performance Monftoring
(accuracy,
bias metyics)

Audit Trail & Reporting
gk WSI-biomarker—
cision, logs)

Continuous lifecycle: validate - monitor - recalibrate - redeploy (under governance)

Figure 7. Governance and monitoring workflow.

BrCAI-Nexus integrates these advances into a
unified platform that moves beyond single-task
automation. By leveraging multi-task model
ensembles and workflow orchestration, the system
converts WSls into durable digital biomarkerassets
that inform clinical decision support, trial design,
regulatory  documentaton  and  adaptive
pharmacogenomic exploration.

Figure 8 illustrates that Al driven digital Pathology
Drug Discovery workflow from biopsy digitization
to drug development, clinical trails & regulatory
approval.

Al-Driven Digital Pathology
Drug Discovery Workflow

Tissue Silde
Digitization

=

High-resolution
imaging of biopsy
samples

Drug
Development

-
-

Target validation
and preclinical
testing

Data
Curation

Quality control and
annotation of
imaging data

Multimodal
Integration

Fusion of histology,
genornics, and
patient records

Clinical Trials
& regulatory
approval

Patlnnt- } /

Phase I-I1l trials
and regulatory
approval

Figure 8. Al-Driven Digital Pathology Drug Discovery Workflow: tissue slide digitisation — data curation — multimodal inte gration
— Al analytics — drug development — clinical trials & re gulatory approval.

4. Results

4.1 ANALYTICALAND DIAGNOSTIC
PERFORMANCE

In DCS_PathIMS, multi-task Al pipelines achieved
high concordance with expert pathologists for
Nottingham sub-scores and overall grade, while
reducing inter-observer variability. Comparable
multi-center studies in mitosis detectionand breast

WSI grading report F1-scores typically 0.80-0.90
and reliable cross-domain generalization when
stain normalizaton and domain adaptation are
used. Analytical performance of DCS_PathIMS
(pre-cursor to BrCAl-Nexus platform on various
Digital pathology tasks, in respectto Breastcancer
Nottingham grading pipelines are listed in Table 1.
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Table 1. Analytical performance of BrCAI-Nexus tasks (segmentation, detection, grading, receptor scoring).

. BrCAI-N L.
Input (Stain Model Approach Prima Projected exus Clinical /
Task/ Module put >tain, PP Validation Level Y| Benchmar Trial Utility
Magnification) (summary) Metrics Observe
k Range L Notes
d (fill in)
Reliable
tiling, t
) U-Net/Transformer g, tumor
Tissue / tumor . . Internal + . . burden
region H&E, 5x—-10x segmentation with external WSI Dice, Dice estimation
) ' stain normalization mloU 0.88-0.94 " o
segmentation ) . cohorts spatial
and artifact masking .
heterogeneit
y indices
Grade
' . AUC suppo.rt and
Tumor vs stromavs Multi-class CNN/VIT trial
) Internal AUC, F1, 0.93- I
normal H&E, 10x—-20x% with MIL o o eligibility
lassification aggregation multi-site acedracy 0.98; F1 (tumor
¢ 99reg 0.85-0.92 ‘
cellularity
thresholds)
Pleomorphis
Nuclei detection & Instance . Det. F1 m, TIL
lassificati tation + Int - Detection 0.80- densit
classification segmentation nterna ensity,
H&E, 20x—40x 9 ‘ F1, mAP, 0.90; - Y
(tumor/lymphocyte graph/transformer | scanner-shift set nss.F1 lass.F1 stromal
class- class-
/stromal/necrosis) classifier activation
0.75-0.88 .
biomarkers
Two-st(aFgetdetec:tor Internal + F1, F1076- Stin?ar'dlées
aster mitotic index
Mitoticfigure H&E, 40x R-CNN/DETR) + external sensitivity 0.88; ¢
detection hotspots ;1 d i (MIDOG/TUPA @ sens. - N tt"orh
ard-negative ottingham
nes C-like) FP/mm? | 0.80-0.92 9
mining score
Supports
. Gland/tubule ICC vs ICC 0.75- Nottingham
Tubule formation ) )
Lantification H&E, 10x-20x% segmentation + Internal experts, 0.88; Dice . Tubule
9 shape priors Dice 0.80-0.90 Score
overlays
Nuclear Nuclei embeddings Weighted k 0.65- Reproducib
eighte e
pleomorphism H&E, 20x-40x% + distributional Internal 9 0.80; ICC - .
scoring 3-tier grading K, ICC 0.70-0.85 pleomorphis
’ ' m biomarker
. . Primary
. Multi-task fusion Internal Accuracy, | Acc 0.78- .
Nottingham grade H&E, o . ) prognostic
) (mitosis + tubules + multi-reader + weighted 0.88; k . r.
(overall) multi-scale | hism) ) | 0.70-0.85 stratifier for
pleomorphism externa K .70-0. CDSS/trials
) . p 0.70- Enrichment
' TIL density & H&E + IHC, Lymphocyte ' Correlatio 0.85; for 10 trials;
immune spatial detector + spatial Internal n (p), AUC -
t 20x lusteri i (out ) AUC response
patterns clustering metrics outcome) | 0 5 aq monitoring
Conti
Membrane intensity Internal + Acc 0.90- onnuous
. . Accuracy, HER2/HER2-
HER2 scoring (IHC) | HER2IHC, 20x + completeness equivocal 0.96; x .
. k, AUC low for ADC
classifier subset 0.80-0.90 .
trials/CDx
Standardi
ER /PR . Nudl Hivity % Correlatio p 0.85- :n arcizes
Recomg | grp i, 20x | NI PO E |y Ty | ossw || hormene
intensity mode MAE 0.80-0.90 receptor
cutoffs
Positive nuclei MAE <5- Calibrated
Ki-67 quantification Ki-67 IHC, 20x counter + hotspot Internal MAE, ICC 8%; ICC L proliferation
analysis 0.80-0.92 biomarker

