

RESEARCH ARTICLE

Self-Reported Fatigue and Injury Risk in Paramedics

Graham Marvin^{1*}, Elisa F. D. Canetti¹, Ben Schram¹ and Robin Orr¹

¹Tactical Research Unit, Faculty of Health Sciences & Medicine, Bond University, Robina, QLD 4226, Australia.

gmarvin@bond.edu.au

PUBLISHED
31 January 2026

CITATION

Marvin, G., Canetti, EFD., et al., 2026. Self-Reported Fatigue and Injury Risk in Paramedics. Medical Research Archives, [online] 14(1). <https://doi.org/10.18103/mra.v14i1.7144>

COPYRIGHT

© 2026 European Society of Medicine. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

DOI

<https://doi.org/10.18103/mra.v14i1.7144>

ISSN

2375-1924

ABSTRACT

Background: Paramedics routinely operate in high-stress environments and endure long working hours, contributing to elevated occupational fatigue and increased injury risk. The study aimed to compare fatigue levels between injured and non-injured paramedics and examine associations between self-reported fatigue and self-reported injury among paramedics.

Methods: An online survey of paramedics (n=22) assessed self-reported fatigue and injury history using the Occupational Fatigue Exhaustion Recovery Scale and targeted Likert-based questions, with scores transformed to quantify chronic fatigue, acute fatigue, and inter-shift recovery to identify point prevalence. Data were analysed to compare acute and chronic fatigue scores with injury status.

Results: Higher chronic fatigue scores were significantly associated with self-reported injuries within the past six months. No significant differences were found in levels of acute fatigue, inter-shift recovery, or perceived fatigue on rest days between those who were and were not injured. Beliefs about fatigue-related injury risk were consistent across injured and non-injured groups.

Conclusion: Chronic fatigue may be a key indicator of injury risk among paramedics. These findings highlight the need for proactive, system-level fatigue management strategies that extend beyond subjective measures and address chronic fatigue as a quantifiable operational risk.

Keywords: paramedics; injury; fatigue; assessment.

Introduction

Paramedics operate in high-pressure, life-threatening emergencies, where chaotic, unpredictable decisions are regularly made¹. During operations, paramedics routinely endure extended shifts, limited recovery windows, and high levels of stress²⁻⁴. The demanding nature of their occupation, characterised by physical, mental, and emotional challenges, adds to their burden⁵. Over time, the combination of lengthy hours, occupational demands, and ongoing stress has left many paramedics feeling undervalued and unsupported in their profession⁶. The combined result leads paramedics to feel fatigued both on and off shift^{7,8}.

The pervasive effects of fatigue not only compromises paramedics' well-being but also pose significant risks to patient safety and the quality of emergency care⁹. Previous studies have documented these consequences, including slower reaction times¹⁰ and impaired decision-making¹⁰. Such deficits are associated with changes in the brain's executive functions, which are essential for delivering safe care during emergencies^{9,11}. If left unaddressed, fatigue increases safety risks for paramedics and the public they serve⁷. Ultimately, fatigue is not merely a personal health issue but also a broader leadership challenge⁸.

Although leadership plays a substantial role, fatigue remains insufficiently addressed in operational protocols¹². Research has extensively examined leadership's influence on employee health, safety, and performance through the Job Demands-Resources (JD-R) framework¹³. The JD-R does not suggest that fatigue is effectively managed in practice; rather, it offers a theoretical lens to explain how chronic exposure to high demands, coupled with limited recovery opportunities, leads to fatigue¹³. Within this framework, paramedics are particularly vulnerable¹⁴, increasing the likelihood of safety-compromising behaviours^{6,7,15}. This vulnerability reflects an imbalance between the significant demands placed on paramedics and the limited resources available to support their recovery and resilience, resulting in injuries being an unfortunate but predictable occurrence in paramedicine^{16,17}.

Many paramedic injuries occur during patient care tasks^{16,18}. Each incident averages \$5,928 in costs¹⁹, with back injuries alone costing \$600 per full-time equivalent annually. Notably, paramedics in the United States experience back injuries four times

the national average²⁰. In Australia, paramedics face a 4.6 times higher risk of work related injuries and workers' compensation claims, a 380% increase compared to other occupations²¹. While the financial burden can be substantial, the human toll, measured in pain, recovery time, and reduced capacity, is even greater. This reality highlights the critical importance of recognising the injury risks associated with fatigue.

