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Abstract 

Despite the undoubted triumphs that have 

occurred in the treatment of some cancers, 

overall, the outcomes for disseminated disease 

remain poor. A change in perspective is 

therefore required to develop more effective 

treatment strategies. This review provides an 

overview of the potential contribution of chaos 

theory and fractal mathematics to the study of 

cancer evolution. The atavistic model of 

cancer proposes that cancer represents a 

reversion to an evolutionarily ancient 

proliferative phenotype, and suggests that 

cellular metabolism and the immune system 

are targets to which cancer may be susceptible. 

The approaches of chaos theory and fractal 

mathematics point to the same targets, and the 

synergy of these two perspectives will be 

explored. The emerging unifying concept 

which emerges is that the cellular machinery 

of the differentiated cell resists entropy in 

favour of stable structure. Each evolutionary 

development from multicellular organisms 

upwards, diverts more energy away from 

entropy. When malignant transformation 

occurs, the cell succumbs to the draw of the 

thermodynamic laws, maximizing fractal 

entropy, reverting to its ancient proliferative 

phenotype and moving, in its increased 

dynamic state, into greater chaos. Changes in 

the chaotic dynamics of cellular function 

evolve in parallel with changes in the fractal 

geometry of cellular structure. If the dynamics 

of the cancer cell can be worked out 

mathematically, it may be possible to use these 

dynamics to plan treatment strategies in the 

way that chaos theory is currently used to, for 

example, guide satellites. Although the 

responses of the tumour to the suggested 

targets may be weaker, they may also be more 

sustainable, and produce fewer side effects, 

than the current modalities and the emerging 

molecularly targeted therapies.  
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Introduction 

 The lifetime risk of cancer is now 

approximately 50% in Western societies, and 

despite the undoubted triumphs that have 

occurred in the treatment of some cancers, 

overall, the outcomes for disseminated disease 

remain poor. Current therapy is based on 

radiation, chemotherapy and surgery. The 

modus operandi of the former two modalities 

is to target cancer cell proliferation by 

damaging DNA. The molecular biology 

revolution has led to an explosion of new 

information and has fueled the development of 

specific molecularly-targeted therapies. 

However, these have, overall, proved to be less 

selectively toxic than was hoped, partly 

because the pathways being targeted also have 

normal functions in normal cells, and partly 

because no drug is ever truly specific to just 

one target. In addition, the benefit of these 

drugs is often short lived, characterized by an 

often dramatic reduction in tumour mass 

initially, followed by recurrence as resistance 

sets in. This effect occurs because tumours are 

heterogeneous and their growth and 

development is subject to the forces of 

Darwinian evolution. Targeted therapies 

produce a short-term reduction in the tumour 

bulk, but they also create a selection pressure 

which favours resistant tumour cells, thereby 

driving the further evolution of the tumour. 

There are some drugs available which target 

the mechanisms of resistance, but, in the end, 

the same dynamics inevitably lead to a 

recurrence of the tumour. Although 

molecularly-targeted therapies do have a role 

to play, they have not produced the dramatic 

improvement in survival which is being 

sought. There is therefore a clear need to adapt 

our strategy. 

 The US National Cancer institute 

recognized this need and, to this end, they 

invited the cosmologist Paul Davies to look at 

cancer from the perspective of a physicist. He 

worked together with Charley Lineweaver, an 

astrobiologist, and Marc Vincent, an 

oncologist, to develop the ‘atavistic’ model of 

cancer progression (Lineweaver, Davies, & 

Vincent, 2014).  

 

 

 

The thesis of this model is that cancer 

represents the re-expression of an  

ancient preprogrammed trait which evolved 

hundreds of millions of years ago, before the 

advent of multicellularity. The ancestral cells 

were not terminally differentiated cells but 

were proliferators. Immortality of the cell 

would have been beneficial to these early 

single cells, but was later confined to eggs and 

sperm as multicellular organisms emerged. 

However, when the cell faces an 

environmental threat, it jettisons its higher 

functions and, in a misguided effort to survive 

at all costs, reactivates its dormant ability to 

proliferate unchecked. Once triggered, this 

program is pursued by the cell with ruthless 

abandon. This model immediately suggested to 

its proposers how our therapeutic strategy 

needs to change. Rather than targeting 

proliferation, which is the cell’s most 

protected, entrenched and redundant 

capability, the weaknesses of cancer, 

capabilities known to have evolved more 

recently in evolution, should be targeted. The 

authors identified cancer’s metabolic 

phenotype, its vulnerability to the immune 

system, transmembrane pumps and DNA 

repair mechanisms as key targets (Lineweaver 

et al., 2014). While these targets may not 

result in complete eradication of the tumour, 

they could improve morbidity and survival by 

achieving sustainable control of a reduced 

tumour mass.  

