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ABSTRACT

Background: Incarcerated populations experience disproportionately high rates
of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and sexually
transmitted infections (STIs), particularly in geographic ""hotspot™ areas. Despite
Center of Disease Control (CDC) recommendations for routine opt-out
screening, most U.S. jails rely on risk-based approaches that miss a substantial
proportion of infections. Missing opportunities to treat for these infectious
diseases in jails represents a significant issue; reducing the prevalence of
communicable diseases on a national level requires addressing carceral hotspot
areas.

Obijective: To compare the cost-effectiveness of routine opt-out versus risk-
based screening for HIV, HCV, chlamydia, syphilis, and gonorrhea in jails located
within infection hotspots.

Methods: We created Markov state transition models using parameters derived
from existing literature for five major infections — HIV, HCV, chlamydia, syphilis,
and gonorrhea. With these models, we ran simulations that showcase the
predicted number of infected incarcerated individuals who receive treatment
with opt-out screening versus risk-based screening. Using health utility values
and treatment costs, we calculated the Incremental Cost Effectiveness Ratio
(ICER) for all infection models that we compared to a Willingness to Pay
Threshold (WTP) to assess the relative cost effectiveness of opt-out screening
and risk-based screening.

Results: For STI models, opt-out screening shows high cost-effectiveness relative
to the WTP, with ICER values being far below the $100,000 WTP (ranging from
$727 to $4,941 additional cost for opt-out screening per QALY gained). The HCV
model showed moderate cost effectiveness with opt-out screening, with an ICER
of $85,760 per QALY gained, whereas the HIV model was not cost-effective.
Additionally, a higher proportion of infected individuals are estimated to be able
to complete full treatment course while incarcerated with opt-out screening.
Considerable gains were seen with the chlamydia and syphilis models with 20.5%
and 22.8% more infection positive cases estimated to be fully treatable during
incarceration respectively.

Conclusions: Routine opt-out screening for most infectious diseases examined is
highly cost-effective in hotspot jails. Our findings support prioritizing opt-out
screening implementation in high-burden correctional facilities as a strategy to
improve individual health outcomes and reduce community transmission.
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Incarcerated populations experience
disproportionately high rates of HIV, hepatitis C
virus (HCV), and other sexually transmitted
infections (STIs) compared with the general U.S
population. At jail intake, infection rates for HIV,
chlamydia, gonorrhea, and syphilis are consistently
several times higher than those observed in
surrounding communities. These disparities reflect
both individual risk behaviors and structural
inequities, including limited access to preventive
care and testing prior to incarceration. As a result,
jails carry a disproportionate burden of disease
while also presenting one of the few consistent
points of healthcare contact for many high-risk
individuals, which is an important opportunity for
public health intervention.

The burden of HIV, HCV, and STlIs is not evenly
distributed across the United States. Geographic
and epidemiologic analyses identify specific
"hotspot” areas, defined here as areas with high
prevalence for HIV, HCV, and/or STIs. In these
hotspots, many people cycle through local jails
each year, intensifying disease transmission and
creating a setting where routine testing could have
substantial benefits.?Because incarceration and ST
prevalence cluster geographically, testing in
hotspot jails represents a practical and impactful
strategy to advance both individual and community
health equity.

Despite longstanding Centers for Disease Control
and Prevention (CDC) recommendations, most U.S.
jails still lack consistent routine-opt out testing
programs for HIV or other STIs.® Instead, many
screening facilities rely on opt-in or risk-based
screening, which depends on symptom recognition
and self-disclosure. Because of this, a large
proportion of infections remain undetected. For
populations with limited access to healthcare, such
as incarcerated opt-out testing
normalizes screening as part of standard care,
minimizes stigma, and increases detection. This
persistent implementation gap continues to

individuals,

undermine both the health of incarcerated

individuals and broader community prevention
efforts.?

Evidence now supports the feasibility and public
health value of implementing rapid, individual opt-
out tests for multiple infections at jail intake. Rapid
diagnostic technologies now permit same-day
results for HIV, HCV, and syphilis, while nucleic acid
amplification tests (NAATS) can process gonorrhea
and chlamydia with high accuracy. * Newer same-
day GC/CT platforms further expand the potential
for comprehensive intake screening.* Previous
economic analyses have suggested that routine
opt-out screening in carceral settings can be cost-
effective.® Expanding routine opt-out testing across
these diseases in high-burden jails represents an
efficient and ethically grounded public health
approach.

Given constrained state and county budgets,
identifying cost-effective strategies for screening in
high-burden regions is a pressing public health
priority. This analysis compares routine opt-out
testing with risk-based screening for HIV, HCV,
syphilis, gonorrhea, and chlamydia in jails located
in hotspot areas. Using state-transition models - a
commonly used tool to simulate a given population
cohort’s transition through various health states
over time using probabilistic measures - and
publicly available epidemiological data, we
estimate the incremental health and economic
benefits associated with implementing individual
opt-out testing for each infection at jail intake. The
findings underscore that routine testing in hotspot
jails is both feasible and necessary to reduce
disease burden, promote equity, and strengthen
national treatment and prevention efforts.