Taken together, these figures demonstrate that fatigue-related injuries impose significant costs on paramedics, the wider health system, and the community they serve. As a result, the current study aims to compare fatigue levels between injured and non-injured paramedics and explore the link between self-reported fatigue and self-reported injury among Australian paramedics. We hypothesise that paramedics reporting higher fatigue levels will also report a greater number of injuries.

Methods

An online survey (previously detailed elsewhere⁸) was disseminated to a population of Australian paramedics by the local state administrators via email to assess perceived fatigue levels and injury history. At the beginning of the survey, demographic details such as age, height, weight, and sex were collected along with other job characteristics, including years in service and typical shift length. The survey included the Occupational Fatigue Exhaustion Recovery Scale (OFERS). The OFERS has 15 questions relating to chronic fatigue, acute fatigue, and intershift recovery, all of which capture the construct of mental and physical fatigue²². The questions are rated on a 0 (strongly disagree) to 6 (strongly agree) Likert scale²³. Each section of the OFERS is out of 30 total points, with CF and AF of 30 points denoting the highest level of fatigue²³. The IR section is reverse-scored, with 0 out of 30 indicating inability to recover²³. The OFERS has a moderate test-retest reliability (ρ) with scores of 0.61, 0.64, and 0.62 for chronic fatigue (CF), acute fatigue (AF), and intershift recovery (IR), respectively²². The OFERS was previously validated in paramedics for CF, AF, and IR ($\alpha=0.85$; 0.91; 0.83, respectively)²⁴.

Along with the scores for each of the three domains, three questions from the previously mentioned survey⁸ were included for further analysis in this study. These questions were selected

because they specifically related to feelings of fatigue, self-reported injury, and the connection between perceptions of fatigue and injury, all rated on a Likert scale from 1 to 5. In this scoring system, lower values indicate less fatigue or a lower perceived contribution of fatigue to injury.

Question 13: "On your days off, do you feel fatigued?"

Question 17: "Have you been injured on the job in the last six months?" This was answered dichotomously, 'yes' or 'no'.

Question 18: "Do you believe that fatigue was the cause of any previous injury while on duty?"

STATISTICAL ANALYSIS

Data preparation and descriptive statistics: Normality was assessed via visual inspection of distribution curves and the Shapiro-Wilk test, applied to OFERS subscale scores. Likert items were transformed by assigning values from 0 to 6, with higher scores indicating greater fatigue or perceived injury risk. Descriptive statistics were performed using SPSS (Version 29.0, IBM Corp., Armonk, NY, USA). Frequencies and proportions were calculated for categorical variables, while means and standard deviations were reported for continuous scores across OFERS domains (chronic fatigue, acute fatigue, inter-shift recovery) and transformed Likert items. Effect sizes were computed and interpreted according to Cohen's guidelines²⁵: 0.2–0.4 (small), 0.5–0.7 (moderate), and ≥ 0.8 (large). Of the 35 surveys distributed, 26 were returned, and 22 valid responses were analysed.

INFERRENTIAL ANALYSIS

To examine whether fatigue levels differed between participants who reported an injury in the past six months and those who did not, a one-sided independent samples t-test was conducted. This directional test was selected based on the hypothesis that fatigue would be higher among injured participants. Assumptions of normality and homogeneity of variance were verified prior to analysis. A significance level of $p < 0.05$ was applied.

REGRESSION MODELLING

A binary logistic regression was conducted to explore whether fatigue scores predicted injury occurrence (coded as 0 = no injury, 1 = injury). Independent variables included chronic fatigue, acute fatigue, and inter-shift recovery scores. Each predictor was first examined in a univariate model, followed by simultaneous entry using the enter method to assess independent contributions while controlling for shared variance. This approach was selected due to theoretical relevance and limited statistical power, which precluded stepwise selection.

