

REVIEW ARTICLE

The Oncoming Hydrogen Era and The New Paradigm of Cancer and Neurodegenerative Diseases Based on the Hydrogen Ion Dynamics on Cellular Homeostasis and Metabolism - from Etiopathogenesis to Treatment

Salvador Harguindey MD., PhD ^{*1}; Stephan J. Reshkin PhD. ²; Jesús Devesa MD., PhD. ³; Julián Polo Orozco, PhD. ⁴; Jose Luis Arranz MD., PhD. ⁵; Khalid O. Alfarouk, PhD. ⁶

¹ Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain.

². Department of Bioscience, Biotechnology and Environment, University of Bari Aldo Moro, 70125, Bari, Italy.

³. Foltra Medical Center, Teo, La Coruña, Spain.

⁴. Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain.

⁵. University of Beira Interior, Covilhá, Portugal.

⁶. Zamzam University College, Khartoum, Sudan and Alfarouk Biomedical Research LLC, Valdosta, GA, USA 31602.

* harguindeysalvador@gmail.com

OPEN ACCESS

PUBLISHED

31 January 2026

CITATION

Harguindey, S., Reshkin, S.J., et al., 2026. The Oncoming Hydrogen Era and The New Paradigm of Cancer and Neurodegenerative Diseases Based on the Hydrogen Ion Dynamics on Cellular Homeostasis and Metabolism - from Etiopathogenesis to Treatment. Medical Research Archives, [online] 14(1).

COPYRIGHT

© 2026 European Society of Medicine. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ISSN

2375-1924

ABSTRACT

This brief review addresses cancer and human neurodegenerative diseases (HNDDs) from a unified perspective, entirely different from that of current medicine, oncology, neurology, and neuro-oncology. It is based on the classical concepts of homeostasis and allostasis of Walter Cannon and Hans Selye, as well as the extraordinary discoveries of Otto Warburg in the field of cancer biochemistry. Drawing on numerous publications from our group and thousands of other recent high-impact publications, the main objective of this article is to summarize and update what is already known as "The New Anticancer Paradigm." Recently, this perspective on cancer, centered on altered pH, or H⁺ dynamics as underlying all the various cancer stages from initiation to metastasis to therapy, has been broadened to include the study of etiology, pathogenesis, and treatment of HNDDs under the same comprehensive and unified approach. At the same time, another positive effect of this conceptualization is to introduce and inaugurate the novel interdisciplinary concept of "The Approaching Hydrogen Age" or "A New Hydrogen Era".

Keywords: pH abnormalities in cancer etiology - Warburg effect today - Distinctive features of cancer - Therapeutic implications of pH-dependent homeostasis and allostasis - New anticancer paradigm.

Introduction. The New Hydrogen Era.

It is evident that, in its various forms in nature (H^+ , H_1 , H_2 , H_3O), hydrogen plays a fundamental role in many aspects of human and animal life (living matter), as well as in the entire planetary ecosystem (inanimate matter). It has been postulated that hydrogen was the first molecule detected after the Big Bang, a simple product that can be easily transformed into other energy compounds. From the field of nuclear physics, we know that a hydrogen bomb would have a much greater destructive power than its atomic counterpart. Other destructive aspects of pH-mediated environmental damage include acid rain and ocean acidification. Conversely, positive news comes from hydrogen-based technologies, which promise to obtain unlimited quantities of clean energy with minimal, or even zero, environmental damage. In this regard, hydrogen obtained through the splitting of water using renewable energy sources, such as solar or wind power, is transformed into clean, waste-free energy as a fuel. Since this methodology uses the most abundant raw material, namely water, it can accumulate large amounts of energy with a very low environmental impact.

In this review, we will introduce and discuss hydrogen dynamics in the context of cancer and then broaden it to include its specular role in human neurodegenerative diseases (HNDDs).

I. The New Anticancer Paradigm: meaningful integrations

"Now, all diseases have the same form, but their seat varies. Thus, while diseases are thought to be completely different from one another, due to the difference in where they settle, they all have the same essence and cause. I will try to explain what this cause is in the discourse that follows these words."

Hippocrates

a) The main topics covered in The New Anticancer Paradigm, are:

a) To advance towards a unified and comprehensive understanding of the essential role of hydrogen ion dynamics [H^+] in all areas of modern cancer research and HNDDs ¹⁻⁵.

b) To synthesize the seminal and latest information on the selective abnormalities of cellular homeostasis and allostasis in cancer cells, primarily represented by profound alterations in intracellular and extracellular pHs (or hydrogen ion concentrations, or H^+) ⁵.

c) To understand their role in the comprehensive and definitive etiology of malignant tumors and the role of oncogenes and growth factors in cancer ⁶⁻²⁷.

d) To propose new therapeutic targets, more specific anticancer treatments, as well as less toxic than the current ones, to achieve the induction of selective apoptosis in malignant tumors and leukemias ²⁸⁻³³.

e) To therapeutically exploit the concept that both the intracellular alkalization and extracellular acidification pathognomonic of all malignant tumors ("cancer proton

reversal", or CPR) are not simply consequences of abnormal cancer metabolism but rather constitute highly selective biological signals ("hallmarks") of the intimate nature of malignancy. In turn, this CPR has very significant effects on the key processes that determine the initial malignant transformation, the natural history of tumors, their local invasion and the metastatic process ³⁴⁻³⁶.

