

PERSPECTIVE ARTICLE

Digital health and consumer health informatics: past and future

Xia Jing¹, Hua Min², Yang Gong³

¹Department of Public Health Sciences, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States

²Department of Health Administration and Policy, College of Public Health, George Mason University, Fairfax, VA, United States

³Department of Clinical and Health Informatics, McWilliams School of Biomedical Informatics, The University of Texas Health Sciences Center at Houston, Houston, TX 77030, USA;

ABSTRACT

This perspective paper introduces digital health and consumer health informatics, their focus areas, origins, current trends, and future challenges. The paper aims to elaborate on the differences and their connections within the broader context of biomedical and health informatics. The goal is to provide a better and clearer navigation system for readers and researchers in the fields of digital health and consumer health informatics.

Keywords: digital health; consumer health informatics; perspectives; trends; challenges.

OPEN ACCESS

PUBLISHED

31 January 2026

CITATION

Jing, X., Min, H., Gong, Y., 2026. Digital health and consumer health informatics: past and future. Medical Research Archives, [online] 14(1).

COPYRIGHT

© 2026 European Society of Medicine. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ISSN

2375-1924

Digital health and consumer health informatics have flourished in recent years, driven by advances in digital technology, computing power, and connected devices. Digital health and consumer health informatics both play an increasingly critical role in the general public's health and well-being. The two fields differ in focus, origin, and mechanisms. This short paper aims to elaborate on the differences, their connections within the broader context of biomedical and health informatics, their histories, and potential future developments. Our goal is to help readers navigate these fields more efficiently by clarifying their scope, highlighting their differences, and ultimately promoting the health and well-being of the general public.

Digital health uses digital tools to enhance health and well-being and improve health outcomes. Typical digital tools include smartphones, pedometers (e.g., Fitbit), mobile apps, sensors, and other wearable devices. The focus of digital health is largely on the effectiveness and efficacy of these tools in keeping the general public or patients with certain conditions healthy and in improving patients' condition management, medication adherence, and communication with their healthcare providers. The tools used in digital health are primarily commercial products. A 2022

report from the National Academy of Medicine used a broader definition of digital health¹. Terms such as mhealth, ehealth, telehealth, and telemedicine are sometimes used interchangeably with digital health. Digital health typically focuses on the general public, including healthy individuals, patients, and healthcare providers.

Consumer health informatics, on the other hand, is a branch of health informatics. Consumer health informatics focuses on informatics tools and their applications among the general public. Typical informatics tools include consumer-oriented websites (e.g., MedlinePlus), personal health records, and patient portals, as well as the digital health tools mentioned earlier. The focus of consumer health informatics lies in understanding the mechanisms of these tools and how they play roles in consumers' health and well-being. Understanding the underlying scientific foundation can illuminate the design and development of better, more effective tools to empower consumers. Consumers' information use and the effectiveness of information during communication are the primary focuses of the field. Consumer health informatics typically focuses on the general public. Table 1 presents a side-by-side comparison of the two. Figure 1 illustrates digital health and consumer health informatics as two fields.

Table 1 Comparison of digital health and consumer health informatics

	Digital health	Consumer health informatics
Goals	Effectiveness or efficacy evaluation of commercial products on health and well-being programs	Information usage and deciphering the underlying mechanism to improve
Hardware	Advanced medical, nonmedical, personal-use devices	Personal-use devices
MeSH definition	Use of digital technologies in medicine and other health professions to manage illnesses and health risks and to promote wellness	The field devoted in informatics from multiple consumer or patient views
MeSH term start year	2024	2018
Software	Programs, app, api, algorithms used in digital tools, e.g., electronic health record (EHR), clinical decision support system (CDSS), telemedicine platforms, digital therapeutics, AI/machine learning algorithms, etc	Programs, app, api used in consumer-facing tools, e.g., patient portal, personal health record (PHR), wellness apps, symptom checkers, diet and fitness apps
Study objects	Commercial products	Commercial products or self-developed technology/prototypes
Target population	General public + Individuals seek healthcare + healthcare providers	Patient population or the general public