4.2 DIGITALBIOMARKERS AND CLINICAL
RELEVANCE

Digital biomarkers derivedfrom WSls fall into three
categories: (1) established clinical biomarkers
quantified  with  higher  precision (grade,

HER2/ER/PR/Ki-67); (2) microenvironment and
heterogeneity biomarkers (TIL density, immune
spatial patterns, necrosis, stromal activation); and
(3) novel Al-discovered morphometrics predictive
of response or resistance. Recent computational
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various digitzed biomarkers of Breast cancer
biopsy slides (Digital Pathology Images, WSI) are
listed in Table 2.

pathology studies show that these biomarkers
correlate with genomic alterations and outcomes,

complementing molecular assays. A summary of

Table 2. Breastcancer Al biomarkers and clinical relevance (BrCAl-Nexus digital pathology)

Classical histologic

formation, Nuclear

hotspot mitosis

recurrence risk,

Biomarker Cl B?peajl(c Dl(gvr::,zgll How Computed Clinical Relevance Primary Use Cases Level of
lomarker L1ass loma .ers . (Al/GenAl) in Breast Cancer (BrCAl-Nexus) Evidence
derived)
Nottingham sub- Multi- task segmentation Proanosis
scores: Tubule + detection models; 9 ' Clinical

CDSS; Trial stratification;

standard + Al

proliferative rims;

. . . . NAC r n s . o
grade biomarkers pleomorphism, detection; nuclei theraC eisnF;:n:ﬁc’ Prognosticdigitaltwin quantification
Mitoticindex; Overall | embedding distributions; py, ) y validated
. . decisions
Grade (G1-G3) slide-level aggregation
. IHC-specificmodelsfor | Therapyselection
Continuous HER2 P Py
A ) membrane/nuclear (HER2-targeted, o
membrane intensity - . ) CDSS; CDx co- Clinical
) staining; calibrated endocrine, ADCs); .
Receptor-linked & completeness; . - . . development; Trial standard +
. . o . intensity scoring; defines HER2- - . .
digital biomarkers ER/PR % positivity + ; eligibility/enrichment; emerging Al
. ! ) uncertainty-aware low/heterogeneou ) .
intensity; Ki-67 ) . ) FDA-PMA evidence refinement
. S pooling; heterogeneity | s categories; pCR
proliferation index A -
indices prediction
Eligibility for trials; .
T % cellularit Tumor/stroma/nomal 9 tyd ; ! Clinical
. umor% cellularity; ) . ensures adequate .
Tumor cellularity & . ) y segmentation; epithelial . 4 CROtrial QC; CDx standard; Al
. invasive tumor area; > o tissue for assays; o )
burden biomarkers . ] . vs in-situ classifiers; area ) . validity; CDSS improves
DCIS vs invasive ratio e staging supportin
quantification ) speed
resections
TIL density (%); . Predicts response Stron
o y (%); Lymphocyte detection; P . ) ) 9
. . spatial immune . to 1O Trial enrichment; CDSS literature
Microenvironment / . graph-based spatial e . .
. . hotspots; immune- . " combinations; trial suggestions; support; Al
immune biomarkers . clustering; multi-scale . . L o
excluded vs inflamed . prognosticin longitudinalmonitoring | standardization
context embedding . .
patterns TNBC; relapserisk growing
Stroma-to-tumor . . .
. ) Stromal segmentation; Associated with .
ratio; CAF-like . . . Emerging;
A texture/graph Invasion, Adaptive target .
Stromal activation morphology . ! ; - requires
. . morphometrics; self- metastasis, discovery; trial .
biomarkers signatures; . . ol prospective
supervised feature endocrine stratification o
collagen/ECM . . validation
. ; discovery resistance
density proxies
Necroticfraction;
ori-necrotic Multi- class tissue Correlates with Moderate
Necrosis & hypoxia P segmentation; aggressive biology, | Prognostic CDSS flags; evidence; Al