OVERVIEW

We created state transition models to perform a
cohort simulation of individuals incarcerated in jails
that provides an estimate of the QALYs to be
gained and costs to be accrued from risk-based vs.
opt out screening. QALY (quality adjusted life
years) and cost values derived from established
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values in the literature were used to calculate an
Incremental Cost-Effectiveness Ratio (ICER) for
each screening intervention, allowing us to assess
relative cost effectiveness between screening

types.

Models used a standard cohort size of 100,000
which allows for simple interpretation and can
represent multiple jails and a time horizon of ten
years, which was utilized to show potential long
term benefits of each screening intervention.

Five models were created in this study. We focus
on risk-based vs. opt out screening within hotspots.
These sites are based on the state level prevalence
of human immunodeficiency virus (HIV), hepatitis C
virus (HCV), and sexually transmitted infections
(STIs). Using publicly available prevalence data

Equation 1 — Hazard to probability conversions

from 2023, we calculated which states were in the
top 75% percentile for prevalence. In the models,
all state prevalence data was scaled up for carceral
institutions (apart for the HIV and HCV models
which use estimates directly from studies on state
carceral prevalence).

PARAMETER DERIVATIONS

Some parameters needed for the model were not
available in the literature. Thus, we used available
data to derive estimates for these parameters (see
Equation 1, Equation 2, and Equation 3).
Cumulative risks were often available in the
literature. With these numbers, we could derive
annual risk as well as state transition probabilities
where needed.

P=1-¢*

p = weekly (or monthly) state transition probability
A = hazard rate (instantaneous incidence rate)

A=-In(1-¢)/D
¢ = cumulative risk
D = estimate duration of health stage

Equation 2 — Annual risk derivation

r=1-(1-c)Y

r = annual risk
¢ = cumulative risk (as found in literature)
y = number of years over which the risk is accumulated

1

Equation 3 — Survival probability to hazard rate

S =e Mt

S = probability of survival at time, t
A = constant hazard rate (annual)
t = time (year)

*Use to S from literature to solve for A and then apply state transition probability equation above.
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Cohort Parameters

For each infection, the relative proportions of each
health state (e.g., for HIV, the proportion of AIDS
vs. HIV) was determined based on data in the
literature (Table la and Table 1b). The most
prominent health states for each infection were
included. For both gonorrhea and chlamydia this
included pelvic inflammatory disease (PID) and
epididymitis. Health states unique to a given
infection were as follows - disseminated
gonococcal infection (DGI) in the gonorrhea
model, chronic pelvic pain (CPP) and tubal factor
infertility (TFI) in the chlamydia model, primary,
secondary, latent, and tertiary stages in the syphilis
model, acquired immunodeficiency syndrome
(AIDS) and sustained virological resistance (SVR) in

the HIV model, and compensated cirrhosis (CC),
decompensated cirrhosis (DC), and hepatocellular
carcinoma (HCC) in the HCV model.

Similarly, the estimated proportion of those who
would be already diagnosed upon carceral
admission was based on estimates from the
literature. It is worth noting that we included the
assumption that only 10% of those who were
previously diagnosed would self-identify, given
barriers such as stigma and fear of lack of
confidentiality in carceral settings. Health utility (a
commonly used metric for health economic
evaluations ranging from O to 1, with higher values
denoting better health quality) for each health state
and cost estimates for treatment and screening
were found in the literature as well.
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Table 1a: Cohort parameters for STI models

Gonorrhea Model Chlamydia Model Syphilis Model
Parameter Value Reference Value  Reference( Value Reference
(s) s) (s)
Hotspot 0.0639 (6,7, 8) 0.115 (6, 16) 0.0221 (6)
carceral
prevalence?
Percentage 0.0550 9) 0.060 9) 0.0224 (21)
diagnosed
before
screening®
Health state DGl 0.0175 (10) PID® 0.0627 (6,17) Primary' 0.017 (21)
proportions CPP¢ 0.0113 (18) Latent' 0.014 (21)
PID® 0.110 (11, 12) ( | TFF 0.0001 (19) Secondary' 0.0015 (21)
p. 259) 07
Epididymit  0.0010 (p. Tertiary' 0.0013 (21)
Epididymiti  0.0010 (p. 260) is9 260)"2
S
Health utility | Gon-¢ 1 N/A Chl-¢ 1 N/A Syph-¢ 1 N/A
per state Gon+*¢ 0.85 (p. 259)*3 Chl+"h 0.97 (20) Syph+ 0.88 (22)
Gon+ DGIf 0.60 (p. 259) 13 Primary 0.803
Gon+ PID 0.63 (p. 259)*3 Chl+ PID 0.756 (20) Syph+ 0.726 (22)
Gon+ 0.46 (p. 259) 13 Latent’
Epididymiti Chl+ CPP 0.759 (20) Syph+ (22)
S Secondary!
Chl+ TFI 0.905 (20)