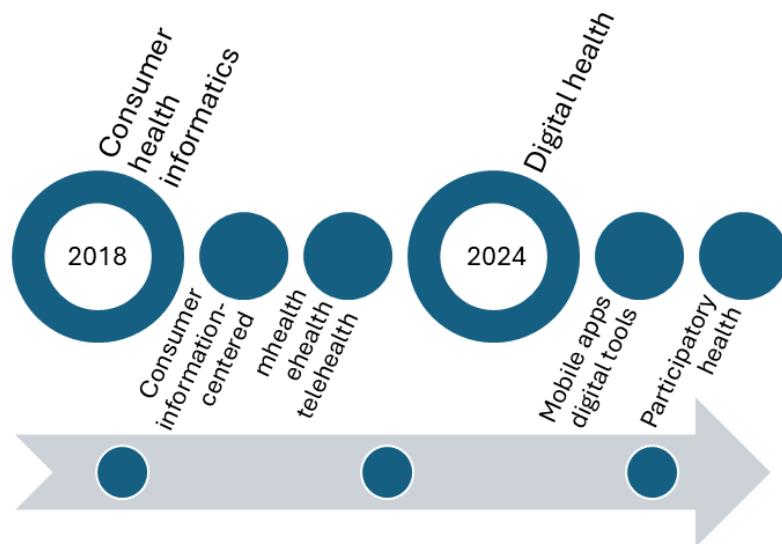
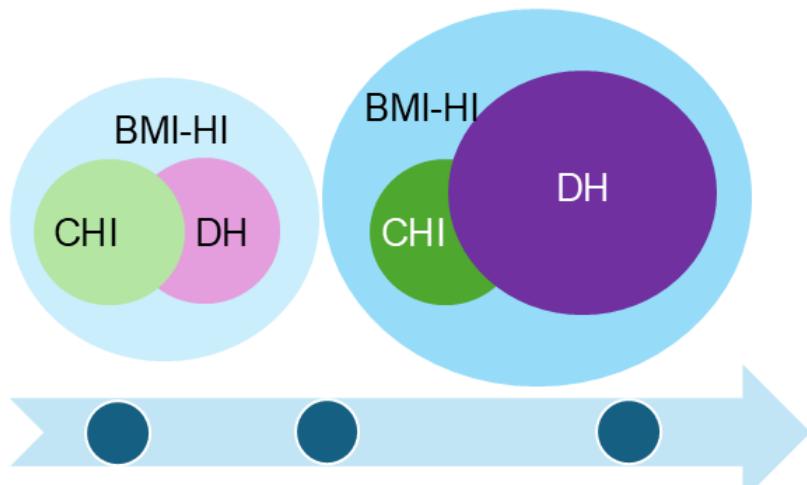


Figure 1 Consumer Health Informatics and Digital Health

The origins and the past

We examined the past research through the existing literature to identify themes and current trends in digital health and consumer health informatics.

It is hard to pinpoint the origin of the term 'digital health'. The practice of using different-colored flags on ships to convey health-related information has been around for centuries, i.e., to communicate health information remotely. Telemedicine has been used for decades to provide needed specialty medical care remotely for civilians, the military, prison populations, and individuals living in rural areas^{2,3}. Telehealth is a broader concept than telemedicine, including clinical research, education, and medical care virtually^{2,3}. MeSH is a controlled vocabulary that powers PubMed, the largest biomedical and health literature database in the world. MeSH term has included digital health since 2024, which reflects a recent surge in the topic despite its long history. The definition of digital health as a MeSH term is much broader, encompassing health IT, electronic health records, telemedicine, and personalized medicine, as well as wearable devices as digital health tools. Meanwhile, it is parallel to consumer health informatics and medical informatics in MeSH. The topology shows the relationships among the three, especially the latter two, which were more maturely defined and have been included in MeSH for much longer (Figure 2). In addition, the starting years of several digital health journals also reflect the field's trajectory to some extent. Digital Health (SAGE journal) started in 2015, the Lancet Digital Health in 2019, and BMC Digital Health in 2023.