Multicollinearity was assessed using the Variance Inflation Factor (VIF) and Tolerance values from a separate linear regression model²⁶. Model fit was evaluated using the Hosmer-Lemeshow goodness-of-fit test, $-2 \log$ likelihood, and pseudo R^2 statistics (Cox & Snell R^2 and Nagelkerke R^2). Results were reported as odds ratios (OR) with 95% confidence intervals (CI).

Results

Out of the 22 surveys completed, 16 individuals identified as female, accounting for 72.7%. Five participants were male, representing 22.7%, and one person, or 4.6%, chose not to disclose their gender. In the paramedic department, shift durations were uniform, with 20 paramedics (91%) working between 11 and 15 hours, and the remaining two (9%) working 7 to 10 hours. Regarding experience, most respondents ($n=9$, 41%) had been paramedics for 1 to 3 years, while five respondents (23%) had more than ten years of experience. Of the 22 paramedic respondents, 32% ($n = 7$) reported an injury within the past six months. An independent samples t-test revealed a significant difference in chronic fatigue scores between those who reported an injury and those who did not ($t(20) = 2.083$, $p = 0.025$, $d = 0.95$), indicating a large effect. No significant differences were observed for acute fatigue ($t(20) = 1.333$, $p = 0.199$, $d = 0.61$) or inter-shift recovery ($t(20) = 0.675$, $p = 0.254$, $d = 0.31$) (Table 1).

Table 1. OFERS scores related to injury status.

	Total score	Chronic Fatigue	Acute Fatigue	Inter-shift Recovery
Injured (n=7)	70.6 ± 9.7	$21.3 \pm 4.6^*$	25.4 ± 3.6	6.1 ± 4.6
Not Injured (n=15)	59.7 ± 15.3	$15.5 \pm 6.6^*$	22.1 ± 6.0	7.9 ± 6.0

*Significant difference $p < 0.05$.

There were no differences between perceptions of fatigue on days off between those who were and were not injured ($t(20) = 0.053, p=0.479, d=0.36$). Of interest, those who were not injured were more likely to suggest that fatigue contributes to injury

more than those who were injured; however, this difference was not significant (mean difference 0.267, 95%CI [-0.97, 0.44], ($t(20) = 0.788, p=0.220, d=0.02$) as seen in Table 2.

Table 2. Fatigue and injury risk.

	Do you feel fatigued on your day off	Do you think fatigue contributes to injury
Injured	3.7±0.8	3.0±0.8
Not Injured	3.7±0.8	3.3±0.7

BINARY LOGISTIC REGRESSION

The logistic regression model with all variables was not statistically significant, $\chi^2(3) = 4.750, p= 0.191$. The model explained 27.2% (Nagelkerke R^2) of the

variance in injury and correctly classified 68.2% of cases. None of the three predictor variables were statistically significant, as shown in Table 3, and no multicollinearity was detected (all VIF < 2).

Table 3. Association of fatigue measures with injury.

	B	S.E.	Wald	df	P	Odds Ratio (OR)	95% C.I. for OR Lower	Upper
Chronic fatigue	0.18	0.12	2.24	1	0.135	1.19	0.95	1.51
Acute fatigue	0.07	0.15	0.21	1	0.650	1.07	0.80	1.42
Inter-shift fatigue	0.03	0.14	0.04	1	0.845	1.03	0.78	1.36
Constant	-5.86	4.50	1.70	1	0.193	0.00	-	-

Multicollinearity was assessed to ensure the independence of the predictors. Acute fatigue was moderately correlated with chronic fatigue, as expected, but it did not reach a problematic level (VIF = 1.401, Tolerance 0.714).

When variables were considered independently (univariate models), only the model assessing chronic fatigue reached significance $\chi^2(1) = 4.536, p= 0.033$. Despite only approaching statistical significance, the model showed that for each unit increase in chronic fatigue, the odds of injury increased by 20.8% (OR 1.208, 95% CI [0.978, 1.492], $p=0.079$). While not statistically significant, the direction and magnitude of the effect are consistent with the hypothesis and t test findings.

observed and consistent directionality across analyses suggest that chronic fatigue underscores a cumulative burden as a risk factor. These results imply that chronic fatigue may pose a safety risk during emergency operations.