© 2026 European Society of Medicine




Notes:

Sa - o a0 T

Gonorrhea Model Chlamydia Model Syphilis Model
Syph+ 0.65 (22)
Chi+ 0.665 (20) Tertiary
Epididymit
is
Screening $50 (14) $50 (14) $50 (14)
cost
Treatment $85 (15) $151 (15) $1,000 (23)
cost

Calculated by taking the mean of the top 75" percentile prevalence state for the infection and scaling for carceral institutions
Used proportion of asymptomatic or latent cases as a proxy; assumed only 10% previously diagnosed would self-identify
Based on proportion of infection+ cases that are female and proportion of infection+ cases that develop into PID/CPP

Based on health utility of 1 representing perfect health
Estimate based on mild cases in men and women (average)

Estimate based on outpatient cases in men and women

No epididymitis proportion for chlamydia found, used epididymitis proportion for gonorrhea as proxy

Based on health utility of symptomatic chlamydia in men and women (average)
Normalized proportions to exclude proportion of congenital syphilis from study
Estimated using range of values found from primary and tertiary stages

© 2026 European Society of Medicine




Table 1b — Cohort parameters for HIV and HCV models

HIV Model HCV Model
Parameter Value Reference(s) Value Reference(s)
Hotspot carceral 0.0165 (24) 0.277 (33)
prevalence?
Percentage 0.0938 (25) 0.025¢ (34)
diagnosed before
screening®
Health state AIDS+ 0.216 (26) Milde 0.422 (34,35)
proportions SVRd 0.132 (27, 28) Moderate® 0.434 (34,35)
Ccce 0.129 (34,35)
DCe 0.012 (34,35)
HCC® 0.03 (34,35)
Health utility per HIV- 1 N/A HCV- 1 N/A
state HIV+ 0.82 (29) HCV+ Mild¢ 0.751 (36)
HIV+ AIDS+ 0.70 (29) HCV+ Moderate? 0.751 (36)
HIV+ SVR' 0.92 (29,30) HCV+ CC¢ 0.671 (36)
HCV+ DC¢ 0.602 (36)
HCV+ HCC? 0.662 (36)
Screening cost $50 (31) $151 (37)
Monthly treatment $1,617 (32) $6,458 (38)
cost"
Notes:

a. Calculated by taking the mean of the top 75" percentile prevalence state for the infection and scaling for carceral institutions; HCV values were not scaled

as were taken from study examining carceral seroprevalence

b. Assumed only 10% previously diagnosed would self-identify in both models
c. Used estimate of what percentage of marginalized populations are not aware of HCV+ status

© 2026 European Society of Medicine




Scaled down according to estimated percentage of incarcerated individuals with health insurance in community
Used study estimating the proportion of fibrosis (F) stages and another study examining progression of fibrosis to DC and HCC (applied cumulative risk

equation to get estimated proportion of cases)
f. Used meta regression utility values provided for each stage

g. Based on study that showed utility gain of 0.1 one year post treatment for HIV patients
h. For HCV, used average cost per inmate specifically, adjusted for inflation, and divided by two for two-month treatment course

State Transition Model Matrices

We created state transition matrices to represent the probabilities of
transitioning between various health stages within each infection model. We
treated each infection as independent regarding state transition
probabilities to create individual infection models. Transition probabilities
were derived from available data in the literature (Table 2). We treated the
small risk of death from advanced health states within the gonorrhea and
chlamydia models as negligible, apart from the risk of death for disseminated
gonococcal infection (DGI) which is rare but fatal.

Within the model, cycles were applied representing a time step in which
state transition probabilities are applied to move individuals between health
states. The gonorrhea, chlamydia, and syphilis models used weekly cycles
to best represent the treatments lengths of the infections (ranging between
1-3 weeks of treatment). The HIV and HCV models utilized monthly cycles

given that treatment for these infections take multiple months to achieve —
in our models, we examined three-month HIV treatment and two-month HCV
treatment. We treated the risk of acquiring a given infection while
incarcerated as negligible.

In all models, exit states (representing states in which the individual no
longer accrues costs or benefits associated with carceral treatment) included
death (which had low probabilities associated with certain health states),
carceral release, and cured states (except for HIV which used the sustained
virological resistance (SVR) state in place of cured). We treated the
probability of entering treatment after diagnosis as 1.0, in other words, the
individual was guaranteed to enter treatment unless carceral release
occurred. Based on the average length of jail stay of 32 days, we found that
the weekly probability of release is approximately 0.195 and the monthly
probability of release is approximately 0.670.%°