Digital health projects utilize commercial products directly, evaluating their effectiveness and efficacy. Digital health interventions typically use text messages, phone calls⁴, mobile apps, or alerts through electronic health records or patients' portals. The scopes of the studies are quite broad including but not limited to the following areas, demonstrated through either systematic reviews or randomized control trials: chronic conditions management⁵, cancer screening⁴, behavioral changes^{6,7}, eating disorders⁸, mental health⁹⁻¹¹, fall prevention and detection¹², medication management and healthcare service delivery¹³, Parkinson's disease¹⁴, attention deficit hyperactivity disorder (ADHD)¹⁵, pediatric oncology¹⁶, musculoskeletal conditions¹⁷, stroke¹⁸, heart failure¹⁹, multiple sclerosis²⁰, overweight and obesity^{21,22}, suicide prevention²³, antibiotic prescription²⁴, hypertension management²⁵, chronic kidney disease²⁶, as well as well-being promotion and maintenance, such as sleep, step counts, screentime monitoring, etc. Many of the digital health studies are collaborations between academia and industry. The targeted populations range from children, adolescents⁶, to seniors^{5,7,12,27}. Some studies focus on urban settings, and others focus on rural settings²⁷. Many studies focused on individuals with chronic conditions, while others focused on healthy adults⁷. Digital health tools can improve older adults' physical activities with good evidence^{7,28}. However, the digital tools' true effects on outcomes for individuals with overweight and obesity are mixed despite clear evidence of better engagement via digital tools, which suggests digital tools alone may not be adequate to achieve the ideal health

outcomes in these cases^{21,29}. The geographic areas also have good coverage, including North America, Africa¹³, and Asia countries^{25,30}.

1993 might be the starting point of the term "consumer health informatics" ³¹. However, the papers relevant to consumer health informatics can be traced back to 1965. The early papers focus more on consumer health or consumer health information rather than on formal consumer health informatics, as a subject³¹. The names reflect the focuses of the early efforts in consumer health informatics and the transition overtime, very information-focused and consumer-focused. Consumer health informatics research spans from patient education and communication to health education and involves health record keeping via patient portals or personal health records. Typically, how to provide information more effectively is a primary focus of the field. Demiris's 2016 paper provided an excellent summary of consumer health informatics progress over the prior 25 years, although it did not distinguish between digital health and consumer health informatics at the time. The first theme discussed in the paper is home telehealth³¹, and mHealth (mobile health) was listed as a theme under the consumer health informatics field. This indicates the perceived relationship between the two at the time. Consumer health informatics has been

included as a MeSH term since 2018, and it is positioned parallel to digital health. Another relevant MeSH term is consumer health information, which was introduced into MeSH in 2008.

In consumer health informatics, the studies fall into the following focuses: precision prevention, particularly in chronic condition prevention³², facilitating communication of medical texts and reports to patients³³, social media and online platforms to detect and manage disease outbreaks³⁴, the role of visualization in chronic condition management³⁵, prostate cancer prevention among black men³⁶, e-consent among patients for sharing their health information³⁷, online information source to facilitate patient reported measures among stroke patients³⁸, and mobile apps utilized among pregnant women³⁹. Self-developed tools, such as personal health records, can be used in consumer health informatics research. Researchers aim to improve these tools by identifying their underlying mechanisms. Although the ultimate goal is to improve the health and well-being of the general public, the pathways to achieving this goal can differ from those in digital health. Figure 2 shows the evolution of consumer health informatics and digital health over time and their relationships to the broader context of biomedical and health informatics.

Evolving scopes, overlaps, and prevalence over time

Figure 2 The evolution of Consumer Health Informatics (CHI) and Digital Health (DH) and their relationships to Biomedical and Health Informatics (BMI-HI)

The future

In this section, we share our perspectives on digital health and consumer health informatics, outlining possible directions, current challenges, and

research and development trajectories over the next several decades.