trial risk stratification

quantification

Rare-event/ safety
biomarkers

invasion probability;
atypical immune
toxicities in tissue

detectors; anomaly
detection; human-in-
loop confirmation

monitoringand
recurrence
prediction

proxies . . contextual patch poor response in
hemorrhage/lschem classifiers some subtypes emerging
a patterns
Grade heterogeneity WSl wid fial Identifies mixed
Architectural index; spatial statist_i::,:- ui(s:zratal]?nt subclones; predicts | CDSS; Trial enrichment; Emerging;
heterogeneity variance ofreceptors; mabs: he,tero onei Y variable therapy PGx-integrated high clinical
biomarkers mitotichotspot P ,scorin generty response; supports targeting interest
dispersion ° adaptive regimens
WSI-predicted HRD- Multimodal co-attention Non-invasive proxy Emerging;
Morpho-genomic like morphology; models trained on WS + ofgenomicrisk; PGx adaptive targets; neegdsg,
surrogate BRCA-like pattems; . " helps choose trial inclusion when ticent
biomarkers PIK3CA/ESR-linked gsnomics; wiea Ky PARPI/CDK4/6/PI3 | sequencing limited mutieener
supervised MIL . validation
phenotypes K strategies
Residual cancer . Early NAC .
Baseline vs on-treatment Growing
burden (RCB) . response . .
Res /residual h o WSI comparison; diction: avoid CDSS for NAC; trial evidence;
ponse/residua morphometrics; : . prediction; avoids - L ) :
) ] change-detection DL; - ) endpoints; longitudinal aligns with
disease biomarkers treatment effect ineffective o
. . operator/transformer . . monitoring pCR/RCB
maps; cellularity fusion regimens; MRD- studies
change scores risk proxy
Micro- metastatic fod; High- sensitivity Supports Phase
lymphovascular /1V safety Post-market surveillance; Emerging;

CRO operations

depends on
datascale
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4.3 TRIAL-PHASE APPLICATIONS AND
PROJECTED IMPACT

Digital pathology affects clinical development by
standardizing eligibility, central reads, and
longitudinal tissue analytics. Phase | trials benefit
from accurate subtype stratificaton (HER2+,
triple-negative, luminal) to detectearly safety and
biomarker signals. Phase |l uses digital biomarkers
to enrich responsive cohorts and monitor
microenvironment changes. Phase Il gains scalability

and consistency for global multi-site reads. Phase
IVleverages real-world WSI evidence forrare event
detection and personalized surveillance.

Figure 9 lllustartes, the intended tasks and their
effectiveness or the clinical development impact
across all the four phases of a clinical Trail, which
are effectively driven or automated using digital

pathology Al.

Pﬁh% | » Safety & Dose

( D’Base Il « Efficacy

@I@s} 1l * Confirmatory

(Pﬂage IV« Post-Market

+ Cohort enrichment via
HER2/ER/PR/Ki-67 continua

+ On-treatment WSI response
biomarkers (pCR/RCB)

* TME/TIL dynamics for 10
benefit

* Subtype stratification
(HER2+, TNBC, Luminal)

« Baseline grade + continuous
receptor scores

« Early tissue

safety/on-target signals

* Al-assisted centralized
reads across global sites

» Standardized CDx thresholds
+ eligibility QC

* Large-scale
heterogeneity/outcome
analytics

surveillance

* Rare adverse
events/resistance pattern
detection

longitudinal tissue

+ Real-world digital pathology

+ Personalized follow-up from

Cross-cutting digital pathology functions

= WSI curation + QC + de-identification (trial-grade governance)
« Al digital biomarkers stored with audit trails and version locks
+ CDx co-development with continuous thresheld refinement

» GenAl-assisted interim analyses and FDA-PMA modules

Outcome: earlier enrichment ¢« faster reads ¢« auditable biomarker evidence

Figure 9. Digital pathology applications across trial phases.

The key digital pathology Al applications across each phase ofa clinical trail are summarized in Tables 3a,

3band 3c.

Table 3a. Digital pathology applications across clinical trial phases (compressed journal layout).

Finding quantification; early safety

tissue signals

tumor cellularity; necrosis
proxies

L Benefits
Trial Phase Key Plgl,tal Pathology Primary Biomarkers (Operational + Regulatory Outputs
Applications .
Clinical)
Faster eligibility;
Subtype stratification; baseline | Grade sub-scores; mitotic | fewer screen Baseline biomarker
Phase | — Safety & Dose grade & receptor index; receptor continua; failures; dataset; analytical

standardizedreads;
earlier treatment
start

validity logs; interim
safety summaries

Enrichment via continuous

Phase Il - Proof-of-Concept | receptors/heterogeneity; on-

HER2-low/heterogeneity
indices; ER/PR %, Ki-67

change; TIL
/ Efficacy treatment pCR/RCB proxies; ; .
TILTME dynamics den5|ty/spat|.al,RCB
morphometrics