The current study reports higher fatigue levels than the only other published study using the OFER scale with paramedics. Among the 450 paramedics sampled by Patterson et al.²⁴, the majority reported lower overall chronic fatigue (11.1 ± 7.3) compared with participants in this study (21.3 ± 4.6). This discrepancy highlights how organisations structures, such as longer Australian shift durations and limited recovery opportunities may exacerbate fatigue when compared to US cohorts²⁴. When findings are extended to nurses, a similar occupation, they are consistent with high levels of fatigue reported worldwide among nurses in Iran²⁷, China²⁸, Japan²⁹, and Australia²². The parallels with nursing may be due to similarities within the professions, the expectation to deliver advanced care, and hierarchical pressures and poor compensation, which can lead to fatigue³⁰. Chronic fatigue therefore serves not only as an indicator of individual strain, but also as a warning sign of unsustainable workplace practices that may compromise both workforce retention and patient safety³¹.

Discussion

This study examined fatigue levels among paramedics, comparing individuals who sustained self-reported injuries to those without recent injuries. Findings indicate that individuals experiencing chronic fatigue are more likely to have incurred injuries within the past six months. The study's findings partially support the hypothesis that greater fatigue would be associated with higher injury rates. While acute fatigue and inter-shift recovery did not differ significantly between groups, the large effect size

Of the 22 paramedic respondents, 32% reported a work-related injury in the past six months. While caution is warranted given the small sample size, this prevalence aligns with global estimates, which range from 2.9% to 39.4%¹⁶, and with recent Australian data reporting comparable figures at 33.4%³². Compared with US data, where injury rates among paramedics remain relatively low 2.9% to 5.5%¹⁷, the Australian data suggest a disproportionately higher burden, likely influenced by longer shifts and heavier workloads. The elevated injury prevalence observed in this cohort is consistent with the high chronic fatigue scores reported reinforcing the argument that sustained fatigue may be a key driver of occupational injury risk. Taken together, these findings highlight that paramedics not only experience higher injury rates than firefighters, police and the general public²¹, but also face a compounded risk when chronic fatigue is present, a warning sign for workforce sustainability.

This study is the second to use the OFERS scale with Australian paramedics and the first to assess chronic fatigue as a measurable predictor of injury. This innovative approach improves operational relevance in fatigue screening and supports the development of targeted prevention strategies that move beyond general awareness to focus on measurable risk factors. Across the sample, most respondents reported consistently high fatigue levels, including on their rest days, regardless of recent injury status. Findings point to the potential gap between fatigue awareness and actionable mitigation, highlighting a need for systems-level interventions beyond individual beliefs to target the contributors to fatigue^{7,12}. Moreover, most participants believed fatigue is a significant factor in injury risk within their profession, perceptions of fatigue as a contributor to injury did not differ between those who were injured and those who were not. This may suggest a shared understanding among all personnel that fatigue is a genuine occupational hazard, even if such awareness does not directly predict injury outcomes⁷.

Fatigue ratings on rest days did not differ significantly between those who sustained injuries and those who did not. This suggests that perceived recovery outside work hours may not directly correlate with injury risk, though the small sample size in this study limits the generalizability of this finding. This is in line with previous research

which indicates that self-reported fatigue may lack the temporal precision needed to predict acute incidents³³. Alternatively, injuries could be more closely linked to in-shift fatigue peaks rather than residual fatigue felt post-shift⁹. For example, Donnelly et. al., (2020) found that real-time fatigue has a stronger association with safety outcomes than retrospective fatigue reports⁹. Notably, both injured and non-injured participants reported fatigue on their rest days, suggesting that residual tiredness is a common experience across the cohort. This may explain why rest-day fatigue and beliefs about fatigue-related injury did not differ by injury status. In contrast, higher chronic fatigue scores among injured participants point to a more sustained burden that may accumulate over time. Rest day ratings may capture situational recovery, but the OFERS scale more effectively reflects cumulative fatigue exposure. This distinction highlights the methodological value of chronic fatigue screening and supports its integration into injury reduction strategies, while future research should explore real time monitoring to capture acute fatigue peaks.