© 2026 European Society of Medicine 8



Table 2a: State transition probabilities for STI models

Gonorrhea Model Chlamydia Model Syphilis Model
Transition Weekly Reference(s Transition Weekly Reference(s Transition Weekly Reference(s)
State ) State ) State
Transition Transition Transition
Probability Probabiliy Probability
Gon+ -> 0.0044 (10) Chl+ -> Chl+| 0.00127 (6,42) Syph+ Primary - 0.154 (45)
Gon+ DGI? PID® >
Syph+
Secondary®
Gon+ -> 0.0257 (10) Chl+ PID -> 0.260 (43) Syph+ 0.118 (46)
Gon+ PID? Chl+ CPP¢ Secondary ->
Syph+ Latent?
Gon+ -> 0.000222 (10) Chl+ PID -> 0.170 (43) Syph+ Latent ->|  0.000594 (47)
Gon+ Chl+ TFI° Syph+
Epididymitis? Tertiary®e
DGI -> Death®?|  0.0000424 (40) Chl+ -> Chl+ 0.170 (43) Syph+ Tertiary - 0.00639 (47)
Epididymitis® >
Death?f
Gonorrhea 0.95 (41) Chlamydia 0.95 (44) Syphilis 0.95 (48)
treatment treatment treatment
success rate success rate success rate
Weekly 0.195 (39) Weekly 0.195 (39) Weekly 0.195 (39)
probability of probability of probability of
carceral carceral carceral
release? release® release®

© 2026 European Society of Medicine




Notes:

a.) Applied equation 1 to derive —found cumulative probability of progression from literature, D = 4.5 weeks to represent average length of jail stay and find

P weekly

b.) Applied equation 1 to derive, used D = 12 months to find lambda (assume same constant risk of death)
c.) Applied equation 1 to derive —found cumulative risk of incidence from literature, D = 52 weeks to find p weekly
d.) Applied equation 1 to derive —D depended on values in literature for typical time spent in each syph+ state
e.) Assumed tertiary occurs 10 years after primary infection
f.) Assumed 3 years until death after untreated tertiary infection begins

Table 2b: State transition probabilities for HIV and HCV models

HIV Model HCV Model
Transition Monthly State Reference(s) Transition Monthly State Reference(s)
Transition Probability Transition
Probability
HIV+ -> AIDS+2 0.00576 (49) HCV+ Mild -> 0.0021 (52)
HCV+ Mod®
AIDS+ -> Death® 0.0301 (50) HCV+ Mod -> 0.0031 (52)
HCV+ CCe®
HIV treatment 0.653 (51) HCV+ CC -> 0.0032 (52)
success rate within 3 HCV+ DC¢
months (attain SVR)®
Monthly carceral release 0.670 (39) HCV+ DC -> 0.0012 (52)
probability? HCV+ HCC®
HCV+ DC -> 0.0012 (52)
HCV+ HCC®
HCV+ CC -> Deathf 0.0008 (53)

© 2026 European Society of Medicine



HIV Model HCV Model
HCV+ DC -> Death? 0.0170 (54)
HCV+ HCC -> Death' 0.0226 (55)
HCV treatment 0.991 (56)
success rate (8 week
treatment)"
Monthly probability of 0.670 (39)

carceral release®

converted to P monthly

) Applied equation 1 and equation 3 to derive — used AIDS+ untreated 2 year survival rate of 48%
) Based on three-month treatment success rate for obtaining SVR
) Applied equation 1 to derive = D = 1.1 months (based on average length of jail stay)
) Used state transitions provided from other study, converted from annual to monthly
Applied equation 1 and equation 2 — converted 5 year survival and mortality rates to annual
.) Applied equation 1 to derive - converted constant death rate probability to monthly
.) Based on two months of ledipasvir-sofosbuvir treatment

© 2026 European Society of Medicine
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RISK BASED VS. OPT-OUT SCREENING
CASE DETECTION RATES

A comprehensive literature search was employed
to find relevant studies from which risk based and
opt-out screening case detection rates could be
derived. Case detection rates were defined as the
proportion of positive cases that were diagnosed
through screening out of all estimated positive
cases in the cohort. These rates are impacted by
the number of people who meet the screening
criteria for risk-based screening, the test uptake
percentage in both screening methods, and test
sensitivity.

We identified a study that assessed risk based vs.
opt-out screening for HCV in an urban prison in

Philadelphia.®” Our sources for case detection rates
in other studies, however, were based on different
populations, such as young adults in an emergency
department setting and women in a sexual health
clinic. We would expect differences in screening
implementation within the carceral environment —
for instance, those in the carceral setting may not
report as many symptoms as those in the outside
community or may have different test uptake rates.
Given this, we elected to scale the case detection
rates for the other infections according to the HCV
screening prison study (Table 3). This resulted in
risk-based case detection rates being slightly
lowered and opt out case detection rates being
slightly higher.