The aim of this review is to discuss the 

application of chaos theory, and fractal 

mathematics, with which it is irrevocably 

intertwined, to our understanding of cancer 

evolution. The work that has been done on 

these perspectives has proceeded 

independently of the development of the 

atavistic model but, fascinatingly, also points 

to the immune system and metabolism as 

therapeutic targets. There is therefore a clear 

synergy between the two perspectives which 

this review will explore. Much of this 

discussion is speculative in nature, and my aim 

is to provoke some radical thoughts and 

suggest directions for future work. 
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The Dynamics of Biological Systems 

 Biological systems, at all levels of 

organization, are capable of exhibiting a wide 

range of dynamics. The simplest is 

homeostatic equilibrium, which describes a 

system at rest. Periodic and quasi-periodic 

dynamics occur when the system has a 

repeating rhythm, as seen in many of the 

body’s circadian rhythms or the 

electrophysiological behavior of the heart or 

nervous system. These three states are often 

described as representing ‘order’, a reference 

to the fact that their dynamics are linear or, in 

other words, equal to the sum of their parts. 

Deterministic chaos represents the next level 

of complexity, that of non-linear dynamics, 

where the behavior of the system is greater 

than the sum of its parts. Deterministic chaos 

describes a system which is no longer confined 

to repeating a particular rhythm but is free to 

respond and adapt. A system in deterministic 

chaos is constrained only by ‘boundary 

conditions’ imposed to prevent it from 

collapsing. Such systems exhibit such complex 

behavior that it gives the illusion of 

randomness. However, if the raw 

measurements obtained from such systems are 

examined in the correct way, the pattern, and 

therefore the deterministic nature of the 

system, is revealed. Randomness represents a 

true breakdown in order of the system in 

which the system becomes uncoordinated.  

Deterministic chaos was officially 

(and accidentally) discovered by Edward 

Lorenz in 1963 (Lorenz, 1963). Lorenz was a 

meteorologist who was about to rerun a 

weather simulation he had already done. To 

save time, he used data from a previous 

computer readout and started the simulation 

from its halfway point. To his surprise, he 

found that the results of the new simulation 

were markedly different. The computer 

readout he had used to start the simulation had 

approximated the 6 figure readout of the 

computer to 3 figures. This small difference in 

initial conditions (using a 3 rather than a 6 

digit input) was enough to substantially alter 

the outcome. This is the ‘butterfly effect’, 

famously illustrated by the example of a  

butterfly triggering a tornado thousands of 

miles away by beating its wings, also referred 

to as the ‘sensitivity to initial conditions’. 

Because of this phenomenon, the behavior of a 

chaotic system such as the weather can never 

be accurately predicted in the long term. Be 

that as it may, knowledge of the behavior of a 

chaotic system can still be of immense 

practical value. An example is given by the 

successful interception of the comet 

Gicobini/Ziner in 1985. The 3
rd

 Interplanetary 

Communication Explorer, which was launched 

for this mission, was equipped with small 

rockets from which hydralazine fuel could be 

ejected to place the satellite in the required 

orbit. The mission encountered an immediate 

disaster after launch when the satellite used up 

nearly all its fuel escaping the Earth’s 

atmosphere, leaving it without the fuel needed 

to achieve the required stable orbit. Rather 

than abandoning the mission, mathematicians 

used their knowledge of chaos theory and non-

linear dynamics to figure out a way to nudge 

the satellite into a series of unstable orbits 

using the remaining fuel. The result was a 

successful interception of the comet 

(Dalgleish, 1999). Similar approaches have 

been successfully used in space exploration 

ever since. If our knowledge of chaos theory 

can be used to such good effect in space 

exploration, can it not also be used with 

equally good effect in the treatment of human 

disease?  

 

A Brief Overview of Chaos Theory 

In 1901, Willard Gibbs pioneered the 

use of phase space to represent the state of a 

system, and the Belgian physicist Ruelle then 

used this approach to study the behavior of 

chaotic systems (Ruelle & Takens, 1978). 