Shorter
recruitment; higher
response rates;
earlier therapy
switch decisions

Clinical validity
correlations;interim
efficacy biomarker
reports

Al-assisted centralizedreads;
Phase lll - Confirmatory/
Pivotal

version-locked scoring; CDx
threshold refinement;
heterogeneity/outcomes

All Phase Il biomarkers +
multicenter consistency;
heterogeneity—outcome
signatures

Scalable global
central pathology;
lower variability;
reduced
adjudication

Pivotal biomarker
evidence; CDx
performance tables;
audit exports

Real-world WSl registry; rare
Phase IV — Post-Market / resistance/toxicity detection;
Real-World longitudinalbiomarker

tracking; drift monitoring

Resistance morphometrics;
anomaly/toxicity
signatures; longitudinal
RCB/MRD proxies

Low- costRWE
generation; early
safety signals;
personalized
follow-up

Post-market
safety/efficacyreports;
RWE biomarker
dossiers;lifecycle
validation reports
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Cross-cutting functions (apply to all phases):

e WSI| curaton, QC, de-identfication, and
metadata harmonization (trial-grade governance)
e Audit-trailed digital biomarker library linking
WSI|—tile—>model—score with uncertainty bounds

* CDx co-developmentwith continuous threshold
refinement

® GenAl-assisted drafting of CSRs/IND/NDA/PMA
modules with consistency checks

Table 3b. Trial phase—specific digital pathology applications and benefits.

Trial Phase

Applications

Biomarkers

Benefits

Evidence Cutputs

Phase | — Safety & Dose
Finding

Subtype stratification; baseline
grade & receptor quantification;
early safety tissue signals

Grade sub-scores; mitotic
index; receptor continua;

tumor cellularity; necrosis
proxies

Faster eligibility; fewer
screen failures;
standardizedreads;
earlier treatmentstart

Baseline biomarker
dataset; analytical
validity logs; interim
safety summaries

Phase Il - Proof-of-
Concept/ Efficacy

Enrichment via continuous
receptors/heterogeneity; on-
treatment pCR/RCB proxies;
TI/TME dynamics

HER2-low/heterogeneity
indices; ER/PR %, Ki- 67
change; TIL density/spatial;
RCB morphometrics

Shorter recruitment;
higher response rates;
earlier therapy switch
decisions

Clinical validity
correlations;interim
efficacy biomarker
reports

Phase lll - Confirmatory
/ Pivotal

Al-assisted centralizedreads;
version-locked scoring; CDx
threshold refinement;
heterogeneity/outcomes

All Phase Il biomarkers +
multicenter consistency;
heterogeneity—outcome
signatures

Scalable global central
pathology; lower
variability; reduced
adjudication

Pivotal biomarker
evidence; CDx
performance tables;
audit exports

Phase IV — Post-Market /
Real-World

Real-world WS registry; rare
resistance/toxicity detection;
longitudinalbiomarker tracking;
drift monitoring

Resistance morphometrics;
anomaly/toxicity signatures;
longitudinal RCB/MRD
proxies

Low-costRWE
generation; early
safety signals;
personalizedfollow-up

Post-market
safety/efficacy
reports; RWE
biomarker dossiers;
lifecycle validation

reports

Table 3c. Cross-cutting digital pathology functions across trial phases.

Cross-cutting Function

Purpose / Benefit

WSI curation, QC, de-identification, and metadata harmonization (trial-
grade governance)

Ensures trial-grade reproducibility, auditability, and faster
regulatory readiness.

Audit-trailed digital biomarker library linking WSI—tile—model—score
with uncertainty bounds

Ensures trial-grade reproducibility, auditability, and faster
regulatory readiness.

CDx co-development with continuous threshold refinement

Ensures trial-grade reproducibility, auditability, and faster
regulatory readiness.

GenAl-assisted drafting of CSRs/IND/NDA/PMA modules with
consistency checks

Ensures trial-grade reproducibility, auditability, and faster
regulatory readiness.

4.4 CRO TRIALACCELERATION

CROs face costand delay from variable biomarker
scoring, repeated pathology queries, and late
discovery of protocol deviations. BrCAIl-Nexus
provides automated QC, pre-screening for

eligibility, standardized central reads, and
near-real-tme dashboards. Published case studies
suggest these capabilities reduce per-case review
time and screen failures. A CRO trail-acceleration
workflow diagram is illustrated in Figure 10.

Figure 10. CRO trial-acceleration diagram powered by BrCAl-Nexus digital pathology.