B) The main topics that our group has worked on during the last decades are:

1. The Integral and Final Cause of Cancer in the Post-Warburg Era from the beginnings of metabolic cancer research ^{1-3, 34-51}.
2. A New Comprehensive Approach to the Etiopathogenesis and Therapy of Breast Cancer Based on Hydrogen Ion Dynamics ^{52-60, 64}.
3. An Integral protocol Based on the New Paradigm to Address the Treatment of Breast Cancer and Other Solid Tumors ^{51-52, 64, 67}.
4. The New Anticancer Paradigm in the Etiopathogenesis and Treatment of Malignant Gliomas, Environmental Carcinogenesis and Multiple Drug Resistance (MDR) ^{28, 29, 61-81}.
5. Hydrogen Ion Dynamics as a Fundamental Link Between HNDDs and Cancer. Its Application to the Treatment of Neurodegenerative Diseases with Emphasis on Multiple Sclerosis ^{28, 29}.
6. Curing cancer? Present and future of the New Anticancer Paradigm Focused on the Cellular Homeostasis and Allostasis of Malignant Tumors. Its extension to the Pathogenesis and Therapy of HNDDs and other medical pathologies ^{32, 49, 60, 64, 82-87}.

II. The Final and Integral Cause of Cancer in the Post-Warburg Era from the Perspective of the New Anticancer Paradigm.

The origins of the integral "New pH-centered Anticancer Paradigm" date back more than three decades ^{45, 49}. From a classical genetic perspective, cancer is thought to include a multitude of diseases requiring a wide variety and combination of different toxic drugs to eliminate each neoplasm. However, from a phenotypic point of view, cancer is a highly organized and uniform disease having tightly and robust "hallmarks and/or cardinal characteristics" independent of genetic and tissue differences. This is logical, since all tumors share most molecular, metabolic, biochemical and pathophysiological characteristics, which are independent of their genetic makeup ^{44, 45, 54-602-60}. Thus, it can be stated that their main differences are in the cell of every tumor origin and where they settle.

Also in this line, hydrogen ion (proton or H^+) dynamics are a more realistic way to express changes in pH and/or acid-base homeostasis, as well as their pathophysiology. Here we summarize the latest advances in this energetic and metabolic paradigm, a rapidly growing model in improving our understanding of the intimate nature of cancer and its treatment, as well as in other scientific and medical areas outside oncology ⁸⁰⁻⁸⁷.

Regarding the etiopathogenesis of cancer, we have previously published the existence of a general

mechanism that underlies all malignant transformations, local growth, progression, invasion and the metastatic process of any tumor. This mechanism, related to H⁺, constitutes a well-organized, hierarchical and chronic destructive process, which fully agrees with what Otto Warburg once said: "**The causes of cancer are countless, but they all work through the same mechanism**", an observation with which these authors fully agree. In this sense, the search for a unifying theory of cancer etiology has recently been reconsidered. While numerous intermediate causes of cancer have been discovered and well identified from a metabolic point of view, it can be shown that they all act through the final and integral cause represented by an increase in cellular pH. It is

worth noting that an infinite number of intermediate causes of cancer of multiple origins and natures ("driving or triggering factors") are carcinogenic via a single common final pathway: a pathognomonic intracellular alkalosis mainly mediated by the upregulation of the membrane-bound sodium/hydrogen Na⁺/H⁺ and exchanger isoform 1, or NHE1 (see Table 1), but also other antiporters and H⁺ extruders like proton pumps. Indeed, recent publications from three different laboratories have concluded that the Warburg effect can be fully explained by a pathological increase in cellular pH and the consequences of this alkalinization on the activation of aerobic glycolysis ^{34,35,51}.

Table 1. Intermediate Causes or Drivers that are Carcinogenic Through Increased Cellular pH and/or Overexpression of the NHE1 Exchanger.

Viruses: human papilloma virus (HPV)
Genetic products: Bcl-2, Bax
Oncogenes and viral products: HPV-E7 in cervical cancer, and Ha-ras, v-mos and c-myc oncogenes in different tumors
Overexpression of other H ⁺ transporters (PT) and proton pumps (PP)
Chemical carcinogens: arsenic salts in groundwater and polycyclic aromatic hydrocarbons
Chronic and intermittent hypoxia
Aging. What Warburg called "time causes cancer"
Various mitogens: VEGF, EGF, interleukin isoforms, TGF and platelet-derived growth factor (PDGF)
Hormones and cytokines (growth hormone, prolactin, glucocorticoids)
Glucose overload
p53 gene mutations
pH-dependent immune evasion due to acidification of the interstitial tumor microenvironment (TME)

*Modified from reference No. 51.

III. On cancer metabolic pathophysiology.

"We will never cure what we cannot understand first".

Otto Warburg

Nowadays, it is well known that the pathological allostatic situation of cancer cells is characterized by a steady state of metabolic alkalosis, sometimes mild (pHi:

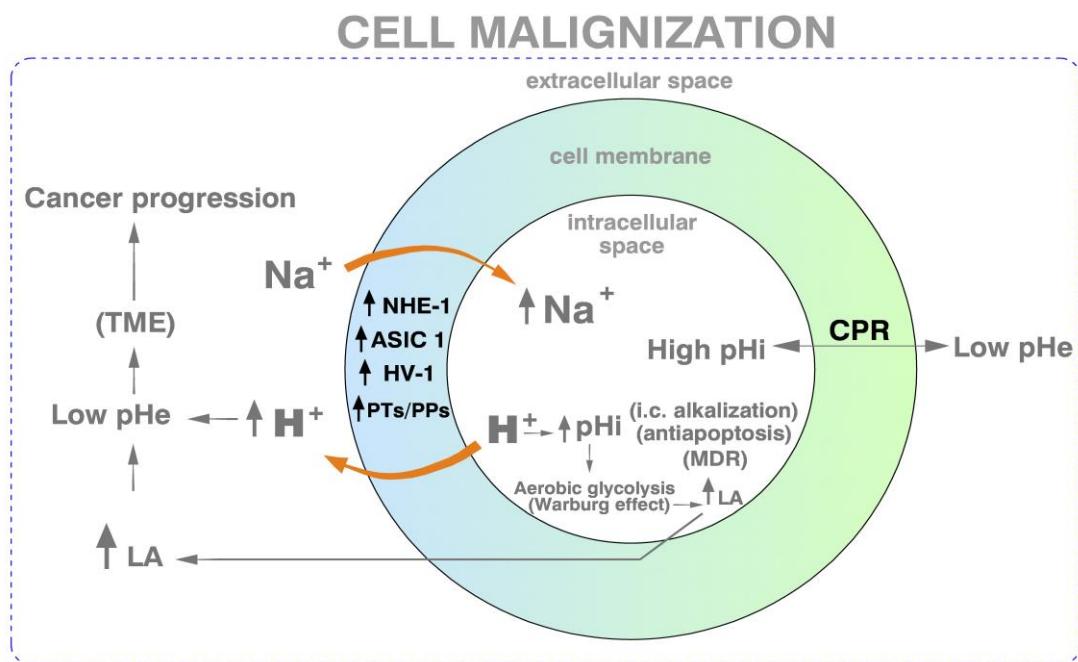

7.3-7.4), but at other times so pronounced that it is hardly compatible with life (pHi: 7.7-7.8) (Table 2) ⁴. This is the opposite of what Otto Warburg believed, who assumed that malignant cells exhibited acidosis due to their exaggerated production of lactic acid ¹⁻³. Furthermore, the specific cellular alkalosis of cancer cells is exactly the opposite of the significant tendency toward intracellular acidosis characteristic of HNDDs ^{28,29,32}.

Table 2. pH_i and pH_e in Normal Cells, Neurons of Human Neurodegenerative Diseases (HNDDs) and Cancer Cells During Apoptosis and Antiapoptosis.

NORMAL CELLS	NEURONS IN HNDDs	CANCER CELLS
pHi < pH _e	pHi and pH _e (Acidic)	pHi > pH _e
pHi: 7.0-7.1	pHi: 6.2-6.8 (Acidic) (↓pHi pathological apoptosis)	pHi: 7.3-7.8 (Alkaline) (↑pHi pathological anti-apoptosis) (CPR)
	pHe: 6.0-6.8 (Acidic) (↓pHi pathological apoptosis)	pHe: 5.0-6.8 (Acidic) (↓pHi therapeutic apoptosis)
Normal pHi/pHe	Acidic pHi / Acidic pH _e	Alkaline pHi/Acidic pH _e

In the same line, Figure 1 shows cellular alkalization as the *sine qua non* condition for malignant transformation, as well as being the main anti-apoptotic factor, a fundamental characteristic of multiple drug resistance to antineoplastic drugs (MDR) ^{28,30,35,36}. This alkalinization, along with the secondary extracellular acidification of tumors (TME), leads to a proton reversal (CPR), which is

pathognomonic of any malignant tumor. The concatenation of these pathological and energetic changes in inducing and maintained a pathological allostasis drives a coordinated cascade of unstoppable progression and metastasis ending up in the death of the patient ^{47,48,59}.

Figure 1. pH-Dependent Interaction Between Ionic Transporters of the Cell in Malignization, Intracellular Alkalization, Tumor Extracellular Acidification (TME), Aerobic Glycolysis and the Warburg Effect.

Legend. Metabolic mechanisms of cellular malignant transformation. Abbreviations: NHE1, isoform 1 of the Na^+/H^+ -exchanger; ASIC1, acid-sensing ion channel type 1a; Hv1, voltage-dependent H^+ channel isoform 1; PT, proton transporters; PP, proton pumps; CPR, cancer proton reversal; MDR, multiple drug resistance; LA, lactic acid; TME: tumor microenvironment.

IV. Biological Unifications and Therapeutic Implications arising from the New and Wide-Ranged Perspective of Cancer Metabolism. Conclusions and closing Gaps.

This comprehensive perspective of the anticancer paradigm, focused on acid-base energetic homeostasis and allostasis, brings together under a single general concept a biological unification capable of bringing together scientific views until now considered very distant from each other or without any connection between them, like oncology and neurodegeneration ^{28, 29, 32, 45}. These efforts lead to the study of seemingly unrelated phenomena that now present similar metabolic natures, but with opposite and specular pathogenesis.

After integrating the old with the most recent available data on the new paradigm, it can now be stated that the final cause of cancer was never the aerobic glycolysis of malignant cells, or their respiratory impairment, as Otto Warburg defended all his life (1), but rather an essential etiological alkalization ^{34, 35, 42, 43, 47-49, 51, 52}, a final pathway that also allows a deeper understanding of the most intimate, fundamental and “basic” origin of cancer. Therefore, Warburg's theory of cancer causation is no longer considered the primary cause of cancer, but rather

the cellular energy changes related to H^+ deficient dynamics and their stimulatory effects on glycolysis ^{5, 64}.

From this broad perspective, it is concluded that the main factor behind the Warburg effect and its aerobic glycolysis, and simultaneously the main cause of cancer, is a selective intracellular alkalization of cells in all solid malignant tumors, mediated by the overexpression of NHE1 or, to a lesser degree, of other cellular proton extruders. In summary, it can also be concluded that this energetic model opens new and unprecedented therapeutic avenues for improving the treatment of cancer ^{29, 30, 51, 52, 70, 71}, and probably also, of certain HNDDs, as it has been considered in recent publications ^{28, 32, 42-60, 64}. Indeed, and most recently, complete reviews on the subject of this work ⁸⁸ fully agree with the parallel pH-perspective of this article as well as with previous publications either of our group or others ^{28-30, 32, 34-36, 41, 43, 49, 51, 52, 60, 64}.