Phase space is an abstract, usually, two or 

three-dimensional space in which the x, y and 

z- axes represent key parameters which 

describe the state of the system. In reality, 

there is no limit to the number of dimensions 

which can be used, as is discussed later. The 

state of the system at any given moment can 

then be represented as a point in phase space 

by applying mathematical transformations to 

the raw data in a process called embedding. 

The state of a dynamic system is continuously 

changing, and by plotting the state of a system 

over time on a phase space diagram, one 
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obtains a graphical representation of all 

possible states of the system. There is a 

tendency for dynamical systems to evolve 

towards a particular state or behavior, and, on 

a phase space plot, this state or behavior is 

represented as a set of points known as the 

attractor (Ruelle & Takens, 1978). The 

attractor can be a fixed point (equilibrium), a 

limit cycle (periodic behavior), a limit torus 

(quasi-periodic behavior) or a fractal 

(deterministic chaotic behavior). In the latter 

example, the attractors of chaotic systems are 

referred to as strange attractors. The existence 

of an attractor is a property of a deterministic 

system; random systems do not have a true 

attractor.  

Physiological systems can change 

their dynamics. This phenomenon is called 

bifurcation and can be detected on a phase 

space plot by a change in the attractor. 

Bifurcations which cascade a system move it 

towards deterministic chaos whereas 

bifurcations which provide negative feedback 

loops stabilize a system away from 

deterministic chaos towards the simpler 

dynamics. This phenomenon gives the system 

a remarkable flexibility (see 

(Bassingthwaighte, Liebovitch, & West, 1994; 

Goldberger et al., 2002; Goldberger, Rigney, 

& West, 1990; Oestreicher, 2007; 

Trzeciakowski & Chilian, 2008) for a more 

complete discussion), and a system which 

exists at the boundary between chaos and the 

simpler dynamics has the ability to exhibit 

either behavior according to its needs. 

 

Fractal Mathematics 

 Fractal mathematics is a 

fundamentally new kind of geometry which is 

now receiving increasing attention by the 

medical, scientific and general communities. It 

has three applications in biology: the study of 

physical structure, the study of the structure of 

processes in time and the study of the 

dynamics underlying behavior. The latter two 

applications are distinguished by whether the 

data are embedded as part of the analysis. In 

the study of the structure of processes in time, 

the data are not embedded. In the study of 

dynamics, fractal mathematics plays a role if, 

after the data are embedded, the system is 

found to be chaotic and therefore to have a 

strange attractor.  

 In the 1970’s, Benoit Mandelbrot 

described a fractal as “a rough or fragmented 

geometric shape which can be split into parts, 

each of which is (at least approximately) a 

reduced-sized copy of the whole” 

(Mandelbrot, 1982). The self-similarity of a 

fractal can be either perfect (geometrical) or 

statistical. Perfect self-similarity is a 

mathematical ideal, a geometrically perfect 

fractal. Nature never conforms to such ideals. 

Most fractals in nature exhibit statistical self-

similarity, meaning that the fractal is 

approximately self-similar at different scales; 

put another way, the statistical properties of 

the part are proportional to the statistical 

properties of the whole. Examples of such self 

similarity in the human body include self-

similar invaginations of alveolae in the lungs 

and the intestinal tract which increase the 

surface area for absorption, or the self-similar 

branching pattern of the dendritic, bronchial 

and vascular trees (Caserta et al., 1990; 

Goldberger et al., 1990; Kassab, Rider, Tang, 

& Fung, 1993; Smith, Marks, Lange, Sheriff, 

& Neale, 1989; West, Bhargava, & 

Goldberger, 1986). Biological processes in 

time can also exhibit fractal properties in that 

fluctuations at a given timescale resemble the 

fluctuations of the same process observed at a 

smaller timescale. Finally, as mentioned 

above, the strange attractor of a chaotic system 

is always a fractal, and fractal geometry 

therefore has a role to play in describing 

dynamics. 

 

Cellular Dynamics 

The central dogma of molecular 

biology has long asserted that a hierarchy 

exists within the cell in which each 

organizational level has its task. DNA is the 

information store, RNA is the information 

processor, proteins are the executors of genetic 

instructions and metabolites provide the fuel 

and some fine tuning. However, the true 

distribution of cellular functions is less rigid. 