These findings indicate that demographic factors, recoverability status, or fatigue-related beliefs alone may not fully explain the observed relationship between chronic fatigue and injury risk. Despite no significant differences in fatigue scores in off-shift fatigue or perceived fatigue risk between injured and non-injured personnel, a considerable elevation in chronic fatigue was observed among those who reported injuries. This points to a more insidious form of fatigue, which may accumulate gradually or result from inadequate long-term recovery, potentially increasing susceptibility to injury over time. Importantly, this study provides the first evidence that the OFERS chronic fatigue subscale can serve as a practical screening tool for injury risk in paramedics, extending its established utility in nursing populations^{22,27,31} now paramedics⁸. Chronic fatigue may therefore represent a hidden burden eroding resilience in ways that are not immediately apparent, highlighting the need for proactive monitoring and integration of fatigue screening into occupational health and fatigue risk management systems.

Evaluating occupational fatigue requires a proactive strategy to monitor readiness levels and

identify signs of worker exhaustion¹². Adopting a proactive approach can help identify individuals who may be susceptible to injury or behaviours that compromise safety, but its success depends heavily on the organisation's safety culture¹². While individual recovery outside of work is important, it cannot fully offset cumulative fatigue when workplace demands and culture remain unsustainable, as reflected by the high fatigue levels reported even on rest days. These findings highlight the importance of monitoring persistent fatigue trends through both objective metrics and subjective reporting, and of embedding these insights into injury reduction frameworks. Integrating validated scales such as OFERS with real time monitoring technologies could provide a more comprehensive assessment of fatigue, enabling organisations to intervene proactively and strengthen operational safety.

Limitations

The limitations of this study should be considered when interpreting its findings. First, the small sample size of only 22 respondents limits the statistical power and may obscure meaningful associations. Second, reliance on self-reported data introduces recall bias, as participants' memories of past events may not be entirely accurate, and personal circumstances could influence their responses. Third, since participation was voluntary and conducted online, there is a risk of self-selection bias. Fourth, evaluating fatigue levels and injury events simultaneously complicates assessing these factors.

Additionally, the small sample size impacted the regression analysis, which was not statistically significant, with no predictors showing clear effects. This limitation makes it harder to detect real differences and increases the chance of Type II errors. Therefore, these results should be seen as preliminary and need to be confirmed through larger studies. Future research with bigger samples is vital to verify these patterns and build confidence in the findings. Lastly, although bootstrapping procedures were not used in this study, they could be a helpful way to improve parameter estimates and the accuracy of confidence intervals in small-sample research. Future studies should consider using bootstrapping to strengthen the robustness and generalisability of the results.

Conclusions

This study found that paramedics with higher chronic fatigue levels were significantly more likely to have sustained a work-related injury in the past six months, whereas no association was observed for acute fatigue, inter-shift recovery, or perceived fatigue on rest days. Most respondents believed fatigue contributes to injury, and this belief was consistent regardless of injury history. These findings provide the first evidence that the chronic fatigue subscale of the OFERS can serve as a meaningful predictor of injury risk among Australian paramedics, extending its established utility in nursing populations. Importantly, the results highlight that chronic fatigue represents a cumulative occupational burden and a system level safety risk, highlighting the need for proactive fatigue management systems that go beyond subjective measures. Embedding chronic fatigue screening into fatigue risk management systems and occupational health protocols may help identify personnel at elevated risk and inform targeted prevention strategies. Future research with larger, longitudinal samples and real-time monitoring will be critical to confirm these patterns and strengthen the operational relevance of fatigue screening in paramedicine.

Conflict of Interest Statement:

The authors declare no conflict of interest.

Funding Statement:

The present study was funded by an Australian state ESA as part of the lead author's PhD, but they were not involved in the study design, questions, or writing process. No other conflicts of interest are noted.

Acknowledgements:

None.