¢ Upload & Pre-Screen Central Al Reads

+ WSIIHC uploaded per
pratacol

+ Auto de-ID + QC at source
« Fast eligibility pre-score

+ Version-locked inference
« Continuous
HERZ/ER/PRIKI-67

« Nottingham + TME(TIL
scores

@; ibility & Enrichment

+ Ranked candidates per arm
« Subtype/heterogeneity
flags

« Screen failures reduced

4[] opgitudinal Monitoring

* On-treatment WSl deltas
» pCR/RCA response proxies
+ Adaptive-arm insights

latory-Ready Evidence

* Audit trails & model logs

» Interim biomarker reports
* GenAl CSR [ PMA drafts

CRO / Sponsor Acceleration Outcomes

+ Recruitment time L 20-30% via rapid pre-screening + enrichment
+ Screen failures | 15-25% with harmonized scoring thresholds

« Central pathelogy TAT L 30-50% using Al-assisted reads

+ Protocel deviations detected earlier through QC + audit trails

+ Requlatory documentation cycles § 40-50% using GenAl

Figure 10. CRO trial-acceleration diagram.
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4.5COST, TIME, AND REGULATORY
ACCELERATION METRICS

Across trial and CDx pipelines, efficiency gains
arise from improved reproducibility, earlier cohort
enrichment, and streamlinedregulatory generation.
Basedon published benchmarks, digital pathology
with validated Al can realistically reduce trial costs

by ~20-30% and timelines by ~20-25%, with
additional 6-12 months acceleration possible in
PMA/CDx submissions due to GenAl-assisted
documentation and auditable biomarker records.
Value impact on clinical trail operations, timelines,
trail costs and regulatory acceleraton and
evidences are listed out in Tables 4a, 4b and 4c.

Table 4a. Value impacton trial operations and timelines

Value Dimension BrCAI-Nexus Impact

Projected Gain

Recruitment & stratification

Continuous HER2/ER/PR/Ki-67 + Nottingham Recruitment time | 20-30%,; screen failures
pre-screening; harmonized thresholds 115-25%

Central pathology turnaround )
equivocal cases

Al-assisted reads with human sign-off; triage of

TAT | 30-50%,; adjudication | 20-40%

Inter-readervariability raint
uncertainty maps

Calibrated multi-task models; hotspot Al;

k 10.75-0.90; variance | 30-60%

Longitudinalresponse monitoring

TME tracking

On-treatment WSI deltas; pCR/RCB proxies & Earlier go/no-go by 1-2 cycles; protocol

amendments |

Table 4b. Value impacton trial costs

Cost Driver Baseline Challenge

BrCAI-Nexus Effect Projected Savings

Pathologyread cost .
9y reads across sites

High per-case manual reads and re- Batch Al inference reduces

manual load Pathology OPEX | 40-50%

linked) bottlenecks

R t biopsies/ ) Inconsistent thresholdslead torepeats | Standardized digital Repeat tissue events | 15—
epeatblopsies/rescoring and delays biomarkers + audit trails 25%
End-to-endtrial cost (pathology- Milestonesdelayed by pathology Faster reads + fewer

Total trial cost | ~25-30%

failures

Table 4c. Regulatory acceleration and evidence readiness

Regulatory Dimension BrCAl-Nexus Contribution

Acceleration Outcome

CDx co-development

Automated quantification + heterogeneity
readouts; Al-curated datasets

CDx development time | 35-40%; cost | 25-35%

CSR/ PMA documentation )
evidence

GenAl drafting with structured biomarker Documentation cycles | 40-50%; review queries

115-25%

PMA / label-claim readiness .
lineage export

Version-locked scoring + WS|—tile—score

Regulatory readiness 6-12 months earlier

Post-market RWE .
detection

Automated WSI registry + anomaly

Safety/resistance signals earlierby 3—6 months

InTable 5, a comparison between Manual and Al driven CDx workflow has been laid out.

Table 5. Manual vs Al CDx workflow comparison.

Manual / Conventional CDx

Workflow Step Wo rkflow

Impact on Time / Cost /

Al-Enabled CDx Workflow (BrCAI-Nexus) .
Quality

Manual logging, variable pre-
analytical checks; triageby local
staff

Sample receipt & case
triage

Automated ingestion with structured
metadata; Al triage flags
incomplete/low-quality cases

Faster onboarding; fewer
pre-analytical errors

Scanning schedules vary by site;

Slide scanning / digitization limited QC; rescans frequent

Protocolized scanning + automated QC Rescans |; scanner/site
(focus, stain, artifacts) withrescan triggers | variability controlled

Manual HER2/ER/PR/Ki-67
scoring; categorical cutoffs;
inter-readervariance

Pathologist review &
biomarker scoring

Continuous, calibrated biomarker Reproducibility 1;
quantification + explainable overlays; equivocal cases resolved
uncertainty alerts; human sign-off faster

Eligibility decision / trial Rules appliedretrospectively; high
matching screen failure; slow adjudication

Real-time recruitment dashboards;
harmonized thresholds; ranked
candidates perarm

Screen failures | 15-25%;
recruitment time | 20-30%

Assay design driven by small
cohorts; repeated manual
rescoring; longiteration cycles

CDx assay development&
iteration

Al-curated large WSl cohorts;
heterogeneity features; automated
re-analysisacross versions

CDx iteration cycles | 35—
40%; cost | 25-35%

. . Manual data pooling fromsites; Standardized digital biomarker lake; Faster, cleaner evidence;
Evidence aggregation for . ) . . ; .
dlinical validity inconsistent formats; slow audit trails; multimodal fusion fewer protocol
statistical review (WSI+genomics+outcomes) amendments