The proteome can store information, at least in 

the short term, the metabolome can control 

gene expression and miRNAs can influence 

gene expression and regulate the subcellular 
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targeting of the proteome (Bhalla & Iyengar, 

1999; Bray, 1995; Hartwell, Hopfield, Leibler, 

& Murray, 1999; Jeong, Tombor, Albert, 

Oltvai, & Barabasi, 2000; Oltvai & Barabasi, 

2002). The genome, transcriptome, proteome 

and metabolome exist in complex 

interconnected networks which are all 

organized according to the same principles and 

form a type of network which is referred to as 

‘scale-free’ (Barabasi & Albert, 1999). In a 

scale free network, the number of 

interconnections formed by a node, referred to 

as its degree, obeys a power-law distribution 

i.e. there are groups of nodes which form large 

numbers of interactions, and others which 

form only a few (Oltvai & Barabasi, 2002).  

The dynamics of cellular networks are 

exemplified by the metabolic pathways. The 

metabolic network (which incorporates 

substrate supply, energy production in the 

mitochondria, energy utilization, and gene 

regulatory functions) is scale-free. Chaotic 

behavior has been frequently related to the 

interaction that occurs between oscillators, and 

metabolic pathways are replete with them. 

There are ultradian rhythms in oxygen 

consumption. Within the metabolic machinery, 

there are more irregular oscillators. Glycolytic 

flux can be constant or periodic when glucose 

supply is constant. When glucose supply 

becomes periodic, glycolytic flux can be either 

periodic or chaotic depending on the amplitude 

and frequency of the glucose input (Markus & 

Hess, 1985; Markus, Kuschmitz, & Hess, 

1984). Most biochemical pathways probably 

exist in a number of oscillatory states and can 

bifurcate from periodic to chaotic behavior. 

Our technology limits our ability to study such 

phenomena; it is not easy to track and record 

metabolites in real time.  

The evolutionary origins of these 

cellular dynamics can be understood using the 

concept of self organization. This is a 

phenomenon, described by Alan Turing, which 

can be understood as follows (Turing, 1990). 

Initally, the system is random; its components 

exhibit no meaningful interactions. However, 

because of their own properties, the 

components of the system will start to interact 

with some of their neighbours and repel others. 

As the interactions become stronger, a series 

of cascading bifurcations can drive the system 

towards deterministic chaos and then towards 

order. From an initial state of randomness, a 

new more complex and meaningful behavior 

emerges. This process is exemplified by the 

spontaneity with which fish come together to 

form shoals or birds come together to form 

flocks. In order for the new network to 

stabilize, the interactions of its components 

need to be strong enough that it is reinforced, 

not broken down, by repeated cycles of 

feedback. However, the interactions must not 

be too strong, or the network will become rigid 

and lose its ability to adapt. From an 

evolutionary perspective, self-organization 

creates complex systems which are then 

moulded until they exist at the boundary 

between order and chaos, held there by an 

intricate system of feedback. The system can 

use deterministic chaos when needed and then 

return to order, maintaining its flexibility 

without losing its structure (Kauffman, 1993; 

Langton, Taylor, Fanner, & Rassmussen, 

1992).  

Little is known about how the first 

cellular networks evolved, but it is tempting to 

speculate about the possibilities raised by the 

principle of self-organization. Network 

dynamics within the cell can be understood, at 

least in part, in terms of wave propagation 

through an excitable medium, because 

chemical reactions can spread in an oscillating 

manner akin to wave propagation. According 

to a theory first developed by Alan Turing, 

oscillations and chemical waves self organize 

into a network (Turing, 1990). A chemical, 

such as a second messenger, is synthesized 

rapidly at a particular location but diffuses 

slowly. At the moment of synthesis, there is a 

localized peak concentration. The chemical 

then diffuses into the surrounding medium and 

the concentration at the site of synthesis 

slowly falls. The next burst of synthesis gives 

rise to a second peak, and the process repeats 

itself. This results in the creation of a chemical 

oscillator sending out chemical diffusion 

waves. These can exhibit any dynamic 

(Winfree, 1972).  

The chemical diffuses out to interact 

with neighbouring processes and targets, and 

can elicit responses not only by its unique 
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chemical identity, but by its temperospatial 

signature. As many such oscillators interact 

and self-organise, spatial organization of 

signaling and architecture emerge and the 

collective behavior of the system can suddenly 

bifurcate to produce a more complex behavior, 

forming a functional module. Additional 

structures, such as cytoskeletal elements, can 

refine the module’s function.  

Self-organization creates complexity 

independently, and provides an explanation of 

how function can gradually emerge from a sea 

of random behavior. From evolutionary 

perspective, this poses an intriguing dilemma 

as, in order for the new behavior to be passed 

on, there would need to be traits to the 

behavior which are heritable. One would 

expect that the first time a new complex 

behavior appears, it will probably be lost. 