Artificial intelligence (AI) has reemerged with the impressive performance of large language models

(LLMs) and has attracted significant attention across scientific and everyday life. Inevitably, AI will be a key technology applied, refined, and further developed in both digital health and consumer health informatics. However, the roles of AI in these two fields may differ in nuanced ways despite their shared overarching goal of improving human health and well-being. In digital health, the future of AI applications may still heavily focus on assisting individuals in promoting and maintaining their health through both software and devices. On the other hand, in consumer health informatics, the focus of the AI technology may align with the primary target population: the general public, to obtain health information via AI assistants or its elaboration, explanation, and alternative representation via AI generation.

In both digital health and consumer health informatics, more and more automated tracking data can support data-driven optimization across various applications. By analyzing aggregated tracking data, the content and the display could be adjusted to better serve the general public and provide more precise solutions. In both fields, AI will play a more significant role as a collaborator, better serving the general public more effectively and precisely. Other future directions may be heavily influenced by the opportunities outlined in the next section, given the current challenges in both fields.

Challenges and opportunities

The primary challenges in digital health can be exemplified in at least three areas: device and service costs, additional demands on already-strained healthcare providers' workloads, and the need to provide authentic health information in this "generative era". Most digital health interventions involve devices, commercial apps, or newly developed sensors, some of which can be costly. This could further worsen the health disparity among different socioeconomic groups. In addition, many digital health interventions, especially those targeted at particular conditions, such as hypertension^{25,40-43} or type 2 diabetes^{42,44}, require healthcare providers' constant feedback or timely actions to achieve ideal outcomes. In theory, this might be an ideal practice for patients and their healthcare providers to maintain good communication and make timely adjustments to

treatment plans based on patients' real-time condition, ultimately improving patients' health outcomes. In practice, this practice not only could worsen healthcare providers' burnout and make their workload even more unmanageable, but without corresponding reimbursement reform to recognize healthcare providers' contributions outside of office or hospital encounters, this demand, despite its purely good intentions, could also be unrealistic to sustain. Meanwhile, if the reimbursement is made without a well-planned, robust, and well-thought-out plan, this could lead to another fraud hotspot.

The effectiveness of digital health tools still needs rigorous evaluation. One meta-analysis showed that such tools are effective in improving physical activities among older adults; however, other medical-related measures, such as depression or hospital days, did not show statistically significant results⁵. In addition, the paper also recommends expanding the functionality of digital tools to include more healthcare-related services⁵. This indicates that digital interventions need more comprehensive functionality beyond the basics. Another recommendation is greater implementation at individual homes, in addition to community-level implementation of digital technologies, and some are in healthcare provider settings²⁷. Regarding the data generated and reported by patients or the general public, how to use such data by both the general public and providers, and how to maximize its benefits, is not a simple question that can be easily answered⁴⁵.

The challenges for consumer health informatics primarily lie in the following aspects: consumer digital literacy has improved significantly over the last few decades, especially among younger generations, who are fairly tech-savvy, which raises requirements for user engagement and information utility while providing the corresponding services. Another huge challenge is the needed workforce to fight back against the constantly generated false health information mixed with true information. Since the LLM can generate fluent languages in scientific or academic contexts, this does not imply the authenticity or validity of the information. The information generated certainly does not ensure that the sources of information are scientifically valid and explicitly documented. Discerning legitimate from false health information is a critical

skill for everyone; unfortunately, not everyone can do so. Placing the burden of educating the general public and fighting back against false health information solely on healthcare providers is another unrealistic and unsustainable expectation on already-strained healthcare providers. A dedicated workforce with the right background knowledge, training, and understanding of health and medicine is needed at an accelerated pace, given the rapid pace of generated health information and its dissemination. Another challenge for healthcare providers is keeping up with increasingly demanding consumers. For example, through a PHR or patient portal, patients may be able to identify discrepancies in their records and request updates from the healthcare provider. Considering the ratio between patients and healthcare providers, the requests, even if they are not from every single patient for every single encounter, could be significant to meet.