Dedication: This article is dedicated to the memory of Alejandra Luna, a brave young girl who died from a glioblastoma multiforme.

Acknowledgments: To the Mercedes Castresana Foundation Vitoria, Spain, for financial help. And to Rebeca Andía Muñoz, for excellent informatic collaboration.

References

1. Warburg, O. On the Origin of Cancer Cells. *Science* 1956, 123, 309–314, doi:10.1126/science.123.3191.309.
2. Otto Warburg - Lectures | Lindau Mediatheque Available online: <https://mediatheque.lindau-nobel.org/recording/31517/on-the-primary-causes-and-on-the-secondary-causes-of-cancer-german-presentation-1966> (accessed on 25 December 2025).
3. Burk, D.; Winzler, R.J. The Biochemistry of Malignant Tissue. *Annu Rev Biochem* 1944, 13, 487–532, doi:10.1146/ANNUREV.BI.13.070144.002415.
4. Rich, I.N.; Worthington-White, D.; Garden, O.A.; Musk, P. Apoptosis of Leukemic Cells Accompanies Reduction in Intracellular PH after Targeted Inhibition of the Na(+)/H(+) Exchanger. *Blood* 2000, 95, 1427–1434.
5. Alfarouk, K.O.; Verduzco, D.; Rauch, C.; Muddathir, A.K.; Adil, H.H.B.; Elhassan, G.O.; Ibrahim, M.E.; David Polo Orozco, J.; Cardone, R.A.; Reshkin, S.J.; et al. Glycolysis, Tumor Metabolism, Cancer Growth and Dissemination. A New PH-Based Etiopathogenic Perspective and Therapeutic Approach to an Old Cancer Question. *Oncoscience* 2014, 1, 777–802, doi:10.18632/oncoscience.109.
6. Weinhouse, S.; Warburg, O. On Respiratory Impairment in Cancer Cells. *Science* 1956, 124, 269–270, doi:10.1126/science.124.3215.267.
7. DeBerardinis, R.J.; Chandel, N.S. We Need to Talk about the Warburg Effect. *Nat Metab* 2020, 2, 127–129, doi:10.1038/S42255-020-0172-2.
8. Gevers, W.; Dowle, E. The effect of pH on glycolysis in vitro. *Clin Sci* 1963, 25, 343–349.
9. Ui, M. A Role of Phosphofructokinase in PH-Dependent Regulation of Glycolysis. *Biochim Biophys Acta* 1966, 124, 310–322, doi:10.1016/0304-4165(66)90194-2.
10. Lowenstein, J.M.; Chance, B. The Effect of Hydrogen Ions on the Control of Mitochondrial Respiration. *J Biol Chem* 1968, 243, 3940–3946.
11. Halperin, M.L.; Connors, H.P.; Relman, A.S.; Karnovsky, M.L. Factors That Control the Effect of PH on Glycolysis in Leukocytes. *J Biol Chem* 1969, 244, 384–390.
12. Wilhelm, G.; Schulz, J.; Hofmann, E. pH-Dependence of Aerobic Glycolysis in Ehrlich Ascites Tumour Cells. *FEBS Lett* 1971, 17, 158–162.
13. Relman, A.S. Metabolic Consequences of Acid-Base Disorders. *Kidney Int* 1972, 1, 347–359, doi:10.1038/ki.1972.46.
14. Burr, M.J. The Relationship between pH and Aerobic Glycolysis in Human and Canine Erythrocytes. *Comparative Biochemistry and Physiology Part B: Comparative Biochemistry* 1972, 41, 687–694, doi:10.1016/0305-0491(72)90081-8.
15. Eagle, H. Some Effects of Environmental pH on Cellular Metabolism and Function. In *Control of Proliferation in Animal Cells: Cold Spring Harbor Conference on Cell Proliferation. Volume 1; Control of Proliferation in Animal Cells*; New York, 1974; pp. 1–11.
16. Rubin, H.; Fodge, D. Interrelationships of Glycolysis, Sugar Transport and the Initiation of DNA Synthesis in Chick Embryo Cells. In *Control of Proliferation in Animal Cells, Volume 1*; Cold Spring Harbor Laboratory, 1974; pp. 801–816.
17. Kaminskas, E. The PH-Dependence of Sugar-Transport and Glycolysis in Cultured Ehrlich Ascites-Tumour Cells. *Biochem J* 1978, 174, 453–459.
18. L'Allemand, G.; Franchi, A.; Cragoe, E.; Pouysségur, J. Blockade of the Na⁺/H⁺ Antiport Abolishes Growth Factor-Induced DNA Synthesis in Fibroblasts. Structure-Activity Relationships in the Amiloride Series. *J Biol Chem* 1984, 259, 4313–4319.
19. Paris, S.; Pouysségur, J. Growth Factors Activate the Na⁺/H⁺ Antiporter in Quiescent Fibroblasts by Increasing Its Affinity for Intracellular H⁺. *J Biol Chem* 1984, 259, 10989–10994.
20. Moolenaar, W.H.; Tertoolen, L.G.J.; De Laat, S.W. Phorbol Ester and Diacylglycerol Mimic Growth Factors in Raising Cytoplasmic PH. *Nature* 1984, 312, 371–374, doi:10.1038/312371A0.
21. Chambard, J.C.; Pouyssegur, J. Intracellular pH Controls Growth Factor-Induced Ribosomal Protein S6 Phosphorylation and Protein Synthesis in the G0→G1 Transition of Fibroblasts. *Exp Cell Res* 1986, 164, 282–294, doi:10.1016/0014-4827(86)90029-7.
22. Hagag, N.; Lacal, J.C.; Gruber, M.; Aaronson, S.; Viola, M. V Microinjection of Ras P21 Induces a Rapid Rise in Intracellular pH. *Mol Cell Biol* 1987, 7, 1984–1988, doi: 10.1128/MCB.7.5.1984.Updated.
23. Doppler, W.; Jaggi, R.; Groner, B. Induction of V-Mos and Activated Ha-Ras Oncogene Expression in Quiescent NIH 3T3 Cells Causes Intracellular Alkalination and Cell-Cycle Progression. *Gene* 1987, 54, 147–153, doi:10.1016/0378-1119(87)90357-X.
24. Maly, K.; Überall, F.; Loferer, H.; Doppler, W.; Oberhuber, H.; Groner, B.; Grunicke, H.H. Ha-Ras Activates the Na⁺/H⁺ Antiporter by a Protein Kinase C-Independent Mechanism. *J Biol Chem* 1989, 264, 11839–11842.
25. Maly, K.; Hochleitner, B.; Überall, F.; Loferer, H.; Oberhuber, H.; Doppler, W.; Grunicke, H. Mechanism and Biological Significance of the Ha-Ras-Induced Activation of the Na⁺/H⁺-Antiporter. *Adv Enzyme Regul* 1990, 30, 63–74, doi:10.1016/0065-2571(90)90009-Q.
26. Novikova, I.Y.; Muravyeva, O. V.; Cragoe, E.J.; Margolis, L.B. Study of Fibroblast Spreading: PH Dependence, Involvement of the Na⁺/H⁺-Antiporter and PKC. *Biochim Biophys Acta* 1993, 1178, 267–272, doi:10.1016/0167-4889(93)90203-2.
27. Chiche, J.; Fur, Y. Le; Vilmen, C.; Frassineti, F.; Daniel, L.; Halestrap, A.P.; Cozzone, P.J.; Pouysségur, J.; Lutz, N.W. In Vivo PH in Metabolic-Defective Ras-Transformed Fibroblast Tumors: Key Role of the Monocarboxylate Transporter, MCT4, for Inducing an Alkaline Intracellular PH. *Int J Cancer* 2012, 130, 1511–1520, doi:10.1002/IJC.26125.
28. Harguindeguy, S.; Stanciu, D.; Devesa, J.; Alfarouk, K.; Cardone, R.A.; Polo Orozco, J.D.; Devesa, P.; Rauch, C.; Orive, G.; Anitua, E.; et al. Cellular Acidification as a New Approach to Cancer Treatment and to the Understanding and Therapeutics of