© 2026 European Society of Medicine 12



Table 3: Case Detection Rates for Risk Based vs. Opt-Out Screening

Risk Opt-Out % Reference(s) Study Calculation Notes
Based Case Difference Population
Case Detection
Detection Rate
Rate (Scaled)*
(Scaled)*
HIV 12.3% 43.3% 31.0% (58) Patients in P(Diagnosed | HIV+) = identified
urban, cases /
Midwest ED estimated total cases
Gonorrhea 21.2% 43.8% 22.7% (59, 60) Young adult Eckman et. al study provided
patients in | numbers for treated and detected,
urban ED used McWhirter et al. estimate of
young adults who will seek
treatment after diagnosis to derive
number detected
Detected = Detected + Treated /
Treated
P(Diagnosed | Gon+) = detected
cases / estimated total cases
Chlamydia 19.9% 58.3% 38.4% (61) High risk P(Diagnosed | Chl+) = screening
women in coverage * test acceptance
us probability
Syphilis 43.4% 83.0% 39.5% (62) Female P(Diagnosed | Syph+) = identified
patients in cases /
sexual estimated total cases
health clinic
in Australia | Used 2/3 of positivity rate of high
risk high risk group to find the
estimated cases excluded in the
low-risk group and then added to
confirmed cases in high risk group
Opt-out group used full positivity
rate
HCV 24.2% 57.1% 32.9% (57) Incarcerated | P(Diagnosed | HCV+) = identified
individuals, cases /
urban estimated total cases
prison
Scaled down PDPH cohort (opt-
out) with by percentage that
would typically opt out in real
world setting (40%)°

*To scale up according to the HCV calculated case detection rates (the only study using a prison population),
the average of the original case detection rates for each screening type for each infection was divided by the

© 2026 European Society of Medicine 13



Cost- Effectiveness of Routine Opt-Out Screening for Human Immunodeficiency Virus, Hepatitis C Virus, and Sexually
Transmitted Infections in United States Jails within “Hotspots”

HCV case detection rates for each screening type. As a result, risk-based screening case detection rates were
multiplied by a scaling factor of 0.7 and opt-out case detection rates were multiplied by a factor of 1.23.

Simulation

For the Markov simulation applied (in which
transitions to the next state only depend on the
current state i.e., the simulation does not have
“memory”), we first took our initial cohort vectors -
which included the number of people in each
health state for a given infection for a cohort of

100,000 — and simulated a one-time risk based and
opt-out screening upon jail admission using the

calculated case detection rates. These rates
changed the proportion of people in undiagnosed
vs. diagnosed health states, which had

downstream effects in the simulation; those who
became diagnosed could enter carceral treatment
(Figure 1).

Figure 1: HIV Example State Transition Model Conceptual Diagram

HIV+ D SVR

L..fLCfJI Releas .e

“ = Madel health state

And = Exit state

3 » Persistence in health state

) = [ransition to health state

each
screening method, we performed the simulation.
We utilized Python (version 3.11.5) to conduct the
simulation. The general process was as follows. For

After adjusting the cohort vectors for

each cycle (520 cycles for the weekly models and
120 cycles for monthly models), the number of
people who moved from one health state to
another was calculated, using the probabilities

© 2026 European Society of Medicine
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T3 = treatment month 3

from the state transition matrix and current cohort
(this
multiplication).

numbers was performed via matrix

The number of people who exited the model after
each transition was calculated and used to add in a
dynamic inflow of people meaning that in every
cycle individuals were added in response to the
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number of individuals that previously exited the
model. We decided to keep the number of people
in active states constant (100,000), so the number
of people who exited in each cycle were replaced
to replenish the cohort to 100,000. The inflow
vector used the same proportions of health states
defined in the initial cohort vector.

We calculated accumulated QALYs and costs by
calculating the associated utility and costs for each
stage per cycle (this involved multiplying the health
state distribution in the current cohort by utility and

Equation 4: QALYs per cycle

cost vectors). Equations 4 and 5 below provide
more detail on the calculation of accumulated
QALYs and costs. The values from each cycle were
summed to find total QALYs and costs for each
simulation. We applied an annual discount factor
of 0.03 (which was converted for weekly and
monthly models respectively) to capture the time
value of money (Equation 6 and Equation 7). Total
costs included the costs of treatment accrued
across the simulation and the cost of screening
(Equation 7).

QALYs per cycle = ¥,; ¥ j(utility; » number of people in state; * %)

j = health state
i = cycle
t = number of cycles per year (52 for weekly models, 12 for monthly models)

Equation 5 — Treatment costs per cycle

Treatment costs per cycle = }; Y.x(treatment cost, *x number of people in statey,)

k = treatment health state

i =cycle
Equation 6: Total discounted QALYs
Total discounted QALYS = (3}; QALY s per cycle) * ( ! =)
(1+0.03)t
i =cycle
t = number of cycles per year (52 for weekly models, 12 for monthly models)

Equation 7: Total discounted costs

Total costs = ((3;; Treatment cost per cycle) * ( 7)) + (simulation cohort size *

percentage of people screened * cost of screening test)
i =cycle
t = number of cycles per year (52 for weekly models, 12 for monthly models)

1

(1+40.03)¢

© 2026 European Society of Medicine 15



ICER Calculation

We used the total discounted QALY and treatment
cost values from the state transition model
simulation to calculate ICER values and compare
cost effectiveness between risk based and opt-out
screening for each model. For total discounted
costs, we also added in the cost of screening. We
used the same sources as used to derive case
detection rates to estimate the number of people

who were screened (regardless of if they were
positive or not) in the cohort for each screening
intervention (Table 4). Based on the number of
people estimated to be screened, we estimated
the total screening test cost. Our total costs did not
include the personnel cost associated with
administering the tests as these costs are highly
variable, with different facilities, for instance,
employing different medical professionals with
different hourly rates to administer testing.