However, if a particular genetic background 

favors the generation of complex behaviors 

which improve survival, the favorable traits 

will be passed on and allow for the continued 

appearance of beneficial complex behaviors 

which will eventually survive in the species. 

The genome may gradually evolve to encode 

more of the behavior, essentially ‘recording’ 

as much of it as is needed to ensure that the 

behavior is passed on. However, in a non-

linear system, it is not necessary for the 

genome to record every detailed instruction; in 

fact, the genome lacks the necessary power to 

encode everything. The genome just needs to 

have enough instructions to recreate the 

required microenvironment so that the 

behavior can be sufficiently replicated within 

the required space to serve the required 

function. The final result is therefore a division 

of labour between programs encoded by the 

genome, and processes which rely on self 

organization guided by the microenvironment. 

Examples of this division of labour are well 

documented. The number of neural 

interactions, for example, greatly exceeds (by 

2 logarithms) the number of genes encoding 

the nervous system. Likewise, structures such 

as the bronchial tree, small blood vessel 

networks or even fingerprints are not 

genetically encoded (identical twins do not 

have identical fingerprints). The structure 

which emerges from these self-organising 

processes is a fractal structure. It can therefore 

be seen that fractal structure, which begets 

chaotic non-linear behavior, is necessary for 

life (Dalgleish, 1999).  

 

Unifying the Atavistic Model with Chaos 

Theory 

In cancer, the cell is driven into a state 

of genetic instability and assumes the 

phenotype of anaplasia. It is unclear where this 

places the cell in the spectrum between 

ordered and random behavior. Functionally, 

the most feasible speculation is that chaos is 

increasing in the cell as the genetic instability 

accumulates and control is lost (Janecka, 

2007). There is some evidence for this, 

particularly in breast cancer (Schneider & 

Kulesz-Martin, 2004). The atavistic model 

suggests that the bifurcation that occurs when 

the old proliferative program reactivates leads 

to a jettisoning of many of the younger 

pathways which evolved to keep the cell at the 

boundary between order and chaos. This 

moves the cell closer to the boundary between 

randomness and deterministic chaos from 

which the first pathways emerged. In an 

example of the sensitivity of this process to 

initial conditions, one study demonstrated that 

a single base substitution in one allele of the 

phosphatidylinositol-3 kinase (PI3K) was 

sufficient to induce a phenotype similar to that 

of basal-type human breast cancer in a human 

breast epithelial line (Hart et al., 2015). The 

phenotype included changes in the expression 

profiles of genes not known to be related to 

PI3K. While this may reflect an incomplete 

understanding of the role of PI3K, it is equally 

likely to reflect the extensive and non-linear 

nature of the interconnectivity of the cellular 

pathways as a whole. In the atavistic model, it 

is an example of how a single base substitution 

can reactivate the proliferative phenotype. 

Similarly, at the level of the tumour as a 

whole, deterministic chaos can be seen to 

operate. For example, in breast cancer, small 

numbers of so-called ‘cancer stem cells’ can 

be selected and propagated, reproducing a 

tumour mass whose genetic diversity is similar 

to the tumour mass from which they were 

derived (Al-Hajj, Wicha, Benito-Hernandez, 

Morrison, & Clarke, 2003). The breadth of the 
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heterogeneity suggests that there is underlying 

genomic instability, and is another example of 

the sensitivity to initial conditions. The 

reproducibility of the phenotype suggests that 

this instability is not random, but due to 

deterministic chaos. The heterogeneity thus 

generated can be acted upon by external 

selection pressures, thereby driving the 

evolution of the tumour. 

 The proliferative, increasingly chaotic, 

phenotype of cancer cells, conventionally 

referred to as anaplasia, is intriguing and 

difficult to explain using the conventional 

model of tumour development. Despite the 

wide range of cancer types, and mutations 

which have been associated with them, cancer 

cells exhibit remarkably similar behavior 

(increased proliferation, invasion, migration, 

inactivation of apoptosis etc.), although they 

clearly differ in the aggressiveness with which 

they exhibit their behavior. Both the atavistic 

and chaos theory models provide the same 

explanation for this – the cell is reverting to an 

evolutionarily older phenotype (Lineweaver et 

al., 2014). One possible interpretation of the 

atavistic model, if the cell exhibited only linear 

dynamics, would be that there is a single 

ancient program which is reactivated in all 

cancers. However, such an assertion 

misrepresents the actual structure and function 

of the cell. If the cell is in deterministic chaos, 

then the atavistic model does not represent the 

reactivation of a linear program but a 

bifurcation of the system to an evolutionarily 

ancient strange attractor. It would then be this 

strange attractor which embodies the ancient 

proliferation program.  