Neurodegenerative Diseases. *Semin Cancer Biol* 2017, 43, 157–179, doi: 10.1016/j.semcan.2017.02.003.

29. Harguindey, S.; Orozco, J.P.; Alfarouk, K.O.; Devesa, J. Hydrogen Ion Dynamics of Cancer and a New Molecular, Biochemical and Metabolic Approach to the Etiopathogenesis and Treatment of Brain Malignancies. *Int J Mol Sci* 2019, 20.

30. Koltai, T.; Harguindey, S.; Reshkin, S. An Innovative Approach to Understanding and Treating Cancer: Targeting pH; Elsevier: Amsterdam, 2020; ISBN 9780128190593.

31. Anwar, S.; Shamsi, A.; Mohammad, T.; Islam, A.; Hassan, M.I. Targeting Pyruvate Dehydrogenase Kinase Signaling in the Development of Effective Cancer Therapy. *Biochim Biophys Acta Rev Cancer* 2021, 1876, doi: 10.1016/j.bbcan.2021.188568.

32. Harguindey, S.; Alfarouk, K.; Orozco, J.P.; Reshkin, S.J.; Devesa, J. Hydrogen Ion Dynamics as the Fundamental Link between Neurodegenerative Diseases and Cancer: Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis on Multiple Sclerosis. *Int J Mol Sci* 2022, 23, doi:10.3390/IJMS23052454.

33. Che, X.-F.F.; Zheng, C.-L.L.; Akiyama, S.-I.I.; Tomoda, A. 2-Aminophenoxazine-3-One and 2-Amino-4,4 α -Dihydro-4 α ,7-Dimethyl-3H-Phenoxazine-3-One Cause Cellular Apoptosis by Reducing Higher Intracellular pH in Cancer Cells. *Proc Jpn Acad Ser B Phys Biol Sci* 2011, 87, 199–213, doi:10.2183/PJAB.87.199.

34. Nagata, H.; Che, X.-F.F.; Miyazawa, K.; Tomoda, A.; Konishi, M.; Ubukata, H.; Tabuchi, T. Rapid Decrease of Intracellular pH Associated with Inhibition of Na $^{+}$ /H $^{+}$ Exchanger Precedes Apoptotic Events in the MNK45 and MNK74 Gastric Cancer Cell Lines Treated with 2-Aminophenoxazine-3-One. *Oncol Rep* 2011, 25, 341–346, doi:10.3892/or.2010.1082.

35. Quach, C.H.T.; Jung, K.-H.; Lee, J.H.; Park, J.W.; Moon, S.H.; Cho, Y.S.; Choe, Y.S.; Lee, K.-H. Mild Alkalization Acutely Triggers the Warburg Effect by Enhancing Hexokinase Activity via Voltage-Dependent Anion Channel Binding. *PLoS One* 2016, 11, e0159529, doi: 10.1371/journal.pone.0159529.

36. Russell, S.; Xu, L.; Kam, Y.; Abrahams, D.; Ordway, B.; Lopez, A.S.; Bui, M.M.; Johnson, J.; Epstein, T.; Ruiz, E.; et al. Proton Export Upregulates Aerobic Glycolysis. *BMC Biol* 2022, 20, doi:10.1186/S12915-022-01340-0.