Table 4: Estimated population screening percentages according to literature

Risk Opt-Out % Reference(s) Study Calculation Notes
Based % % Difference population
Screened* | Screened*
HIV 29.9% 40.8% 10.9% (58) Patients in % screened from stated
urban, screening coverage
Midwest ED
Gonorrhea 52.0% 59.0% 7.0% (59) Young adult | % screened based on proportion
patients in receiving STI testing among
urban ED those at risk on STl survey and
proportion agreeing to get STI
testing under universally offered
screening strategy
Chlamydia 30.0% 50.0% 20.0% (61) High risk % screened from stated
women in screening coverage
us
Syphilis 43.4% 83.0% 39.6% (62) Female % screened based on number of
patients in | women who chose to be tested /
sexual all women identified high risk
health clinic (risk based) or all women (opt
in Australia out)
HCV 5.3% 40.0% 34.7% (57) Incarcerated % screened for risk based
individuals, derived from proportion of
urban population noted as high risk
prison % screened for opt-out scaled
down® from 100% to 60% (for
more realistic application than
controlled study)

*Derived estimates for % screened among the entire population (i.e., for risk-based, % screened among both

low and high-risk groups) such that could find estimates for number of people screened in the cohort and

associated testing costs

ICER was calculated as follows (Equation 8):
Equation 8: ICER

(Risk based discounted costs) — (Opt — out discounted costs)

ICER =

(Risk based discounted QALYS) — (Opt — out discounted QALYS)

© 2026 European Society of Medicine
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We interpreted the ICER values in reference to a
Willingness to Pay Threshold (WTP), representing
the cost that a society is willing to pay for a health
improvement. We used a WTP of $100,000 per
QALY gained, which has been shown to be used in
previous cost-effectiveness studies in carceral
settings and also serves as largely common WTP
threshold utilized within health economics studies
with US populations. 4% With this WTP, if the ICER
was below $100,000 per QALY gained, we
determined opt-out screening to be cost-effective.

ICER Values
Each individual infection model showed ICER
values consistent with cost-effectiveness given our

WTP of $100,000 except for the HIV model (Table
5). The gonorrhea model showed very high-cost
effectiveness, with an ICER value suggesting that
with opt-out screening, the additional cost is only
$727 for 1 additional QALY gained. The chlamydia
and syphilis models similarly showed high-cost
effectiveness, with ICER values of $2,731 and
$4,941 respectively. The HCV model also showed
cost effectiveness, though its ICER value was
relatively higher than the other models ($85,760),
suggesting higher costs per QALY gained. The HIV
model did not show cost-effectiveness, with an
ICER much higher than the WTP of $100,000 (ICER:
$211,024).

Table 5: Total discounted QALYs, total discounted costs, and ICER values

Total Discounted QALY Total Discounted Costs ICER Value | Interpretation
Gonorrhea $727 Opt-out
Model Risk Based: 41,710,718 Risk Based: $272,800,633 screening is
Opt-Out: 41,770,043 Opt-Out: $315,930,070 cost effective
Difference: 59,325 Difference: $43,129,437
Chlamydia $2,731 Opt-out
Model Risk Based: 41,969,728 Risk Based: $182,836,380 screening is
Opt-Out: 42,023,246 Opt-Out: $328,981,942 cost effective
Difference: 53,518 Difference: $146,145,563
Syphilis $4,941 Opt-out
Model Risk Based: 42,008,171 Risk Based: $361,210,636 screening is
Opt-Out: 42,074,835 Opt-Out: $690,619,660 cost effective
Difference: 66,664 Difference: $329,409,024
HCV $85,760 Opt-out
Model Risk Based: 31,703,140 Risk Based: $2,426,936,290 screening is
Opt-Out: 31,745,228 Opt-Out: $6,036,407,214 cost effective
Difference: 42,088 Difference: $3,609,470,924
HIV Model $211,024 Opt-out
Risk Based: 33,950,481 Risk Based: $138,632,288 screening is
Opt-Out: 33,950,762 Opt-Out: $197,913,801 not cost
Difference: 281 Difference: $59,281 513 effective
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Proportion of Cases Treated

Additionally, with opt-out screening, we see a
higher percentage of cases treated (Table 6,
Figure 2). The largest difference in the percentage
of treated cases with opt-out vs. risk-based
screening was seen with the chlamydia and syphilis

models which showed 20.49% and 22.76% more
cases respectively being treated with the opt-out
screening intervention models. The HIV and HCV
models show relatively low percentages of treated
cases (between 0.14% and 3.37%) and little
difference in the percentage treated between opt-

Table 6: Estimated screened and treated cases

out and risk-based screening interventions.