References:

1. Sofianopoulos S, Williams B, Archer F, Thompson B. The exploration of physical fatigue, sleep and depression in paramedics: a pilot study. *Journal of Emergency Primary Health Care*. 2011;9(1):1-33.
2. Billings J, Focht W. Firefighter Shift Schedules Affect Sleep Quality. *J Occup Environ Med*. Mar 2016;58(3):294-8. doi:10.1097/JOM.0000000000000624
3. Fischer SL, Sinden KE, MacPhee RS, Ottawa Paramedic Service Research T. Identifying the critical physical demanding tasks of paramedic work: Towards the development of a physical employment standard. *Appl Ergon*. Nov 2017;65: 233-239. doi:10.1016/j.apergo.2017.06.021
4. Sofianopoulos S, Williams B, Archer F. Paramedics and the effects of shift work on sleep: a literature review. *Emerg Med J*. Feb 2012; 29(2):152-5. doi:10.1136/EMJ.2010.094342
5. Lawn S, Roberts L, Willis E, Couzner L, Mohammadi L, Goble E. The effects of emergency medical service work on the psychological, physical, and social well-being of ambulance personnel: a systematic review of qualitative research. *BMC Psychiatry*. Jul 3 2020;20(1):348. doi:10.1186/s12888-020-02752-4
6. Marvin G, Schram B, Orr R, Canetti EFD. Occupation-Induced Fatigue and Impacts on Emergency First Responders: A Systematic Review. *Int J Environ Res Public Health*. 2023;20(7055) doi:10.3390/ijerph20227055
7. Donnelly EA, Bradford P, Davis M, Hedges C, Socha D, Morassutti P. Fatigue and Safety in Paramedicine. Article. *Canadian Journal of Emergency Medicine*. 2019;21(6):762-765. doi:10.1017/cem.2019.380
8. Marvin G, Orr, Robin, F.D. Canetti, Elisa, Schram, Ben. Self-Reported Fatigue and Injury in Paramedics. *Medical Research Archives*. 2025;13(6) doi:<https://doi.org/10.18103/mra.v13i6.6669>
9. Donnelly EA, Bradford P, Davis M, Hedges C, Socha D, Morassutti P, Pichika SC. What influences safety in paramedicine? Understanding the impact of stress and fatigue on safety outcomes. *Journal of the American College of Emergency Physicians Open*. Aug 2020;1(4):460-473. doi:10.1002/emp2.12123
10. Ferris MJ, Wolkow AP, Bowles KA, Lalor A. A Guided Comparative Analysis of Fatigue Frameworks in Australasian Ambulance Services. *Prehosp Emerg Care*. 2025;29(2):120-128. doi:10.1080/10903127.2024.2381055
11. Toyokuni Y, Ishimaru T, Honno K, Kubo T, Matsuda S, Fujino Y. Near-miss incidents owing to fatigue and irregular lifestyles in ambulance personnel. *Arch Environ Occup Health*. 2022;77(1): 46-50. doi:10.1080/19338244.2020.1842312
12. Sprajcer M, Thomas MJW, Sargent C, et al. How effective are Fatigue Risk Management Systems (FRMS)? A review. *Accid Anal Prev*. Feb 2022;165:106398. doi:10.1016/j.aap.2021.106398
13. Tummers LG, Bakker AB. Leadership and Job Demands-Resources Theory: A Systematic Review. *Front Psychol*. 2021;12:722080. doi:10.3389/fpsyg.2021.722080
14. Crowe RP, Fernandez AR, Pepe PE, et al. The association of job demands and resources with burnout among emergency medical services professionals. *J Am Coll Emerg Physicians Open*. Feb 2020;1(1):6-16. doi:10.1002/emp2.12014
15. Lin MH, Huang YC, Chen WK, Wang JY. Sleepiness and injury risk in emergency medical service workers in Taiwan. *PLoS One*. 2020;15(2): e0229202. doi:10.1371/journal.pone.0229202
16. Kearney J, Muir C, Smith K. Occupational injury among paramedics: a systematic review. *Inj Prev*. Apr 2022;28(2):175-184. doi:10.1136/injuryprev-2021-044405
17. Maguire BJ, Al Amiry A, O'Neill BJ. Occupational Injuries and Illnesses among Paramedicine Clinicians: Analyses of US Department of Labor Data (2010 - 2020). *Prehosp Disaster Med*. Oct 2023;38(5):581-588. doi:10.1017/S1049023X23006118
18. Lošonczi P. HJ. Analysis Of Occupational Risks In The Profession Of A Paramedic. *Annals of Burns and Fire Disasters*. 2022;38(1)
19. Australian Capital Territory Government. About us. <https://esa.act.gov.au/about-us#:~:text=The%20ESA%20comprises%20the%20ACT,emergency%20management%20in%20the%20ACT%22>
20. Maguire BJ, Smith, Sean,. Injuries and Fatalities among Emergency Medical Technicians and Paramedics in the United States. *Prehosp Disaster Med*. 2013;28(4):376-382. doi:10.1017/S1049023X13003555
21. Gray SE, Collie A. The nature and burden of occupational injury among first responder occupations: A retrospective cohort study in