37. Harguindey, S.S.; Kolbeck, R.C.; Bransome, E.D. Letter: Ureterosigmoidostomy and Cancer: New Observations. *Ann Intern Med* 1975, 83, 833, doi:10.7326/0003-4819-83-6-833_1.

38. Harguindey, S.; Kolbeck, R. Cancer - A Generalization. *Am Lab* 1972, 71–73.

39. Harguindey, S.; Speir, W.A.; Kolbeck, R.C.; Bransome, E.D. Alkalotic Disequilibrium in Patients with Solid Tumors: Rediscovery of an Old Finding. *European Journal of Cancer* 1977, 13, 793–800, doi:10.1016/0014-2964(77)90132-3.

40. Harguindey, S.; Henderson, E.S.; Naehler, C. Effects of Systemic Acidification of Mice with Sarcoma 180. *Cancer Res* 1979, 39, 4364–4371.

41. Harguindey, S. Hydrogen Ion Dynamics and Cancer: An Appraisal. *Med Pediatr Oncol* 1982, 10, 217–236, doi:10.1002/MPO.2950100302.

42. Perona, R.; Portillo, F.; Giraldez, F.; Serrano, R. Transformation and PH Homeostasis of Fibroblasts Expressing Yeast H(+)-ATPase Containing Site-Directed Mutations. *Mol Cell Biol* 1990, 10, 4110–4115, doi:10.1128/mcb.10.8.4110-4115.1990.

43. Reshkin, S.J.; Bellizzi, A.; Caldeira, S.; Albarani, V.; Malanchi, I.; Poignee, M.; Alunni-Fabbroni, M.; Casavola, V.; Tommasino, M. Na $^{+}$ /H $^{+}$ Exchanger-Dependent Intracellular Alkalinization Is an Early Event in Malignant Transformation and Plays an Essential Role in the Development of Subsequent Transformation-Associated Phenotypes. *FASEB J* 2000, 14, 2185–2197, doi: 10.1096/fj.00-0029com.

44. Cardone, R.A.; Casavola, V.; Reshkin, S.J. The Role of Disturbed pH Dynamics and the Na $^{+}$ /H $^{+}$ Exchanger in Metastasis. *Nat Rev Cancer* 2005, 5, 786–795, doi:10.1038/NRC1713.

45. Harguindey, S.; Orive, G.; Luis Pedraz, J.; Paradiso, A.; Reshkin, S.J. The Role of pH Dynamics and the Na $^{+}$ /H $^{+}$ Antiporter in the Etiopathogenesis and Treatment of Cancer. Two Faces of the Same Coin—One Single Nature. *Biochim Biophys Acta* 2005, 1756, 1–24, doi: 10.1016/j.bbcan.2005.06.004.

46. Huber, V.; De Milito, A.; Harguindey, S.; Reshkin, S.J.; Wahl, M.L.; Rauch, C.; Chiesi, A.; Pouysségur, J.; Gatenby, R.A.; Rivoltini, L.; et al. Proton Dynamics in Cancer. *J Transl Med* 2010, 8, 57, doi:10.1186/1479-5876-8-57.

47. Grillo-Hill, B.K.; Choi, C.; Jimenez-Vidal, M.; Barber, D.L. Increased H $^{+}$ Efflux Is Sufficient to Induce Dysplasia and Necessary for Viability with Oncogene Expression. *eLife* 2015, 4, doi:10.7554/eLife.03270.

48. Amith, S.R.; Wilkinson, J.M.; Fliegel, L. Assessing Na $^{+}$ /H $^{+}$ Exchange and Cell Effector Functionality in Metastatic Breast Cancer. *Biochim Open* 2016, 2, 16–23, doi: 10.1016/J.BIOPEN.2016.01.001.

49. Harguindey, S.; Reshkin, S.J. “The New pH-Centric Anticancer Paradigm in Oncology and Medicine”; SCB, 2017. *Semin Cancer Biol* 2017, 43, 1–4, doi: 10.1016/j.semcan.2017.02.008.

50. Liu, Y.; White, K.A.; Barber, D.L. Intracellular pH Regulates Cancer and Stem Cell Behaviors: A Protein Dynamics Perspective. *Front Oncol* 2020, 10, doi:10.3389/fonc.2020.01401.

51. Harguindey, S.; Alfarouk, K.; Polo Orozco, J.; Fais, S.; Devesa, J. Towards an Integral Therapeutic Protocol for Breast Cancer Based upon the New H $^{+}$ -Centered Anticancer Paradigm of the Late Post-Warburg Era. *Int J Mol Sci* 2020, 21, 7475, doi:10.3390/ijms21207475.

52. Harguindey; Alfarouk; Orozco; Hardonniere; Stanciu; Fais; Devesa A New and Integral Approach to the Etiopathogenesis and Treatment of Breast Cancer Based upon Its Hydrogen Ion Dynamics. *Int J Mol Sci* 2020, 21, 1110, doi:10.3390/ijms21031110.

53. Alfarouk, K.O.; Ahmed, S.B.M.; Elliott, R.L.; Benoit, A.; Alqahtani, S.S.; Ibrahim, M.E.; Bashir, A.H.H.; Alhoufie, S.T.S.; Elhassan, G.O.; Wales, C.C.; et al. The Pentose Phosphate Pathway Dynamics in Cancer and Its

Dependency on Intracellular pH. *Metabolites* 2020, 10, 285, doi:10.3390/metabo10070285.

54. Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. *Cell* 2000, 100, 57–70.

55. Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. *Cell* 2011, 144, 646–674, doi:10.1016/j.cell.2011.02.013.