Total Simulation | Estimated Number of Estimated Number Estimated Treated / Total
Cohort Number Screened Cases* of Treated Cases** Number of Infection+ Cases
(Initial + Infection+ Estimated in
constant inflow Cases in Cohort (%)
over 10 years) Cohort***
Gonorrhea
Model 10,240,003 Risk Based: 5,272,801 Risk Based: 94,960 | 654,336 Risk Based: 14.51%
Opt-Out: 5,982,602 Opt-Out: 174,152 Opt-Out: 26.62%
Difference: 709,880 Difference: 79,192 Difference: 12.10%
Chlamydia
Model 10,240,036 Risk Based: 3,042,000 Risk Based: 165,259 | 1,177,600 Risk Based: 14.03%
Opt-Out: 5,070,000 Opt-Out: 406,552 Opt-Out: 34.52%
Difference: 2,028,000 Difference: 241,293 Difference: 20.49%
Syphilis Model
10,240,005 Risk Based: 4,400,762 | Risk Based: 59,374 | 226,304 Risk Based: 26.24%
Opt-Out: 8,499,204 Opt-Out: 110,878 Opt-Out: 49.00%
Difference: 4,098,442 Difference: 51,504 Difference: 22.76%
HCV Model
8,140,731 Risk Based: 425,256 Risk Based: 33,802 | 2,254,982 Risk Based: 1.50%
Opt-Out: 4,824,439 Opt-Out: 75,931 Opt-Out: 3.37%
Difference: 4,399,182 Difference: 42,129 Difference: 1.87%
HIV Model
8,140,423 Risk Based: 2,401,031 Risk Based: 193 134,317 Risk Based: 0.14%
Opt-Out: 3,280,492 Opt-Out: 361 Opt-Out: 0.27 %
Difference: 879,461 Difference: 168 Difference: 0.13%

*Calculated using screening percentages from Table 4

**Found in simulation by counting the amount of times final treatment state transitioned into cured state

***Calculated by multiplying total simulation cohort number by hotspot carceral prevalence. Represents all

estimated infection cases across 10 year timeframe
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Figure 2: Treated / Total Infection+ Cases Estimated in Cohort (%) for STI models
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Looking at the number of cases fully treated during
incarceration relative to the number of cases
present for each infection model over time
(Figures 3a and 3b), we can also see how effective
opt-out screening is at facilitating increased
treatment. In the STI models, a clear difference
between the cumulative number of cases treated
between the two screening types is seen shortly
after the simulation starts, with notable differences
appearing around cycle 100 (roughly two years).
Among all STI models, opt-out screening for

Chlamydia Model

m Opt-Out % Treated

Syphilis Model

m Untreated %

syphilis shows the greater difference in cumulative
number of cases treated. It is evident, however,
that the cumulative number of cases treated with
either screening type is much lower than the
cumulative number of positive cases at any given
time point.

Within the HIV and HCV models, we see very low
cumulative numbers of cases treated with either
screening type relative to the cumulative number
of positive cases.
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Figure 3a: Cumulative Number of New Cases Presenting to Jail for STIs Over Time
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Figure 3b: Cumulative Number of New Cases Presenting to Jail for HCV and HIV Over Time
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KEY FINDINGS

Our analysis exhibits strong support for
implementing routine opt-out screening in jails for
four major infections within infection hotspots. All
infection models, aside from the HIV model,
showed cost-effectiveness with routine opt-out
screening given the carceral specific WTP utilized.
Based on literature derived values, we found much
higher case detection rates with routine opt-out
screening than risk-based screening, translating
into an increase in quality-of-life health benefits
with opt-out screening seen in all models. In
addition to the higher case detection rates with
opt-out screening, the very cost effective ICER
values for the STI models are largely based upon
lower treatment costs and short treatment
durations. The moderate cost effective ICER value
seen with the HCV model and the not cost effective
ICER value seen with the HIV model, by contrast,
are likely due to much higher treatment cost and
longer treatment course.

Of note, the HCV model shows very high
accumulated discounted costs across the
simulation relative to other models. This is best
explained by the expensive nature of HCV
treatment (approximately $12,000 for a two-month
treatment) combined with the relatively very high
prevalence of HCV in carceral hotspots (we
estimated a prevalence of 27.7% based on a
previous study that established carceral HCV
seroprevalence data). Additionally, in our model,
we assume that everyone who is diagnosed will
enter treatment while incarcerated. Due to the
reality of high probability of jail release at any point
in time, this resulted in a number of cases where
HCV treatment was started but not finished,
therefore increasing costs.

The ICER values for the STI models and HCV model
being below the WTP threshold provides strong
quantitative justification for widespread opt-out
screening, which is largely already regarded as
best practice; we show that the cost of opt out
screening applied to a large carceral population is

considered worthwhile in relation to societal
willingness to pay for expected health gain.

Additionally, all models showed an increased
percentage of estimated fully treated cases during
incarceration with opt-out screening, explained by
opt-out screening allowing for more infected
patients to receive diagnosis and subsequently
enter treatment. However, relative to the number
of the total positive cases in the cohort, both
screening types still only allow for full course of
treatment while incarcerated for a relatively small
portion of those who need it.