Another challenge across both digital health and consumer health informatics is that high-quality, rigorously designed and conducted randomized controlled trials (RCTs) are not yet a common practice in either field^{7,10}, which affects the robustness of the evidence generated and the confidence in disseminating the results on a large scale. In addition, a longer follow-up is recommended to obtain robust evidence^{9,28}, and more personalized interventions⁹, precise solutions⁴⁶, and tailored solutions⁴⁷ are also recommended. Long-term engagement of end users in digital health has been identified as a primary challenge for digital health interventions to truly impact the outcomes. In addition, a scale study¹⁰ and further analysis on cost and effectiveness are also needed⁴. Broader adoption of digital tools is still needed in African countries^{13,18}. The strategies need to go beyond information or technology accessibility⁴⁷. User engagement is a first step that has been proven to help both digital health apps and consumer health informatics information sources; however, the true effect of the intervention is much more complicated and challenging to achieve³⁹. Another interesting finding is the identification of needs for providers and caregivers' support for multiple sclerosis patients²⁰. In addition, it seems that advanced natural language processing (NLP) techniques have not been broadly adopted to facilitate the communication of medical texts to patients³³.

Limited progress on racial and ethnic minority groups in consumer health informatics⁴⁸. Although patient education on prostate cancer focuses on black men, it is a rare but excellent example³⁶.

A further challenge involves the vast amount of data generated by personal devices and how these data can be integrated with medical records seamlessly. Ensuring interoperability between consumer-generated data and clinical systems, maintaining data standards, accuracy, and consistency, and protecting patient privacy are critical issues that must be addressed to make these data useful for clinical decision-making and research. Future opportunities include leveraging advanced analytics and AI to extract actionable insights and creating seamless, secure integration between personal devices and clinical systems to support personalized care.

In summary, digital health and consumer health informatics share the same target population, the general public. The differences primarily lie in the tools used and the study goals in each field, although there are significant overlaps between the two. Although we think the distinction between the two is nuanced, better and more precise definitions for them can help practitioners better identify their work, using accurate keywords to describe their work, better align their work with the work in the same field, better educate future work force in the fields, and ultimately to greatly improve human health and well-being via digital tools and informatics tools.

Conflict of Interest Statement:

None.

Funding Statement:

None.

Acknowledgements:

This work is supported partially by funding from the National Institute of General Medical Sciences (R01GM138589) of the National Institutes of Health. This work has also benefited from research training resources and the intellectual environment enabled by the NIH/NLM T15 SC BIDS4Health research training program (T15LM013977).

References:

1. Abernethy A, L. Adams, M. Barrett, et al. *The Promise of Digital Health: Then, Now, and the Future. NAM Perspectives. Discussion Paper*, 2022.
2. Shortliffe EH, Cimino JJ, Chiang MF. *Biomedical Informatics: Computer Applications in Health Care and Biomedicine*. 5th ed. Springer International Publishing; 2021.
3. Hersh W. *Health Informatics: Practical Guide, 8th Edition*. Lulu.com; 2022.
4. Liu X, Ning L, Fan W, Jia C, Ge L. Electronic Health Interventions and Cervical Cancer Screening: Systematic Review and Meta-Analysis. Review. *J Med Internet Res*. 2024;26:e58066. doi:10.2196/58066
5. Park Y, Kim E-J, Park S, Lee M. Digital Health Intervention Effect on Older Adults With Chronic Diseases Living Alone: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Review. *J Med Internet Res*. 2025;27:e63168. doi:10.2196/63168
6. Krishna K, Portsmouth L, Harris C, Ciccarelli M. What's the 'Secret Sauce'?: A Systematic Review of the Characteristics of Effective Digital Health Behaviour Change Interventions for Children and Adolescents. *Health Promotion Journal of Australia*. 2025;36(3):e70051. doi:<https://doi.org/10.1002/hpja.70051>
7. Makizako H, Shiratsuchi D, Akaida S, et al. Effects of digital-based interventions on the outcomes of the eligibility criteria for sarcopenia in healthy older adults: A systematic review and meta-analysis. *Ageing Research Reviews*. 2025;104:102663.
8. Cheung LG-M, Thomas PC, Brvar E, Rowe S. User Experiences of and Preferences for Self-Guided Digital Interventions for the Treatment of Mild to Moderate Eating Disorders: Systematic Review and Metasynthesis. Review. *JMIR Ment Health*. 2025;12:e57795. doi:10.2196/57795
9. Malouin-Lachance A, Capolupo J, Laplante C, A H. Does the Digital Therapeutic Alliance Exist? Integrative Review. *JMIR Ment Health*. 2025;12:e69294. doi:<https://doi.org/10.2196/69294>
10. Huang S, Wang Y, Li G, Hall BJ, TJ N. Digital Mental Health Interventions for Alleviating Depression and Anxiety During Psychotherapy Waiting Lists: Systematic Review. *JMIR Ment Health*. 2024;11:e56650. doi:<https://doi.org/10.2196/56650>
11. Bourboulis S, E; K, Group FMW-AA, L B. A qualitative exploration of factors that influence engagement with a digital mental health intervention for women with metastatic breast cancer: Finding My Way-Advanced. *Support Care Cancer*. 2025;33(4):333. doi:<https://doi.org/10.1007/s00520-025-09379-9>
12. Lui CXY, Yang N, Tang A, Tam WWS. Effectiveness Evaluation of SmartHome Technology in Preventing and Detecting Falls in Community and Residential Care Settings for Older Adults: A Systematic Review and Meta-Analysis. *Journal of the American Medical Directors Association*. 2025; 26(1):105347. doi:<https://doi.org/10.1016/j.jamda.2024.105347>
13. Oluokun EO, Adedoyin FF, Dogan H, N J. Digital Interventions for Managing Medication and Health Care Service Delivery in West Africa: Systematic Review. *J Med Internet Res*. 2024; 26:e44294. doi:<https://doi.org/10.2196/44294>
14. Yau CE, Ho ECK, Ong NY, Loh CJK, Mai AS, EK T. Innovative technology-based interventions in Parkinson's disease: A systematic review and meta-analysis. *Ann Clin Transl Neurol* 2024 Oct;11(10):2024;11(10):2548-2562. doi:<https://doi.org/10.1002/acn3.52160>
15. Liu X, Yang Y, Ye Z, et al. The effect of digital interventions on attention deficit hyperactivity disorder (ADHD): A meta-analysis of randomized controlled trials. *JAffectDisord* 2024 Nov 15; 2024;365:563-577. doi:<https://doi.org/10.1016/j.jad.2024.08.156>
16. Semerci R, Savaş EH, AA K. Utilizing Digital Tools for Self-Report Symptom Assessment and Management in Pediatric Oncology: A Systematic Review. *J Pain Symptom Manage*. 2024;68(6):e417 -e433. doi:<https://doi.org/10.1016/j.jpainsyman.2024.07.006>
17. van Tilburg ML, Spin I, Pisters MF, et al. Barriers and Facilitators to the Implementation of Digital Health Services for People With Musculoskeletal Conditions in the Primary Health Care Setting: Systematic Review. *J Med Internet Res*. 2024;26:e49868. doi:<https://doi.org/10.2196/49868>
18. Niyomyart A, Ruksakulpiwat S, Benjasirisan C, et al. Current Status of Barriers to mHealth Access Among Patients With Stroke and Steps Toward the Digital Health Era: Systematic Review. *JMIR Mhealth Uhealth*. 2024;12:e54511. doi:<https://doi.org/10.2196/54511>
19. Zakiyah N, Marulin D, Alfaqeeh M, et al. Economic Evaluations of Digital Health Interventions for Patients With Heart Failure: Systematic Review. *J Med Internet Res*. 2024;26:e53500. doi:<https://doi.org/10.2196/53500>

20. Vacchi L, Zirone E, Strina V, Cavaletti G, C F. Mobile Applications to Support Multiple Sclerosis Communities: The Post-COVID-19 Scenario. *Telemed J E Health*. 2024;30(6):e1615-e1628. doi:<https://doi.org/10.1089/tmj.2023.0515>