56. Hanahan, D. Hallmarks of Cancer: New Dimensions. *Cancer Discov* 2022, 12, 31–46, doi:10.1158/2159-8290.CD-21-1059.

57. Kroemer, G.; Pouyssegur, J. Tumor Cell Metabolism: Cancer's Achilles' Heel. *Cancer Cell* 2008, 13, 472–482, doi:10.1016/j.ccr.2008.05.005.

58. Webb, B.A.; Chimenti, M.; Jacobson, M.P.; Barber, D.L. Dysregulated pH: A Perfect Storm for Cancer Progression. *Nat Rev Cancer* 2011, 11, 671–677, doi:10.1038/NRC3110.

59. Reshkin, S.J.; Cardone, R.A.; Harguindeguy, S. Na⁺-H⁺ Exchanger, pH Regulation and Cancer. *Recent Pat Anticancer Drug Discov* 2013, 8, 85–99.

60. Reshkin, S.J.; Greco, M.R.; Cardone, R.A. Role of pH_i and Proton Transporters in Oncogene-Driven Neoplastic Transformation. *Philos Trans R Soc Lond B Biol Sci* 2014, 369, 20130100, doi:10.1098/rstb.2013.0100.

61. Giampazolias, E.; Tait, S.W.G. Mitochondria and the Hallmarks of Cancer. *FEBS J* 2016, 283, 803–814, doi:10.1111/FEBS.13603.

62. White, K.A.; Grillo-Hill, B.K.; Barber, D.L. Cancer Cell Behaviors Mediated by Dysregulated pH Dynamics at a Glance. *J Cell Sci* 2017, 130, 663–669, doi:10.1242/jcs.195297.

63. Zheng, T.; Jäättelä, M.; Liu, B. PH Gradient Reversal Fuels Cancer Progression. *Int J Biochem Cell Biol* 2020, 125, doi:10.1016/J.BIOCEL.2020.105796.

64. Harguindeguy, S.; Arranz, J.L.; Wahl, M.L.; Orive, G.; Reshkin, S.J. Proton Transport Inhibitors as Potentially Selective Anticancer Drugs. *Anticancer Res* 2009, 29, 2127–2136, doi:29/6/2127 [pii].

65. Parks, S.K.; Chiche, J.; Pouyssegur, J. Disrupting Proton Dynamics and Energy Metabolism for Cancer Therapy. *Nat Rev Cancer* 2013, 13, 611–623, doi:10.1038/nrc3579.

66. Huber, V.; Camisaschi, C.; Berzi, A.; Ferro, S.; Lugini, L.; Triulzi, T.; Tuccitto, A.; Tagliabue, E.; Castelli, C.; Rivoltini, L. Cancer Acidity: An Ultimate Frontier of Tumor Immune Escape and a Novel Target of Immunomodulation. *Semin Cancer Biol* 2017, 43, 74–89, doi:10.1016/j.semcaner.2017.03.001.

67. Cappellosso, F.; Orban, M.P.; Shirgaonkar, N.; Berardi, E.; Serneels, J.; Neveu, M.A.; Di Molfetta, D.; Piccapane, F.; Caroppo, R.; Debellis, L.; et al. Targeting the Bicarbonate Transporter SLC4A4 Overcomes Immunosuppression and Immunotherapy Resistance in Pancreatic Cancer. *Nat Cancer* 2022, 3, 1464–1483, doi:10.1038/S43018-022-00470-2.

68. Hardonnière, K.; Huc, L.; Sergent, O.; Holme, J.A.; Lagadic-Gossmann, D. Environmental Carcinogenesis and pH Homeostasis: Not Only a Matter of Dysregulated Metabolism. *Semin Cancer Biol* 2017, 43, 49–65, doi:10.1016/J.SEMCANCER.2017.01.001.

69. Aravena, C.; Beltrán, A.R.; Cornejo, M.; Torres, V.; Díaz, E.S.; Guzmán-Gutiérrez, E.; Pardo, F.; Leiva, A.; Sobreira, L.; Ramírez, M.A. Potential Role of Sodium-Proton Exchangers in the Low Concentration Arsenic Trioxide-Increased Intracellular pH and Cell Proliferation. *PLoS One* 2012, 7, doi:10.1371/JOURNAL.PONE.0051451.

70. Schwartz, L.; Buhler, L.; Icard, P.; Lincet, H.; Summa, G.M.; Steyaert, J.-M. Metabolic Cancer Treatment: Intermediate Results of a Clinical Study. *Cancer Ther* 2014, 10, 13–19.

71. Schwartz, L.; Seyfried, T.; Alfarouk, K.O.; Da Veiga Moreira, J.; Fais, S. Out of Warburg Effect: An Effective Cancer Treatment Targeting the Tumor Specific Metabolism and Dysregulated pH. *Semin Cancer Biol* 2017, 43, 134–138, doi:10.1016/j.semcaner.2017.01.005.

72. Hu, Q.; Hu, J.; Chen, C.; Wang, Y.; Zhang, Y.; Wan, J.; Jing, O.; Yi, H.; Wang, S.; Huang, W.; et al. Propranolol Suppresses Bladder Cancer by Manipulating Intracellular pH via NHE1. *Transl Androl Urol* 2022, 11, 1083–1095, doi:10.21037/TAU-22-113/COIF).

73. Fernandez-Gil, B.I.; Otamendi-Lopez, A.; Bechtle, A.; Vazquez-Ramos, C.A.; Qosja, N.; Suarez-Meade, P.; Sarabia-Estrada, R.; Jentoft, M.E.; Guerrero-Cázares, H.; Escames, G.; et al. Melatonin Treatment Triggers Metabolic and Intracellular pH Imbalance in Glioblastoma. *Cells* 2022, 11, doi:10.3390/CELLS11213467.