STRENGTHS

This study presents a novel examination of the cost
benefit of opt-out screening within a key
population disproportionately impacted by
infectious disease — the incarcerated population.
Our study considers an important reality of
treatment within carceral settings, high probability
of carceral release which limits the ability of
patients to complete full treatment course in jails,
thereby creating a model that is well generalizable.
Additionally, through focusing on jails in infection
hotspots, our results may help inform strategic
public health interventions that aim to target these
crucial facilities. The results of this study also
support previous similar studies showing cost
effectiveness with an  opt-out screening
approach.® 9.6t

LIMITATIONS

This study has several methodological limitations.
Many needed parameters for the cohort and state
transition probabilities were not readily available in
the literature, requiring derivation and using
studies from varied populations that may show
differences to the incarcerated population. One
particularly consequential parameter we had to
derive was case detection rates, which we based
on available studies in the literature from varied
populations and scaled for the incarcerated
population. Other methodological limitations
include the exclusion of personnel costs (which are
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high but were excluded due to variability among
jails in different regions) and not incorporating a
dynamic adjustment to the inflow vector that would
account for the anticipated decreased prevalence
of the infections in the community over the long
simulation timeframe. The lack of this dynamic
inflow means that the cost benefit associated with
prevention (i.e., decreased transmission in the
community in response to individuals entering the
community after treatment) is not captured in this
study. The assumption that those who were
diagnosed through carceral screening would
certainly enter treatment if not released also serves
as a limitation, with this being dependent on
resource constraints in reality.

Lastly, other constraints of applying opt-out testing
in a real jail setting include adjusting workflow and
staffing to account for increased screening upon
admission and security concerns related to moving
a large cohort of inmates to testing settings
regularly. Linkage to care post-release is another
important consideration not included in this study’s
modeling. While it is possible to start treatment in
jail and facilitate connection to a treatment center
if the patient is released before completing
treatment, we excluded this consideration from our
model due to estimating continuity of treatment
post-release being not feasible with discharge
planning varying greatly between facilities.
Additionally, the proportion of those released from
a carceral institution who seek to finish treatment
course is limited with patients facing many barriers
such as lack of insurance, stigma, and poor health
literacy.%®

IMPLICATIONS

The results of this study highlight the strong cost
benefit of implementing opt-out screening within
jails within hotspots. The cost-effective nature of
opt-out screening upon carceral admission in
combination to its other known benefits, such as
stigma reduction and decreased transmission,
suggest the need for subsequent concerted
initiatives aimed at making opt-out screening

widespread in jails across the nation within
hotspots.

While many jails may be located in hotspots for
multiple infections, it is worth noting that screening
for multiple infections upon admission may not be
cost-effective, due to the accrual of high treatment
costs. High treatment cost is a particularly
impactful issue within HIV treatment efforts with
antiviral therapy costing thousands of dollars
annually and maintaining sustained virological
resistance representing a recurring monthly cost.
Other studies have shown cost-effectiveness with
HIV opt-out screening, however, they only consider
the cost of test administration and not treatment
and are often not specific to carceral facilities.®”*°
One study examining HIV opt-out screening cost-
effectiveness in a county jail in Georgia did find a
cost effective result, though the model included
the benefits and reduced costs associated with the
number of secondary HIV transmissions averted
and only analyzes one jail over a one year time
horizon.®* The high monthly probability of carceral
release represented in our HIV model also
influences cost-effectiveness considerably, with
many who start the treatment leaving the facility
before completion and therefore not receiving the
full health quality benefits of the treatment.

Future efforts should focus on identifying avenues
to decrease the cost of antiviral therapy within
carceral facilities and linkage to post-release
treatment access. State benefit programs such as
Medicaid or 340 B programs can be utilized to pay
for HIV treatment costs, representing an
opportunity to decrease the cost of HIV treatment
to the jail and make an opt out screening
intervention possibly cost effective. Additionally,
the Medicaid 1115 Waiver offers an avenue for
states to pilot changes in regulations related to
Medicaid coverage. In recent years, a number of
states have applied for and received the Medicaid
115 Waiver to address the Medicaid Inmate
Exclusion Policy (MIEP) which prevents the use of
Medicaid funds for treating infectious diseases in
jails.”® Within these states, decreasing the cost of
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medications to the facility, particularly for HCV and
HIV treatment, can help facilitate the adoption of
routine opt-out screening.

Overall, our study suggests that both national and
state health organizations should prioritize the
implementation of routine opt-out screening for
major infections, particularly within hotspot areas.
Executing this will require partnerships between
programs such as the Ryan White HIV/AIDS
program, the Center for Disease Control, and state
departments of health.

Routine opt-out screening in jails can have a
significant impact on prevalence and incidence of
these infections within the larger community.
Mobilizing the will of the community to implement

pilot and implementation programs within jails
serves as a promising avenue to improve
population health.
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