Regulatory documentation Manual CSR/biomarker tables; GenAl drafts .CSRS' PMA modulgs using Doocumer.wtatlontl'me 140-

. . structured evidence; auto compliance 50%,; review queries | 15—
(PMA/510(k)) high rework; late compilation

checks 25%

Post-approval lifecycle Sparse RWE; manual registries; Automated WSl registry ingestion; drift Earlier safety/resistance
updates updates slow monitoring; periodic re-validation detection (3-6 mo)
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Key takeawaysfrom this comparison table as stated
below:

« Front-end workflow (receipt — scanning): Manual
CDx relies on site-dependent logging and
inconsistent pre-analytics/QC, leading to frequent
rescans and variability. BrCAl-Nexus standardzes
ingestion with metadata mapping and automated
scanner + stain QC, cutting pre-analytical errors
and rescans.

» Biomarkerscoring: Conventional HER2/ER/PR/Ki
-67 scoring is categorical and reader-variable.
BrCAI-Nexus produces continuous, calibrated,
explainable scores with uncertainty flags, while
keeping a human sign-off loop—improving
reproducibility and speeding resolution of
equivocal cases.

o Trial eligibility & recruitment: Manual rules are
applied late and inconsistently, causing high
screen failures and slow adjudication. Al enables
real-ime cohort enrichment dashboards and
harmonized thresholds, reducing screen failures
(~15-25%) and shortening recruitment (~20-30%).

o« CDx assay development Traditonal CDx
iteration is slow because cohorts are small and
rescoring is manual. Al supports large, auditable
WSI cohorts + heterogeneity fe atures + rapid re-
analysis, compressing assay iteration time (~35-
40%) and cost (~25-35%).

o Evidence aggregation & regulatory: Manual
evidence pooling and CSR/PMA drafting are
fragmented, rework-heavy, and late-stage. BrCAI-
Nexus maintains a digital biomarker lake with full
audit trails and uses GenAl to draft regulatory
sections, cutting documentation cycles (~40-50%)
and reducing review queries.

o Post-approval lifecycle: Conventional CDx
updates rely on sparse, manual RWE. Al enables
automated WSI real-world registries + drift
monitoring, supporting faster detection of rare
resistance/toxicity patterns (months earlier).

A summary of benefits or net acceleration % of
various drug development and regulatory
acceleration tasks outcomes are listed in Table 6.

Table 6. Metrics-only summary of drug developmentand regulatory acceleration outcomes (BrCAI-Nexus).

Metric / Outcome Baseline (Manual / Conventional) Projected with BrCAI-Nexus N et Acceleration / Benefit
Recruitment time (enriched Site-dependentscreening; categorical | Al pre-screening + continuous . .

( . P 9 9 P 'ng 120-30% recruitment duration
cohorts) biomarker cutoffs; slow accrual receptor scoring

High due to inter-site scoring
variability

Screen-failurerate

Harmonized Al thresholds +

heterogeneity flags

115-25% screen failures

Central pathology
turnaround time

5-10days per site with manual
reads/adjudication

Al-assistedreads + equivocal
triage

130-50% read TAT

High fraction of equivocal cases

Adjudicationworkload o ] )
requiring multiple reviews

Uncertainty-aware Al reduces
equivocal load

120-40% adjudications

CDx assay iteration cycle Multiple manual rescoring rounds;
time long cycles

Automated quantification +
rapid re-analysis

135-40% iteration time

Regulatory medical-writing Manual CSR/PMA drafting; high
cycle rework

GenAl drafting from structured

140-50% documentation time

evidence

PMA/label-claim evidence
readiness

Evidence consolidated late Phasellll

Audit-trailed digital

. ; ) 6-12 months earlier readiness
biomarkers available earlier

Often mid/late Phase Il based on
point imaging/genomics

Early go/no-go decision

On-treatment WSI delta
biomarkers

1-2 cycles earlier
futility/response

Post-market safety/resistance | Manual RWE registries; delayed
signal detection signals

Automated WSl registry +

. 3-6 months earlier signals
anomaly detection

Total pathology-linked trial

High per-case read cost+ delays
cost gnp y

Lower OPEX + faster
milestones

1 ~25-30% pathology-linked
spend

Table 6 provides key measurements of various
tasks with a concise, metrics-only snapshot of
where BrCAl-Nexus—enabled digital pathology
accelerates breast-cancer drug development and
regulatory readiness. Itisolates the key operational,
clinical, CDx, and FDA-submission time/costlevers
that are most relevant to sponsors and CROs,
showing the magnitude of improvementachievable
when continuous Al biomarker quantification,
governed WSI workflows, and GenAl-assisted

documentation replace manual, categorical, and
site-variable processes.