74. Sanchez-Sanchez, A.M.; Antolin, I.; Puente-Moncada, N.; Suarez, S.; Gomez-Lobo, M.; Rodriguez, C.; Martin, V. Melatonin Cytotoxicity Is Associated to Warburg Effect Inhibition in Ewing Sarcoma Cells. *PLoS One* 2015, 10, doi:10.1371/JOURNAL.PONE.0135420.

75. Uchiyama, A.A.T.; Silva, P.A.I.A.; Lopes, M.S.M.; Yen, C.T.; Ricardo, E.D.; Mutão, T.; Pimenta, J.R.; Machado, L.M.; Shimba, D.S.; Peixoto, R.D. Proton Pump Inhibitors and Oncologic Treatment Efficacy: A Practical Review of the Literature for Oncologists. *Curr Oncol* 2021, 28, 783–799, doi:10.3390/CURRONCOL28010076.

76. Raudenska, M.; Balvan, J.; Fojtu, M.; Gumulec, J.; Masarik, M. Unexpected Therapeutic Effects of Cisplatin. *Metallomics* 2019, 11, 1182–1199, doi:10.1039/C9MT00049F.

77. Keizer, H.G.; Joenje, H. Increased Cytosolic pH in Multidrug-Resistant Human Lung Tumor Cells: Effect of Verapamil. *J Natl Cancer Inst* 1989, 81, 706–709, doi:10.1093/JNCI/81.9.706.

78. Makovec, T. Cisplatin and beyond: Molecular Mechanisms of Action and Drug Resistance Development in Cancer Chemotherapy. *Radiol Oncol* 2019, 53, 148–158, doi:10.2478/RAON-2019-0018.

79. Dasari, S.; Bernard Tchounwou, P. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. *Eur J Pharmacol* 2014, 740, 364–378, doi:10.1016/J.EJPHAR.2014.07.025.

80. Hamaguchi, R.; Isowa, M.; Narui, R.; Morikawa, H.; Wada, H. Clinical Review of Alkalization Therapy in Cancer Treatment. *Front Oncol* 2022, 12, doi:10.3389/FONC.2022.1003588.

81. Demidov, L. V.; Manziuk, L. V.; Kharkevitch, G.Y.; Pirogova, N.A.; Artamonova, E. V. Adjuvant

Fermented Wheat Germ Extract (Avemar) Nutraceutical Improves Survival of High-Risk Skin Melanoma Patients: A Randomized, Pilot, Phase II Clinical Study with a 7-Year Follow-Up. *Cancer Biother Radiopharm* 2008, **23**, 477–482, doi:10.1089/CBR.2008.0486.

82. Bencze, G.; Bencze, S.; Rivera, K.D.; Watson, J.D.; Orfi, L.; Tonks, N.K.; Pappin, D.J. Mito-Oncology Agent: Fermented Extract Suppresses the Warburg Effect, Restores Oxidative Mitochondrial Activity, and Inhibits in Vivo Tumor Growth. *Sci Rep* 2020, **10**, 14174, doi:10.1038/s41598-020-71118-3.

83. Weitzen, R.; Epstein, N.; Oberman, B.; Shevetz, R.; Hidvegi, M.; Berger, R. Fermented Wheat Germ Extract (FWGE) as a Treatment Additive for Castration-Resistant Prostate Cancer: A Pilot Clinical Trial. *Nutr Cancer* 2021, **1**–9, doi:10.1080/01635581.2021.1952457.

84. Boros, L.G.; Nichelatti, M.; Shoenfeld, Y. Fermented Wheat Germ Extract (Avemar) in the Treatment of Cancer and Autoimmune Diseases. *Ann N Y Acad Sci* 2005, **1051**, 529–542, doi:10.1196/annals.1361.097.

85. Garami, M.; Schuler, D.; Babosa, M.; Borgulya, G.; Hauser, P.; Müller, J.; Paksy, A.; Szabó, E.; Hidvégi, M.; Fekete, G. Fermented Wheat Germ Extract Reduces Chemotherapy-Induced Febrile Neutropenia in Pediatric Cancer Patients. *J Pediatr Hematol Oncol* 2004, **26**, 631–635, doi:10.1097/01.mph.0000141897.04996.21.

86. Traxler, L.; Herdy, J.R.; Stefanoni, D.; Eichhorner, S.; Pelucchi, S.; Szücs, A.; Santagostino, A.; Kim, Y.; Agarwal, R.K.; Schlachetzki, J.C.M.; et al. Warburg-like Metabolic Transformation Underlies Neuronal Degeneration in Sporadic Alzheimer's Disease. *Cell Metab* 2022, **34**, 1248–1263.e6, doi:10.1016/j.cmet.2022.07.014.

87. Pouysségur, J.; Marchiq, I.; Parks, S.K.; Durivault, J.; Ždralević, M.; Vučetić, M. 'Warburg Effect' Controls Tumor Growth, Bacterial, Viral Infections and Immunity – Genetic Deconstruction and Therapeutic Perspectives. *Semin Cancer Biol* 2022, **86**, 334–346, doi: 10.1016/j.semcan.2022.07.004.

88. Chen, C.; Wang, X.; Yang, T.; Yuan, X.; Liang, N.; Yang, Y.; Yang, X.; Pang, Y.; Zhao, Y.; Li, C. The PH Perspective of Cancer: From Warburg's Misconception to Therapeutic Targeting of PH Regulating Proteins. *Crit Rev Oncol Hematol* 2026, **217**, 105051, doi:10.1016/j.CRITREVONC.2025.105051.