21. Grady A, Pearson N, Lamont H, et al. The Effectiveness of Strategies to Improve User Engagement With Digital Health Interventions Targeting Nutrition, Physical Activity, and Overweight and Obesity: Systematic Review and Meta-Analysis. *J Med Internet Res*. 2023;25:e47987. doi:<https://doi.org/10.2196/47987>

22. Heerman WJ, Rothman RL, Sanders LM, et al. A Digital Health Behavior Intervention to Prevent Childhood Obesity: The GreenlightPlus Randomized Clinical Trial. *JAMA*. 2024;332(24):2068-2080. doi:<https://doi.org/10.1001/jama.2024.22362>

23. Boggs JM, Quintana LM, Beck A, et al. A Randomized Control Trial of a Digital Health Tool for Safer Firearm and Medication Storage for Patients with Suicide Risk. *Prev Sci*. 2024;25(2):358-368. doi:<https://doi.org/10.1007/s11121-024-01641-6>

24. Tan R, Kavishe G, Luwanda LB, et al. A digital health algorithm to guide antibiotic prescription in pediatric outpatient care: a cluster randomized controlled trial. *Nat Med*. 2024;30(1):76-84. doi:<https://doi.org/10.1038/s41591-023-02633-9>

25. Wang Y, Guo F, Wang J, et al. Efficacy of a WeChat-Based Multimodal Digital Transformation Management Model in New-Onset Mild to Moderate Hypertension: Randomized Clinical Trial. *J Med Internet Res*. 2023;25:e52464. doi:<https://doi.org/10.2196/52464>

26. Greenwood SA, Young HML, Briggs J, et al. Evaluating the effect of a digital health intervention to enhance physical activity in people with chronic kidney disease (Kidney BEAM): a multicentre, randomised controlled trial in the UK. *Lancet Digit Health*. 2024;6(1):e23-e32. doi:[https://doi.org/10.1016/S2589-7500\(23\)00204-2](https://doi.org/10.1016/S2589-7500(23)00204-2)

27. Ming Y, Li Y, Liu Y. Digital technologies as solutions to China's aging population: a systematic review of their opportunities and challenges in rural development. Systematic Review. *Frontiers in Public Health*. 2025-January-15 2025;Volume 12 - 2024doi:10.3389/fpubh.2024.1416968

28. S.J. A, K.M. W, Parker F. The effectiveness of digital physical activity interventions in older adults: a systematic umbrella review and meta-analysis. *Int J Behav Nutr Phys Act* 2024;21:144. doi:<https://doi.org/10.1186/s12966-024-01694-4>

29. Miller HN, Gallis JA, Berger MB, et al. Weight Gain Prevention Outcomes From a Pragmatic Digital Health Intervention With Community Health Center Patients: Randomized Controlled Trial. *J Med Internet Res*. 2024;26:e50330. doi:<https://doi.org/10.2196/50330>

30. T N. Considerations of Providing the Public with Health Information. *Yakugaku Zasshi*. 2021;141(3):377-380. doi:<https://doi.org/10.1248/yakushi.2000207-1>

31. Demiris G. Consumer Health Informatics: Past, Present, and Future of a Rapidly Evolving Domain. *Yearb Med Inform*. May 2020;Suppl 1(Suppl 1):S 42-7. doi:<https://doi.org/10.15265/1YS-2016-s005>

32. Canfell OJ, Woods L, Robins D, C S. Consumer Health Informatics to Advance Precision Prevention. *Yearb Med Inform*. 2024;33(1):149-157. doi:<https://doi.org/10.1055/s-0044-1800735>

33. Tomlin HR, Wissing M, Tanikella S, Kaur P, L T. Challenges and Opportunities for Professional Medical Publications Writers to Contribute to Plain Language Summaries (PLS) in an AI/ML Environment - A Consumer Health Informatics Systematic Review. *AMIA*; 2023:709-717.