BrCAI-Nexus projected to compress the drug-
development cycle primarily through faster enriched
recruitment (20-30%), fewer screen failures (15-
25%), and shorter central-read turnaround (30-
50%), enabling interim analyses and go/no-go
decisions 1-2 treatment cycles earlier. CDx co-
development benefits from 35-40% shorter assay

© 2025 European Society of Medicine 15



iteration cycles, while GenAl-supported, audit-
trailed evidence packaging reduces CSR/PMA
documentation time by 40-50% and advances FDA
submission readiness by 6-12 months. Post
market, automated WSI registries and anomaly
detection surface rare safety/resistance signals 3-6
months earlier, contributing to an overall ~25-30%
reduction in pathology-linked trial costs.

5. UseCases

5.1 CDSS FOR MEDICAL ONCOLOGISTS
Treatment planning in breast cancer depends on
grade, receptor status, proliferation, and
microenvironment context. Manual pathology
delays—especially for equivocal HER2 or
heterogeneous ER/PR cases—can prolong time to
treatment initiation. BrCAl-Nexus CDSS provides
verified, quantified biomarker outputs and visual
explanations that oncologists can review with
pathologists in tumor boards. This supports more
consistent selection of neoadjuvant regimens,
endocrine strategies, HER2-targeted therapies,
and immunotherapy combinations.

Importantly, CDSS deploymentis framedas human
-in-the-loop. Outputs are reviewed and approved
by practitioners, aligning with clinical governance
norms and regulatory guidance for assistive Al.

5.2 DIGITAL BIOMARKERS FOR PATIENT
STRATIFICATION AND RECRUITMENT
Biomarker-stratified trials in breast cancer often
suffer from high screening failure rates due to
inter-site assay variability, inconsistent cut-offs, and
limited tissue availability. Quantitative digital
biomarkers can harmonize site eligibility and
reduce late exclusions. For example, continuous
HER2 scoring can better define HER2-low
populations for ADC ftrials, while spatial TIL
patterns may enrich immune-responsive cohorts.

In  practice, BrCAI-Nexus supports rapid
pre-screening: trial sites upload WSls, the platform
generates eligibility probabilies, and CROs
receive ranked candidate lists. This shortens
recruitment windows and reduces unnecessary
repeatbiopsies.

5.3 ADAPTIVE DRUG-TARGET DISCOVERY VIA
PGX-INTEGRATED BIOMARKERS

Drug response is shaped by both genotype and
phenotype. PGx integration enables adaptive
target modelling where digital pathology captures

tissue-level phenoty pes (proliferation morphometrics,
immune contexture, stromal activation) that may
not be visible in bulk sequencing. Joint
morpho-genomic signatures help to identify
resistance pathways (e.g., ESR1-linked endocrine
escape with distinct nuclear patterns) and to
propose subgroup-specific targets.

5.4 DIGITALBIOMARKERS TO ACCELERATE CDX
DRUG TRIALS

CDx development requires analytical validity,
clinical validity, and clinical utility evidence. Manual
workflows rely on central pathology reads,
repeated re-scoring, andretrospective adjudication,
extending timelines. BrCAI-Nexus automates
HERZ2/ER/PR/Ki-67 scoring with  calibrated,
auditable outputs and produces ready-to-use
datasets for CDx statistical packages. GenAl
modules draft analytical validation narratives
directly from these datasets.

By standardizing biomarker assessment, the
platform lowers variability in multi-site trials and
de-risks the co-development of therapy and CDx.

5.5 DIGITIZED BIOMARKERS FOR FDA-PMA
ACCELERATION

FDA-PMA  submissions for breast cancer
therapeutics with CDx require traceable evidence
connecting biomarker calls to clinical outcomes.
BrCAIl-Nexus provides linked WSI heatmaps,
quantitative biomarker tables, validation logs, and
versioned model records. GenAl then composes
draft PMA modules by combining these structured
artifacts with approved templates, reducing
manual authoring and review cycles.

6. Discussion

BrCAI-Nexus demonstrates how digital pathology
can evolve from isolated Al-assisted tasks into a
unified, clinically integrated decision framework.
The system operationalizes the principle that tissue
morphology, when digitally quantified at scale,
serves not merely as a retrospective diagnostic
artifact, but as an active, prognostic and predictive
data source across the patient journey.

CLINICALIMPACT & DECISION QUALITY:

The availability of continuous, quantitative
biomarkers (rather than categorical bins such as
HER2 0/1+4/2+/3+) allows oncologists to make
more refined therapeutic decisions, particularly in
emerging treatment areas such as antibody-drug
conjugates for HER2-low disease. By reducing
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variability in receptor scoring and mitotic index
determination, clinicians gain greater confidence in
treatment selection, while eliminating repeat
testing, case re-review, and diagnostic delays.

OPERATIONALTRANSFORMATION IN PATHOLOGY
SERVICES:

Digital pathology augmented with Al reduces
pathologist cognitive load by automating lower-
judgmentmechanicaltasks such as mitotic counting,
nuclei classification, and tumor-area measurement
This allows human experts to focus on higher-order
interpretive and consultative responsibiliies —
recognizing atypical morphologies, adjudicating
borderline cases, and participating more actively in
multidisciplinary tumor boards. Over time, this
human-in-the-loop model may elevate rather than
displace the role of diagnostic pathologists.