Australian workers. *Injury*. Nov 2017;48(11):2470-2477. doi:10.1016/j.injury.2017.09.019

22. Winwood PC, Lushington K, Winefield AH. Further development and validation of the Occupational Fatigue Exhaustion Recovery (OFER) scale. *J Occup Environ Med*. Apr 2006;48(4):381-9. doi:10.1097/01.jom.0000194164.14081.06

23. Winwood PC, Winefield AH, Dawson D, Lushington K. Development and validation of a scale to measure work-related fatigue and recovery: the Occupational Fatigue Exhaustion/Recovery Scale (OFER). *J Occup Environ Med*. Jun 2005;47(6):594-606. doi:10.1097/01.jom.0000161740.71049.c4

24. Patterson PD, Buysse DJ, Weaver MD, Callaway CW, Yealy DM. Recovery between Work Shifts among Emergency Medical Services Clinicians. *Prehosp Emerg Care*. Jul-Sep 2015;19(3):365-75. doi:10.3109/10903127.2014.995847

25. Cohen J. *Statistical Power Analysis for the Behavioral Sciences* (2nd ed.). Routledge. <https://doi.org/10.4324/9780203771587>. 1988.

26. Midi H, Sarkar SK, Rana S. Collinearity diagnostics of binary logistic regression model. *Journal of Interdisciplinary Mathematics*. 2010;13(3):253-267. doi:10.1080/09720502.2010.10700699

27. Moosavian Hiaq SS, Jabbarzadeh Tabrizi F, Parvan K, Sarbakhsh P, Dickens G. Relationship between burnout and occupational fatigue exhaustion and recovery among orthopaedic nurses in Tabriz, Iran: a cross-sectional survey. *BMJ Open*. Aug 25 2024;14(8):e084522. doi:10.1136/bmjopen-2024-084522

28. He B, Zhang Y, Qian S, Ye Q, Ren Y, Wang Z. Fatigue and coping strategies among Chinese night-shift nurses: a cross-sectional study. *BMC Nurs*. May 8 2025;24(1):500. doi:10.1186/s12912-025-03149-y

29. Yamaguchi S, Sato M, Sumi N, Ito YM, Winwood PC, Yano R. Psychometric properties of the Japanese version of the Occupational Fatigue Exhaustion Recovery Scale among shift-work nurses. *J Occup Health*. Jan 2022;64(1):e12325. doi:10.1002/1348-9585.12325

30. Grochowska A, Gawron A, Bodys-Cupak I. Stress-Inducing Factors vs. the Risk of Occupational Burnout in the Work of Nurses and Paramedics. *Int J Environ Res Public Health*. May 3 2022;19(9):doi:10.3390/ijerph19095539

31. Rahman HA, Naing L, Abdul-Mumin K. Validation Of The Occupational Fatigue Exhaustion Recovery(Ofer) Scale Among Emergency Nurses In A Brunei Public Hospital. *The Malaysian Journal of Nursing*. 2017;8(3)

32. Kearney J, Muir C, Smith K. Factors Associated with Lost Time Injury among Paramedics in Victoria, Australia. *Prehosp Emerg Care*. 2024;28(2):297-307. doi:10.1080/10903127.2023.2168095

33. Barth J, Greene JA, Goldstein J, Sibley A. Adverse Health Effects Related to Shift Work Patterns and Work Schedule Tolerance in Emergency Medical Services Personnel: A Scoping Review. *Cureus*. Apr 2022;14(4):e23730. doi:10.7759/cureus.23730