34. Gabarron E, Rivera-Romero O, Miron-Shatz T, Grainger R, K D. Role of Participatory Health Informatics in Detecting and Managing Pandemics: Literature Review. *Yearb Med Inform*. 2021;30(1):200-209. doi:<https://doi.org/10.1055/s-0041-1726486>

35. Lor M, U B. Visualizations Integrated Into Consumer Health Technologies Support Self-management of Chronic Diseases: A Systematic Review. *Comput Inform Nurs*. 2020;38(3):120-130. doi:<https://doi.org/10.1097/CIN.0000000000000583>

36. Walsh-Childers K, Odedina F, Poitier A, Kaninjing E, 3rd TG. Choosing Channels, Sources, and Content for Communicating Prostate Cancer Information to Black Men: A Systematic Review of the Literature. *Am J Mens Health*. 2018;12(5):1728-1745. doi:<https://doi.org/10.1177/1557988318786669>

37. Golembiewski EH, Mainous AG 3rd, Rahaman KP, et al. An Electronic Tool to Support Patient-Centered Broad Consent: A Multi-Arm Randomized Clinical Trial in Family Medicine. *Ann Fam Med*. 2021;19(1)doi:<https://doi.org/10.1370/afm.2610>

38. Reeves MJ, Fritz MC, Woodward AT, et al. Michigan Stroke Transitions Trial. *Circ Cardiovasc Qual Outcomes*. 2019;12(7):e005493. doi:<https://doi.org/10.1161/CIRCOUTCOMES.119.005493>

39. Ledford CJW, Womack JJ, Rider HA, et al. Unexpected Effects of a System-Distributed Mobile Application in Maternity Care: A Randomized Controlled Trial. *Health Educ Behav*. 2018;45(3):323-330. doi:<https://doi.org/10.1177/1090198117732110>

40. Katz ME, Mszar R, Grimshaw AA, et al. Digital Health Interventions for Hypertension Management in US Populations Experiencing Health Disparities: A Systematic Review and Meta-Analysis. *JAMA Netw Open*. 2024;7(2):e2356070. doi:<https://doi.org/10.1001/jamanetworkopen.2023.56070>

41. Kang H, Park HA. Development of Hypertension Management Mobile Application based on Clinical Practice Guidelines. *Stud Health Technol Inform*. 2015;210:602-6.

42. Donevant SB, Estrada RD, Culley JM, Habing B, Adams SA. Exploring app features with outcomes in mHealth studies involving chronic respiratory diseases, diabetes, and hypertension: a targeted exploration of the literature. *J Am Med Inform Assoc*. Oct 1 2018;25(10):1407-1418. doi:10.1093/jamia/ocy104

43. Wagner PJ, Dias J, Howard S, et al. Personal health records and hypertension control: a randomized trial. *J Am Med Inform Assoc*. Jul-Aug 2012;19(4):626-34. doi:10.1136/amiajnl-2011-000349

44. Powers B, King J, Ali R, et al. The Cholesterol, Hypertension, and Glucose Education (CHANGE) study for African Americans with diabetes: study design and methodology. *Am Heart J*. 2009;158:342-348.

45. Lai AM, Hsueh PS, Choi YK, RR A. Present and Future Trends in Consumer Health Informatics and Patient-Generated Health Data. *Yearb Med Inform*. 2017;26(1):152-159. doi:<https://doi.org/10.15265/IY-2017-016>

46. N W. Essential Considerations for Successful Consumer Health Informatics Solutions. *Yearb Med Inform*. 2019;28(1):158-164. doi:<https://doi.org/10.1055/s-0039-1677909>

47. Huh J, Koola J, Contreras A, et al. Consumer Health Informatics Adoption among Underserved Populations: Thinking beyond the Digital Divide. *Yearb Med Inform*. 2018;27(1):146-155. doi:<https://doi.org/10.1055/s-0038-1641217>

48. Valdez RS, CC R. Consumer Health Informatics for Racial and Ethnic Minoritized Communities: Minor Progress, Major Opportunities. *Yearb Med Inform*. 2022;31(1):167-172. doi:<https://doi.org/10.1055/s-0042-1742520>