MULTIMODAL INTEGRATION AND BIOLOGICAL
INSIGHT:

Morphology is increasingly recognized as a
phenotypic projection of genomic state.

BrCAIl-Nexus enables correlation of WSI-derved
features with:

o BRCA-associated HRD patterns

o PIK3CA mutational phenotype signatures

e TIL distributions predictive of immunotherapy
responses

e ESR1 mutation-linked endocrine evasions

This yields emergentinsights such as:

« areas of morphological transformation

e intratumoral heterogeneity patterns

e clonal evolution signatures

e microenvironmentalimmune suppression

IMPACT ON CLINICALTRIALS & DRUG
DEVELOPMENT:

A major bottleneck in oncology drug development
is the recruitment of biomarker-eligible cohorts.
Site-dependent assay variability leads to high
screen-failure rates and cohort heterogeneity. By
harmonizing biomarker scoring across institutions,
BrCAI-Nexus may significantly reduce recruitment
delays, accelerate go/no-go decision points, and
enable earlier signal detection — supporting more
efficient Phase I1/1ll transitions and reducing overall
trial cost.

REGULATORY

TRANSPARENCY:
Regulatory bodies such as the FDA increasingly
expectexplainability, traceability, and data lineage

READINESS &  EVIDENCE

for Al-generated evidence. The BrCAI-Nexus
architecture — linking each biomarker output to
the original WSI tile, model version, and
confidence score — is consistent with anticipated
digital pathology regulatory frameworks and aligns
with professional guidance from the College of
American Pathologists.

LIMITATIONS & RISKS:

Several challenges remain. Al models are sensitive
to domain shift arising from differences in staining
quality, scanner type, sample preparation, and
regional biological variation. There is also risk of
over-reliance on computational biomarkers without
proper expert adjudication. Furthermore, while
retrospective validation shows promising results,
true clinical utility must be verified through
prospective, mult-institutional studies with real
world patient outcomes.

FUTURE EVOLUTION:

Integration of digital pathology with multi-omics
(genomics, proteomics), imaging modalities (MR,
ultrasound), and liquid biopsy may enable the
creation of multi-scale “digital twins” for each
patient. Such fusion models hold potential for
dynamic therapy planning, adaptive treatment
strategies, and early relapse detection. Federated
learning approaches could enable privacy-
preserving cross-institutional training, reducing
bias and strengthening model robustness.

Overall, the extended discussion clarifies that
BrCAI-Nexus is not simply an Al tool — it
represents a structural re-wiring of diagnostic,
therapeutic, and regulatory pathways in oncology
with the potential to measurably accelerate the
transition to precision medicine.

BrCAl-Nexus illustrates a shift from narrow Al tools
to end-to-end digital pathology ecosystems. The
core value is not merely automation of grading but
the creation of reusable digital biomarkers that
travel across care and development pathways.

For clinicians, quantified biomarkers with uncertainty
bounds canreduce variability in grade and receptor
scoring, improving confidence in therapy selection
and tumor-board discussion. For patients, fewer
repeat biopsies and shorter diagnostic windows
translate to less anxiety and earlier initiation of care.

For sponsors and CROs, harmonized biomarker
pipelines address two chronic bottlenecks: (1)
recruitment delays from biomarker inconsistency
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and screen failure; and (2) documentation delays
from manual assembly of validation evidence.
Digital pathology and GenAl together can convert
trial tissue into real-time evidence streams33:3>3¢,

Key challenges are domain shift, bias, and lifecycle
governance. Breast cancer morphology varies by
population, fixation, stain, and scanner. Models
must be trained and prospectively validated across
geographies and sites, with drift monitoring and
pre-specified update rules in trials.

Future proofing also requires regulatory clarity on
Al-derived digital biomarkers as IVD evidence. The
platform’s auditable linkage from WSI to biomarker
to decisionis designedto meetthese expectations.

/. Future Directions

Prospective, multi-center deployments are required
to quantify clinical utility of CDSS and to validate
trial acceleration claims. Planned expansions
include multimodal fusion with radiology and liquid
biopsy, self-supervised foundation models for rare
subtype detection, and federated learning networks
to preserve data sovereignty 303234,

Integration with pharmacogenomic and real-world
evidence platforms will enable digital twins for
breast cancer patients, supporting adaptive therapy,
early relapse prediction, and rapid hypothesis
testing for new targets.

8. Conclusion
Each breast cancer biopsy is a life-defining data
point. Al-driven digital pathology can transform

this snapshot into a longitudinal map of cancer
care. BrCAl-Nexus unifies Nottingham grading,
receptor quantiﬁcation, microenvironment
biomarkers, CDSS, CDxco-development, CRO trial
acceleration, GenAl regulatory automation, and
PGx-guided target discovery. With rigorous
validaton and transparent governance, such
platforms can reduce cost, shorten timelines, and
expand equitable access to precision oncology.
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