 The development of the anaplasia 

phenotype is usually (but not always) 

associated with a loss of architectural integrity 

which worsens as cancer development 

progresses and which produces the 

morphological changes with which 

histopathologists are very familiar: 

abnormalities in the size and shape of the cells, 

loss of nuclear polarity, an increase in the 

nuclear to cytoplasmic ratio, irregular nuclear 

outlines, irregular chromatin, prominent 

nucleoli, atypical mitoses and so on. Although 

beyond the scope of this review, these 

morphological features are also amenable to 

analysis using fractal geometry. For example, 

there is evidence that fractal measurements can 

be used to distinguish squamous cell 

carcinoma from adenocarcinoma of the lung 

(Lee et al., 2014), or for primary site 

assignment of a poorly differentiated tumour 

(Vasiljevic et al., 2012). In other words, 

changes in the chaotic dynamics of cellular 

function evolve in parallel with changes in the 

fractal geometry of cellular structure. 

Although the fractal shape of the cell changes 

with anaplasia, what does not change is the 

fact that the cell has fractal structures. This is 

in keeping with the proposed ancient 

evolutionary origins of fractal structure. 

Indeed, the speculation implied by Alan 

Turing’s model of self organization is that 

fractal structure is as old as the very first 

pathways, older than the first cells.  

 

Fractal Entropy 

 Fractal entropy is a model recently 

proposed by Garland which again places 

metabolism centre stage in cancer 

development (Garland, 2013). Garland also 

pointed out the paradox, discussed above, 

regarding the common profile of cancer cells, 

and noted that many of the genetic and 

epigenetic pathways involved in cancer 

development either directly or indirectly also 

influence energy management. These 

alterations divert energy away from the 

construction and maintenance of stable cellular 

structure towards the dynamic activities of 

anaplasticity, namely proliferation, motility, 

migration and architectural fluidity. The 

Warburg effect (the reliance of tumour cells on 

glycolysis in the presence of oxygen) is only 

part of what is a widespread remodeling of the 

metabolic machinery. This diversion of 

energy, in Garland’s model, represents 

entropy, a dissipation of energy which occurs 

in accordance with the laws of 

thermodynamics. Garland proposes that this 

entropic dissipation follows a fractal structure, 

not unlike that which might have emerged 

from the early processes of self-organisation, 

and that the malignant transformation is one in 

which the network switches to state which 

favours maximum entropy (Garland, 2013). 

Unifying this concept with the atavistic model 
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and chaos theory, one arrives at the concept 

that the cellular machinery of the differentiated 

cell resists entropy in favour of stable 

structure. Each evolutionary development 

from multicellular organisms upwards, diverts 

more energy away from entropy. When 

malignant transformation occurs, the cell 

succumbs to the draw of the thermodynamic 

laws, maximizing fractal entropy, reverting to 

its ancient proliferative phenotype and 

moving, in its increased dynamic state, into 

greater chaos.  

 The metabolic pathways could be 

targeted by any strategy which prevents the 

fractal network from favouring entropy or 

which exploits the weaknesses this increased 

entropy creates. Switching on mitochondria, 

limiting glucose supply, increasing the oxygen 

tension and increasing the pH of the 

microenvironment are examples of some of the 

strategies which could be employed 

(Lineweaver et al., 2014). 

 

The Immune System in Cancer 

 The immune system is one of the key 

systems of the body which interacts with 

environment. It functions at many levels, from 

mucosal and innate immunity to highly 

specific and targeted humoral and cell-

mediated responses, and is exquisitely tuned to 

distinguish self from non-self. This is a 

remarkable feat, as the antigens found on 

microorganisms can be very similar to self 

antigens. Dalgleish suggested that the immune 

system exhibits deterministic chaos and 

focuses around strange attractors (Dalgleish, 

1999). It makes intuitive sense that the 

immune system would benefit immensely 

from this dynamic. The immune system has to 

continuously adapt, learning and imprinting its 

environment. If it were a linear system, one 

would expect clonality to be the norm in all 

responses, which is the exact opposite of the 

true situation. In an embellishment of the well-

studied role of HLA and immunoglobulin in 

distinguishing self from non-self, Cohen 

suggested that the reason the immune system 

focuses on regions of HLA and 

immunoglobulin is that these are the regions  

 

 

that have been most hijacked by pathogenic  

microorganisms (Cohen & Young, 1991; 

Dalgleish, 1999). In this case, the strange 

attractor has evolved appropriately by focusing 

the attention of the immune system on a 

vulnerable and frequently attacked target.  

 Inappropriate focusing of the immune 

system is a well-established phenomenon in 

chronic disease. In cancer, melanoma, prostate 

cancer, colorectal cancer, lymphomas and 

myelomas are all associated with a depression 

of Th1 response (cell mediated responses 

associated with interleukin-2, interferon γ and 

interleukin 12) and enhancement of Th2 

responses (humoural responses associated with 

interleukins 4,5,6 and 10) (Dalgleish, 1999). A 

similar phenomenon occurs in HIV infection 

and AIDS (Dalgleish, 1999). From the 

perspective of chaos theory, this represents a 

partial collapse of the immune network 

reflected by a change in the strange attractor of 

the system. This bifurcation of the system 

alters the focus of the immune system and 

thereby shifts its relationship with the disease. 

Non-specific stimulants of the immune system 

are known to have anti-tumour activity in a 

range of tumours; examples include BCG, 

interferon, interleukin II and tumour 

vaccines(Dalgleish, 1999). These therapies 

may act, in part, to refocus the strange 

attractors. The promise of the application of 

chaos theory is that, by resetting the attractors 

to their normal state, the response rate of the 

tumour to immune stimulation could be 

increased. It is now well-accepted that escape 

from the control of the immune system is a 

key step in carcinogenesis, and there is intense 

interest in developing strategies to prevent this 

escape. This approach dovetails with the 

atavistic model, which states that the 

functioning of the immune system in the 

microenvironment of the cancer cell reverts to 

an early evolutionary state, before adaptive 

immunity emerged (Lineweaver et al., 2014). 

However, if the tumour is attacked by an insult 

which requires adaptive immunity as a 

defence, this would be an attack to which it is 

vulnerable. This idea provides a justification 

for the approach of using tumour vaccines.  
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Can We Use Chaos Theory to Treat 

Cancer? 

It makes intuitive sense that strange 

attractors of the cellular systems must exist, 

and that they change in cancer. However, this 

has not been validated using objective data and 

we currently have no idea what the ‘healthy’ 

and ‘unhealthy’ strange attractors look like. It 

is not even clear what a definition of the 

‘system’ should be to obtain the phase space 

plot of the system, what data needs to be 

collected, how often and how the data should 

be embedded. Dhruba Deb recently developed 

an art-science model in which the ten 

hallmarks of cancer were represented in 10 

dimensional phase space (Deb, 2016). The use 

of multiple dimensions is commonplace in 

physics and cosmology but is still somewhat 

alien to mainstream biological sciences. 

Although I explained phase space above in the 

terms of two or three dimensional plots, as 

these are intuitively easier to grasp, there is, in 

fact, no limit to the number of dimensions that 

can be employed in the embedding process. To 

obtain an artistic two-dimensional visual 

representation of the 10-dimensional phase 

space, the author used techniques from cubism 

to produce a contour map (a projection of a 

high dimensional object on lower dimensions, 

frequently used in quantum mechanics) (Deb, 

2016). The author did not derive the plots 

using experimentally-derived data and 

presented this as a work of abstract 

expressionism. However, it presents an 

intriguing approach to the embedding process 

and the subsequent representation of the 

attractor.  

The first step in being able to properly 

derive the actual strange attractors is to 

determine the correct embedding procedure to 

use. The nature of non-linear systems is that 

the equations derived from the study of one 

such system are not usually applicable to 

another. It is not, therefore, valid to use 

embedding equations derived from the study 

of, for example, weather systems and apply 

them to cancer. The correct embedding 

equations to use in biological systems need to 

be worked out in those systems. This will 

require collaboration with mathematicians and 

scientists who are experienced with non-linear 

mathematics and its applications. 

Most of our current diagnostic and 

research modalities in human cancer provide a 

single snapshot of the cancer in time. The 

construction of the phase space plot requires 

repeated sampling. Experimental derivation of 

strange attractors could proceed initially using 

animal models to measure all the parameters 

that are deemed necessary to derive the phase 

space plot. It is unclear how this should be 

translated into the clinic using samples from 

real patients. The degree of repeated tissue 

sampling required to generate a phase space 

plot is unlikely to be ethically justifiable. 

Studies on circulating tumour cells in the 

blood or using radiological approaches may be 

more feasible or, if the tumour mass is easily 

accessible to fine needle aspiration, cytology 

could also be used. Other approaches on 

biopsy and resected material may also be 

possible, but the issues raised are difficult. 

Would it be valid to pool the data of large 

numbers of patients and construct an average 

phase space plot for each cancer type? How 

should cancers be grouped for this purpose? 

Should integrated genomics approaches be 

used to group the cancers? Should 

morphological criteria be used? In addition, 

tumours are heterogenous, and therefore the 

strange attractors may vary even within the 

same tumour mass. In addition, it will be 

important to select the appropriate period over 

which to sample. If the sampling period is too 

long, it is possible that bifurcations may occur, 

and be missed, during the sampling process, 

giving rise to a plot which actually represents 

the ‘average’ of several bifurcations. If the 

sampling period is too short, there will be 

insufficient data to derive any attractor.  

Aside from the challenges of data 

acquisition, there are also profound analytical 

challenges to be faced. The first is that the 

imposition of measurement error on a phase 

space plot can create the artefactual 

appearance of a strange attractor when the data 

are actually derived from a periodic or 

quasiperiodic system. Secondly, a strange 

attractor can also be artefactually produced if a 

systematic bias is present in the sampling of a 

random system. Both these influences could 
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also produce an erroneous shape of a strange 

attractor even if the system is truly in 

deterministic chaos. Clearly, a form of 

statistical testing is required to account for 

these artefacts, but therein lies another 

problem. 

Strange attractors, as discussed above, 

are always fractals.  In a fractal system, the 

measurement of any parameter depends on the 

resolution at which the measurement is taken. 

If one is measuring length, for example, the 

value of the measured length would increase 

as the finer details are revealed. The 

measurement does not therefore have a ‘true’ 

value. Rather, there is a relationship, referred 

to as a scaling relationship, between the 

measurement and the resolution. This has a 

profound consequence. We are used to using 

means and variances to describe data, and the 

sample mean we obtain by experiment is 

meant to reflect the population mean of the 

parameter. As the sample size is increased, the 

sample mean should approach the ‘true’ value 

of the population mean. For fractals, however, 

something very different happens when this 

tried and tested method is applied. As the 

sample size increases, the value of the sample 

mean continues to change and diverge to either 

zero or infinity, never approaching a ‘true 

mean’. This situation arises because the value 

of the parameter depends on the scale at which 

it is measured, and can therefore never have a 

single true value. Repeated measurement 

simply results in the parameter being measured 

at finer and finer scales, and the conflicting 

measurements thus obtained either cancel each 

other out, tending towards zero, or compound 

each other, tending towards infinity. Self-

similarity at multiple scales can also affect 

variance, because smaller fluctuations in the 

data are amplified as the resolution is 

increased by repeated sampling. The measured 

variance therefore increases as the sample size 

or sample time increases, and tends towards 

infinity. This renders our traditional approach 

to statistical hypothesis testing useless (see 

(Bassingthwaighte et al., 1994) for review). If 

there is no mean and infinite variance, there is 

currently no way to determine what the 

parameters of the system are, so we have no 

way of detecting a change in those parameters. 

Furthermore, because the system has no true 

mean, the value of the calculated mean will be 

seen to change even if the underlying process 

remains unchanged.  

Despite the enormity of the challenge, 

it is vital that the work to properly measure 

and characterize the deterministic chaos of 

cancer is done. Only then will it be possible to 

use deterministic chaos to inform the details of 

the treatment regimens directed against the 

weak points of cancer. As exemplified by the 

applications in space exploration, a successful 

outcome requires exact calculation 

meticulously and precisely applied. This is 

only possible if we have an accurate 

mathematical representation of the system we 

are targeting. 

 

Conclusion 

If the ‘war on cancer’ is to be won, it 

is clear that we need to change our strategies. 

There is no doubt that the emerging 

molecularly targeted therapies will continue to 

play a role in reducing tumour bulk, but new 

approaches are needed to exploit the 

weaknesses of cancer and, essentially, use its 

evolutionary biology against it. The atavistic 

model provides a fascinating approach to 

selecting which weaknesses to strike. The 

promise of chaos theory and fractal 

mathematics is to provide the details of the 

tactics. The hope is that this approach will 

produce sustainable control of the tumour. In 

the words of Sun Tzu, “just as flowing water 

avoids the heights and hastens to the lowlands, 

so an army avoids strength and strikes 

weakness”.  
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